
A Formal Evaluation of DepDegree
Based on Weyuker’s Properties

Dirk Beyer
University of Passau, Germany

Peter Häring
University of Passau, Germany

ABSTRACT
Complexity of source code is an important characteristic that
software engineers aim to quantify using static software mea-
surement. Several measures used in practice as indicators for
software complexity have theoretical flaws. In order to assess
the quality of a software measure, Weyuker established a set
of properties that an indicator for program-code complexity
should satisfy. It is known that several well-established com-
plexity indicators do not fulfill Weyuker’s properties. We
show that DepDegree, a measure for data-flow dependencies,
satisfies all of Weyuker’s properties.

Categories and Subject Descriptors: D.2.8 [Software
Engineering]: Metrics — Complexity Measures
General Terms: Measurement, Theory
Keywords: Software Measurement, Complexity Measure

1. INTRODUCTION
Software measurement is a static analysis technique that

software engineers and maintainers apply to obtain a quick
overview over certain characteristics of the software that they
inspect. There are many software measures available, for
different levels of granularity, and for different aspects of the
software. One of the (open) problems in software measure-
ment is to correctly quantify the complexity of source code.
It is known that difficult-to-understand program code hinders
efficient software maintenance, and that refactoring [5] can
help to transform difficult program code into program code
that is easier to understand and maintain.

A complexity measure m for program code is a function
that assigns to each program (in the real world) a numeric
value (in the formal world) and that fulfills the following
property (among others): Given two programs p1 and p2,
if p1 is more complex than p2, then the value m(p1) is larger
than the value m(p2). Such a measure does not exist in the
literature. This is mainly due to the fact that complexity
of program code is not well defined. Several indicators for
program complexity and understandability exist, i.e., func-
tions that (exactly) measure certain aspects of the software.
These are used in practice to get a rough idea about program-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPC ’14, June 2–3, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2879-1/14/06 ...$15.00.

code complexity. Empirical studies are required to assess the
quality of an indicator for program complexity.

There are several examples for software measures that are
used in practice as indicators for software complexity: the
cyclomatic complexity [9] measures the number of linearly
independent paths in the control-flow graph of a program, the
statement count measures the length of a program in terms
of program statements, the Halstead effort [7] measures an
arithmetic combination of the vocabulary of operators and
operands that are used in the program, and DepDegree [1]
measures the number of data-flow dependencies in a program.

As part of a larger body of work to evaluate software mea-
sures, in this paper we are interested in a systematic investi-
gation of the formal quality of an indicator that was not yet
formally investigated in the literature before: DepDegree [1].
Formal evaluations of measures should be performed in addi-
tion to empirical evaluations, in order to ensure theoretical
soundness of the measurement results and their interpreta-
tion. We are using Weyuker’s nine properties that an indica-
tor for program complexity should satisfy [16]. Weyuker’s
properties encode a large amount of community knowledge
and experience on what experts consider desired properties
of measures to indicate program complexity. It is known
that all other above mentioned and widely-used indicators
do not fulfill some of the nine properties [13, 16]. The con-
tribution of this paper is to show that DepDegree fulfills
all nine properties. Weyuker’s properties have also been
applied and discussed in the context of object-oriented mea-
sures (e.g., [3, 6]), component-based development [15], and
business-process complexity measures [2].

2. BACKGROUND
Weyuker’s Properties. Elaine J. Weyuker proposed a set
of nine properties that indicators for software complexity
should possess [16]. She evaluated, using those properties,
the measures statement count, Halstead effort [7], cyclomatic
complexity [9], and Oviedo’s data-flow complexity [14]. Her
analysis showed that none of the evaluated measures fulfills all
nine properties. The properties are not meant as a conclusive
evaluation of software measures, but as formal prerequisites
of measures to satisfy an intuitive understanding of software
complexity. For our evaluation using Weyuker’s properties,
we use the language defined in the original paper.

Several sources in the literature have remarked —in refer-
ence to Zuse [17]— that Weyuker’s Properties suffer from a
logical error and cannot be completely fulfilled by a single
measure (e.g. [4,11]). Zuse presumably uses a different set of
properties that were perhaps defined in an older publication

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ICPC’14, June 2–3, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2879-1/14/06...$15.00
http://dx.doi.org/10.1145/2597008.2597794

253

by Weyuker, which is not archived and thus unavailable.
Weyuker herself makes no mention of this earlier set of prop-
erties. Part of the criticism by Zuse focused on a combination
of properties that is not present in Weyuker’s publication
from 1988 [16].

DepDegree. DepDegree is a measure for data-flow depen-
dencies that counts the dependencies for each statement in
the use-def graph [1]. The DepDegree for a method is the
sum of the dependency-counts for its statements. It is based
on the psychological insight that the number of items that
can be held in immediate memory is limited (to seven chunks,
plus or minus two) [10]. Therefore, code that requires the
programmer to remember many data-flow facts concurrently
is hard to understand and difficult to maintain.

3. EVALUATION OF DEPDEGREE
The contribution of this paper is to show that all nine of

Weyuker’s properties hold for DepDegree. For more informa-
tion, we refer to the supplementary web page 1.

Theorem: DepDegree satisfies Properties 1 to 9.

Proof: We prove each property separately in the following.
Most properties are existential, such that we give a witness
for the properties. Notation: for programs P and Q, we
write P ≡ Q if P and Q are functionally equivalent (same
input/output relation, program variables, termination [16]),
and |P | for the measurement value of a program P .

Property 1. There exist two bodies P and Q with |P | 6= |Q|.
This property requires that the measure maps to at least

two different measurement values. This property ensures
that the measure not simply maps all values to one result.
This is trivially fulfilled for DepDegree.

Property 2. For a given non-negative number c, there
are only finitely many programs with measurement value c,
provided that (1) the number of identifiers is finite, (2) there
exists a largest possible number that can be represented in
the program, (3) there is an upper bound on the length of an
instruction, and (4) every reasonable counterexample should
contain intra-block data flow.

This strengthening of Property 1 ensures that not too many
programs are mapped to the same measurement value. As
such, it excludes classification functions that map programs
to a small set of values. This property ensure a certain
distinguishing power between measurement values.

Several statements do not increase the DepDegree of a pro-
gram body. Every predicate or expression that is composed
only of constants yields a DepDegree of 0. An assignment
of an expression with DepDegree 0 has itself a DepDegree
of 0. Similarly, a loop or condition with a predicate with
DepDegree value 0 and bodies consisting only of statements
with a DepDegree of 0 can be constructed. The only way of
constructing an infinite number of programs with the same
DepDegree is to use variations and permutations of such pro-
grams. However, no intra-block data flow occurs in examples
constructed this way, violating the fourth requirement. Ev-
ery counterexample based on data flow inevitably increases
the DepDegree of the body. Therefore, for every DepDegree
value c, there exist only finitely many programs that fulfill
the requirements. As a result, DepDegree fulfills Property 2.

1
http://www.sosy-lab.org/~dbeyer/DepDegreeProperties/

Property 3. There are distinct programs P and Q such
that |P | = |Q|.

1 PROGRAM(a)
2 IF a = 0 THEN
3 out ← a
4 ELSE
5 out ← a + 10
6 END
7 OUTPUT(out)

1 PROGRAM(a)
2 b ← a
3 c ← b + 2
4 d ← c ∗ 2
5 out ← d − 4
6 OUTPUT(out)

Figure 1:
Programs P and Q

To ensure that not every program
maps to a distinct value, this prop-
erty requires that there are at least
two different programs that yield
the same measurement value.

Two programs have the same Dep-
Degree value if the number of data-
flow dependencies is equal. A non-
trivial example where DepDegree
satisfies this property is given in
Fig. 1: it shows two distinct pro-
grams with DepDegree value 5; the
first program uses a conditional as-
signment and the second a sequence
of assignments.

Property 4. There exist two programs P and Q such that
P ≡ Q and |P | 6= |Q| hold.

1 PROGRAM(a, b, c)
2 IF a ≤ b THEN
3 IF a ≤ c THEN
4 min ← a
5 ELSE
6 min ← c
7 END
8 ELSE
9 IF b ≤ c THEN

10 min ← b
11 ELSE
12 min ← c
13 END
14 END
15 OUTPUT(min)

1 PROGRAM(a, b, c)
2 min ← a
3 IF b < min THEN
4 min ← b
5 END
6 IF c < min THEN
7 min ← c
8 END
9 OUTPUT(min)

Figure 2:
Programs P and Q

Different ways to express the same
functionality exist, some more com-
plex than others. A measure for
complexity should not only quantify
the relation of input to output, but
be sensitive to the details of the im-
plementation and thus distinguish
between differently complex imple-
mentations. Thus, this property re-
quires that at least two different pro-
grams with equal functionality yield
distinct measurement values.

To show this property, consider
the two implementations of a func-
tion calculating the minimum of
three values in Fig. 2. For any as-
signment of variables a, b, and c,
both P and Q produce the same
output value min = min(a, b, c).
Counting the number of dependen-
cies shows that |P | = 14 and |Q| =
11. Therefore, P ≡ Q and |P | 6= |Q|
holds and we conclude that Dep-
Degree fulfills Property 4.

Property 5. For all program bodies P and Q, the conditions
|P | ≤ |P ;Q| and |Q| ≤ |P ;Q| hold.

This property of “monotonicity” requires that the measure-
ment value only grows and never decreases when composing
a program body by adding another block before or after the
original block.

To show that this property holds, we have to consider
what happens in all possible compositions of program bodies.
The DepDegree of a body is determined by the number of
definitions of variables that are used in program operations,
either on the right hand side of an assignment or as part
of a condition. As by the requirement of the language, we
know that every variable must be defined prior to being used,
making the DepDegree for every variable usage at least 1.

In a composition, a program body P prior to a program
body Q can have the following effect on the measurement
value of DepDegree: If there are no assignments in P that
are used in Q, |P ;Q| is at least that of |Q|. If there is an
assignment in P that is used in Q, the DepDegree of the

254

usage of this variable in Q is at least 1, depending on the
nature of the assignment in P . Thus, we have |Q| ≤ |P ;Q|.

Consider the DepDegree of a program body P followed
by a program body Q. Again, it depends on the number of
variable definitions in P and usages in Q. Adding a program
body Q after P can only increase the number of dependencies
in the new composite body and thus leads to an equal or
higher DepDegree. Thus we have |P | ≤ |P ;Q|.

Given that both above requirements hold for two bodies
P and Q, the conjunction of the two requirements holds as
well and DepDegree fulfills Property 5.

Property 6.
(a) There exist program bodies P , Q, and Ra such that
|P | = |Q| and |P ;Ra| 6= |Q;Ra| hold.

(b) There exist program bodies P , Q, and Rb such that
|P | = |Q| and |Rb;P | 6= |Rb;Q| hold.

1 a ← 1
2 IF a < b THEN
3 a ← b
4 END

1 IF a < c THEN
2 c ← 0
3 END
4 a ← b

1 d ← a

1 IF c < 10 THEN
2 b ← c
3 ELSE
4 b ← 10
5 END

Figure 3:
Program bodies

P , Q, Ra, and Rb

A program body may interact dif-
ferently with two program bodies of
equal measurement values. A mea-
sure is required to be responsive to
this kind of interaction. Thus, mea-
sures that simply count statements,
without considering interactions, do
not fulfill this property. For case (a),
a program body is attached after
two different program bodies with
equal measurement values. For a
measure to fulfill this criterion, the
composition |P ;Ra| must yield a
value different from |Q;Ra|. For
case (b), the body Rb is added to
the front of the bodies of P and Q.

Consider the program bodies P
and Q in Fig. 3, both with a Dep-
Degree value of 3. Because the com-
position |P ;Ra| yields 5, whereas
|Q;Ra| yields 4, Prop. 6a holds. In

the program body Rb;P , composed from Rb and P , we ob-
tain a DepDegree of 7. In contrast to that, the measurement
value of DepDegree is 6 for the composed body Rb;Q. Thus,
the requirement for Prop. 6b is also fulfilled, and we conclude
that DepDegree fulfills Prop. 6.

Property 7. There are programs P and Q such that Q is
obtained from P by permuting the order of body parts of P ,
and |P | 6= |Q|.

1 PROGRAM(a, b)
2 a ← a + b
3 IF 10 < a THEN
4 a ← 10
5 END
6 OUTPUT()

1 PROGRAM(a, b)
2 IF 10 < a THEN
3 a ← 10
4 END
5 a ← a + b
6 OUTPUT()

Figure 4:
Programs P and Q

The intention is to ensure that not
only the presence of operations but
also their potential interaction is
evaluated by the measure. This is
especially relevant because often the
order of statements defines the out-
come. Similar to Prop. 6, this prop-
erty ensures that interactions are
considered by the measure, but here
on statement level, whereas Prop. 6
makes a statement on larger blocks.

Fig. 4 is an example of a permu-
tation that fulfills this property for
DepDegree. In both programs, the
condition of the if-statement has a

DepDegree value of 1. But whereas the assignment in P in
line 2 has only one dependency for variable a, the variable a

used in the assignment in Q in line 5 is defined both in lines
1 and 3 and has therefore two dependencies. This yields
|P | = 3 6= 4 = |Q|, and thus, Property 7 is satisfied by
DepDegree.

Property 8. If P is a renaming of Q, then |P | = |Q|.
The quality of names for variables, methods, and classes

play an important role in the understandability of software
systems. While a poorly chosen name may give no or even
confusing information to a programmer, an artfully crafted
identifier informs the reader about the intention behind a
variable, method, or class. But as program documentation it
is part of human interaction. Because this information cannot
be quantified by a program-based measure, an evaluation of
variable names must not be part of a structural analysis.

DepDegree does not evaluate variable names for the calcu-
lation of the measurement result. Subsequently, this property
also holds for DepDegree.

Property 9. There exist program bodies P and Q such
that |P |+ |Q| < |P ;Q| holds.

1 a ← 1
2 IF b = 0 THEN
3 a ← 0
4 END

1 c ← 1
2 IF a = 0 THEN
3 c ← 0
4 END

Figure 5:
Program bodies

P and Q

To ensure that a measure reflects
a possible increase in complexity if
an interaction of two concatenated
bodies occurs, this property requires
the existence of two program bodies
whose concatenation has a measure-
ment value that is greater than the
sum of its parts.

If considering either of the pro-
gram bodies P and Q in Fig. 5 on
its own, their respective DepDegree
is 1. But if P and Q are concate-
nated to form P ;Q, the condition

in line 2 of Q has a DepDegree of 2, because it depends on
both the definitions in lines 1 and 3 in P . |P ;Q| is therefore
3, which is larger than |P |+ |Q| = 2. This establishes that
DepDegree also satisfies this property.

4. DISCUSSION
We have shown that DepDegree fulfills all nine properties

proposed by Weyuker. This establishes the formal validity,
according to Weyuker, for using DepDegree as an indicator
for program complexity. Table 1 gives an overview, including
results by Weyuker [16] and Misra [12]. The symbols 3
and 7 indicate that a property is fulfilled or not fulfilled,
respectively.

Cyclomatic complexity measures the number of linearly
independent paths in the control-flow graph of a method and
is often used as an indicator for procedure complexity [9].
The placement of statements is not considered, and therefore,
Properties 2, 6, 7, and 9 are not fulfilled.

Statement count is a widely used measure of program size.
It does not satisfy Properties 6, 7, and 9, because interactions
between statements are not taken into account.

Data-flow complexity measures the number of edges be-
tween blocks in the use-def graph of a method [14,16]. The
measure is based on the idea that the use-def relationship
between variables is easier to understand if the definition and
usage of a variable are inside the same block. The measure
does not consider all edges of the use-def graph, instead only
those that contribute to data-flow between blocks. As such,
the measure ‘data-flow complexity’ does not meet the criteria
needed to fulfill Properties 2 and 5.

255

Table 1: Complexity properties fulfilled by the measures
P
ro

p
er

ty

C
yc

lo
m

at
ic

C
om

p
le

xi
ty

S
ta

te
m

en
t

C
ou

nt

D
at

a-
F
lo

w

C
om

p
le

xi
ty

H
al

st
ea

d
E
ff
or

t

C
og

n
it
iv

e

C
om

p
le

xi
ty

D
ep

D
eg

re
e

1 3 3 3 3 3 3
2 7 3 7 3 3 3
3 3 3 3 3 3 3
4 3 3 3 3 3 3
5 3 3 7 7 3 3
6 7 7 3 3 7 3
7 7 7 3 7 3 3
8 3 3 3 3 3 3
9 7 7 3 3 3 3

Halstead effort is part of Halstead’s suite of software mea-
sures [7]. The measure tries to represent the effort that is

necessary to implement a program and is defined as e = V 2

V ∗ ,
where V is the volume of a program (a measure of program
size) and V ∗ is the minimum possible length of the imple-
mentation of a program (in its original definition, V ∗ is not
computable; adoptions are necessary). Property 5 is not
fulfilled by Halstead effort, because adding additional state-
ments will not necessarily increase the measurement result
and may even reduce it. Also Property 7 does not hold,
because the sequence of statements and their interaction is
not taken into account.

The cognitive complexity is a measure that is defined on the
interactions of basic control structures and is an indicator for
the complexity of the logical structure of the software [12]. It
intends to represent the time and effort needed to comprehend
source code. This measure does not fulfill Property 6, because
concatenation of two program bodies does not necessarily
increase the measurement result.

DepDegree is the only measure so far that fulfills all of
Weyuker’s properties, as shown in Sect. 3 and summarized
in Table 1. This formal evaluation increases the confidence
in DepDegree as an indicator for program complexity.

5. CONCLUSION
We investigated the possibility to use the data-flow-based

measure DepDegree [1] as indicator for program complex-
ity, instead of the well-known, classic measures by McCabe,
Halstead, and others. The idea behind DepDegree is that a
program is the more difficult to understand the more chunks
the programmer’s short-term memory has to remember [10].
This approach is new and promising, but was not yet thor-
oughly investigated. Our work is part of a larger project that
includes controlled experiments on software comprehension.

We present the results of our formal evaluation of the mea-
sure DepDegree. So far, the argument in the community was
that Weyuker’s properties are too strict and no measure can
fulfill them. This situation has changed and the argument is
no longer valid: in this paper we establish —for the first time
in the literature— that a reasonable indicator for complexity
of program code exists and in fact fulfills all of Weyuker’s
properties. DepDegree not only fulfills all nine properties, but
is even a technically simple and easy to understand measure,
which is easy to integrate into measurement frameworks.

Weyuker’s properties represent reasonable requirements
that an indicator for complexity of program code should
satisfy. It is surprising that measures that do not fulfill the
required properties (cf. Sect. 4) are widely used in practice.

Software-engineering researchers should more emphasize on
designing measures that fulfill the properties. We have shown
that this is possible — thus, the relevance of measures that
do not fulfill Weyuker’s properties should be re-evaluated.

This paper provides a formal validation of the measure
DepDegree. Empirical evaluations of software measures are
not part of this work. Prior research established that Dep-
Degree reflects programmer’s opinion better than the cyclo-
matic complexity [8]. These results, together with our formal
validation, declare DepDegree as a measure with high poten-
tial for practical use and that empirical evaluations should
establish further results about this measure. Formal evalua-
tions are a minimal requirement for providing practitioners
and researchers the necessary confidence in the validity and
soundness of measurement results (cf. also [4, 16]).

6. REFERENCES
[1] D. Beyer and A. Fararooy. A simple and effective

measure for complex low-level dependencies. In Proc.
ICPC, pages 80–83. IEEE, 2010.

[2] J. Cardoso. Evaluating the process control-flow
complexity measure. In ICWS, pages 803–804, 2005.

[3] S. R. Chidamber and C. F. Kemerer. A metrics suite
for object oriented design. IEEE Trans. Software Eng.,
20(6):476–493, 1994.

[4] N. E. Fenton. Software Measurement: A Necessary
Scientific Basis. IEEE Trans. Software Eng.,
20(3):199–206, 1994.

[5] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison Wesley, 1999.

[6] Gursaran and G. Roy. On the applicability of Weyuker
property 9 to object-oriented structural inheritance
complexity metrics. IEEE Trans. Software Eng.,
27(4):381–384, 2001.

[7] M. H. Halstead. Elements of Software Science (Operat.
and Progr. Sys. Series). Elsevier, 1977.

[8] B. Katzmarski and R. Koschke. Program complexity
metrics and programmer opinions. In Proc. ICPC,
pages 17–26. IEEE, 2012.

[9] T. J. McCabe. A complexity measure. IEEE Trans.
Softw. Eng., 2(4):308–320, 1976.

[10] G. A. Miller. The magical number seven, plus or minus
two: Some limits on our capacity for processing
information. The Psychological Review, 63:81–97, 1956.

[11] S. Misra. Modified Set of Weyuker’s Properties. In
Proc. ICCI, pages 242–247, 2006.

[12] S. Misra and A. K. Misra. Evaluating cognitive
complexity measure with Weyuker properties. In Proc.
ICCI, pages 103–108, 2004.

[13] S. Misra and A. K. Misra. Evaluation and comparison
of cognitive complexity measure. ACM SIGSOFT
Software Engineering Notes, 32(2):1–5, 2007.

[14] E. I. Oviedo. Control flow, data flow and program
complexity. In Proc. COMPSAC, pages 146–152, 1980.

[15] A. Sharma, R. K. Bhatia, and P. S. Grover. Empirical
evaluation and validation of interface complexity
metrics for software components. Int. J. Software Eng.
and Knowledge Eng., 18(7):919–931, 2008.

[16] E.J. Weyuker. Evaluating software complexity
measures. IEEE Trans. Softw. Eng., 14:1357–, 1988.

[17] H. Zuse. Software Complexity: Measures and Methods.
deGruyter, 1991.

256

