
Semantics: Application to C Programs
Lecture

Matthias Kettl

© SoSy-Lab, LMU Munich, Germany
Slides and Material prepared by D. Beyer, M.-C. Jakobs, M. Spießl, T. Lemberger,

and M. Kettl



Organization

Matthias Kettl © SoSy-Lab, LMU Munich, Germany 2 / 128



Lecture and Exercise

Lecture
Feb 27, 2025, 12:30 – 16:00

Exercise
Feb 28, 2025, 10:00 – 16:00
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Course Material

https:
//www.sosy-lab.org/Teaching/2024-WS-Semantik/

Required software:
▶ Linux
▶ Java 17
▶ CPAchecker 4.0
▶ Python >= 3.12
▶ pip (usually comes with python)
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Software Analysis

Computes an (over-)approximation of a program’s behavior.

Applications
▶ Optimization
▶ Correctness

(i.e., whether program satisfies a given property)
▶ Developer Assist
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What Could an Analysis Find out?

double divTwiceCons(double y) {
int cons = 5;
int d = 2∗cons;
if (cons != 0)

return y/(2∗cons);
else

return 0;
}
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Some Analysis Results

double divTwiceCons(double y) {
int cons = 5;
// expression 2*cons has value 10
// variable d not used
int d = 2∗cons;
if (cons != 0)

// expression 2*cons evaluated before
return y/(2∗cons);

else
// dead code
return 0;

}
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One Resulting Code Optimization

double divTwiceCons(double y) {
int cons = 5;
// expression 2*cons has value 10
// variable d not used
int d = 2∗cons;
if (cons != 0)

// expression 2*cons evaluated before
return y/(2∗cons);

else
// dead code
return 0;

}

double divTwiceConsOptimized(double y) {
return y/10;

}
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Software Verification

Formally proves whether a program P satisfies a property φ.

▶ Requires program semantics, i.e., meaning of program
▶ Relies on mathematical methods,

▶ logic
▶ induction
▶ . . .
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Software Verification

Formally proves whether a program P satisfies a property φ.

Program P �

Property φ
Verifier

TRUE ✓

FALSE ×

Disprove (×) Find a program execution (counterexample)
that violates the property φ

Prove (✓) Show that every execution of the program
satisfies the property φ.
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Does This Code Work?

double avgUpTo(int[] numbers, int length) {
double sum = 0;
for( int i=0;i<length; i++)

sum += numbers[i];
return sum/(double)length;

}
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Problems With This Code

double avgUpTo(int[] numbers, int length) {
double sum = 0;
for ( int i=0;i<length;i++)

// possible null pointer access (numbers==null)
// index out of bounds (length>numbers.length)
sum += numbers[i];

// division by zero (length==0)
return sum/(double) length;

}
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Why Should One Care for Bugs?

CostsAriane V88

Intel Pentium FDIV bug

. . .

Mars Polar Lander

Safety-criticality

endanger human lives

Therac-25

Uber autonomous car

. . .
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Analysis and Verification Tools

SpotBugs

Lint Error Prone

Klee PeX SymCCSapienz

CPAchecker

Infer

CBMC

SLAM

UltimateAutomizer

. . .
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Overview on Analysis and Verification Techniques

Dataflow
Analysis

Abstract
Interpretation

Program
Analysis

Model
Checking

AutomaticInteractive

Theorem
Proving

Static
Type

SystemsDynamic

Testing Runtime
Verification

This lecture
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Why Different Static, Automatic Techniques?

Theorem of Rice
Any non-trivial, semantic property of programs is undecidable.

Consequences
Techniques are
▶ incomplete, e.g. answer UNKNOWN, or
▶ unsound, i.e., report

▶ false alarms (non-existing bugs),
▶ false proofs (miss bugs).
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Verifier Design Space
Program P �

Property φ
VerifierIdeal verifier

TRUE ✓

UNKNOWN

FALSE ×

Program P �

Property φ
VerifierUnreliable verifier

TRUE ✓

UNKNOWN

FALSE ×

false alarm violation

false proof correct
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Verifier Design Space
▶ Overapproximating verifier (superset of program behavior)

without precise counterexample check

Program P �

Property φ
Verifier

TRUE ✓

UNKNOWN

FALSE ×

false alarm violation

▶ Underapproximating verifier (subset of program behavior)

Program P �

Property φ
Verifier

TRUE ✓

UNKNOWN

FALSE ×

false proof correct

Matthias Kettl © SoSy-Lab, LMU Munich, Germany 20 / 128



Illustration Underapproximation

Consider the following pro-
gram (assume int = Z):
int sign( int y) {

int signVar = 0;
if (y < 0)

signVar = −1;
if (y > 0)

signVar = −1; // copy error
if (y ∗ signVar < 0)

ERROR: ;
return signVar ;

}

Assume that our verifier
underapproximates with
y > 0.

Q: What’s the verdict?
A: FALSE

Q: Can we be sure that
there is indeed an error?
A: Yes
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Illustration Overapproximation

Consider the following pro-
gram (assume int = Z):
void foo( int y) {

if (y > 100) {
if (y < 10) {

// unreachable
ERROR: ;

}
}

}

Assume that our verifier can
only track y > 0 and y ≤ 0
and overapproximates with
y > 0 within the first if
statement.

Q: What’s the verdict?
A: FALSE

Q: Can we be sure that
there is an error?
A: No!

Matthias Kettl © SoSy-Lab, LMU Munich, Germany 23 / 128



Illustration Overapproximation

Consider the following pro-
gram (assume int = Z):
void foo( int y) {

if (y > 100) {
if (y < 10) {

// unreachable
ERROR: ;

}
}

}

Assume that our verifier
can only track y > 10 and
y ≤ 10 and overapproxi-
mates with y > 10 within
the first if statement.

Q: What’s the verdict?
A: TRUE

Q: Can we be sure that the
program is safe?
A: Yes!
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Other Reasons to Use Different Static Techniques

▶ State space grows exponentially with number of variables
▶ (Syntactic) paths grow exponentially with number of

branches

⇒ Precise techniques may require too many resources
(memory, time,. . . )

⇒ Trade-off between precision and costs
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Flow-Insensitivity

Order of statements not considered

E.g., does not distinguish between these two programs
x=0;
y=x;
x=x+1;

x=0;
x=x+1;
y=x;

⇒ very imprecise
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Flow-Sensitivity Plus Path-Insensitivity
▶ Takes order of statements into account
▶ Mostly, ignores infeasibility of syntactical paths
▶ Ignores branch correlations

E.g., does not distinguish between these two programs

if (x>0)
y=1;

else
y=0;

if (x>0)
y=y+1;

else
y=y+2;

if (x>0)
y=1;

else
y=0;

if (x>0)
y=y+2;

else
y=y+1;
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Path-Sensitivity
▶ Takes (execution) paths into account
▶ Excludes infeasible, syntactic paths

(not necessarily all infeasible ones)
▶ Covers flow-sensitivity

if (x>0)
y=1;

else
y=0;

if (x>0)
y=y+2;

else
y=y+1;

To detect that y has value 1 or 3
▶ must exclude infeasible, syntactic path

along first else-branch and second
then-branch

▶ need to detect correlation between the
if-conditions

▶ requires path-sensitivity

⇒ very precise
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Precision vs. Costs

Program Analysis Model Checking

Abstract
Interpretation

Dataflow
Analysis

Flow-insensitive Flow-sensitive Path-sensitive

imprecise precise

cheap expensive
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Program Syntax and Semantics

Matthias Kettl © SoSy-Lab, LMU Munich, Germany 30 / 128



Programs

Theory: simple while-programs
▶ Restriction to integer constants and variables
▶ Minimal set of statements (assignment, if, while)
▶ Techniques easier to teach/understand

Practice: C programs
▶ Widely-used language
▶ Tool support
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While-Programs

▶ Arithmetic expressions (var ∈ V, n ∈ Num, ai ∈ AExp):
AExp := n | var | −a0 | a1 opa a2
opa standard arithmetic operation like +, −, /, %, . . .

▶ Boolean expressions (ai ∈ AExp, bi ∈ BExp):
BExp := a0 | a1 opc a2 | !b0 | b1 opb b2
▶ integer value 0 ≡ ff , remaining values represent true
▶ opc comparison operator like <, <=, >=, >, ==, !=
▶ opb logic connective like &&, ||, ˆ

▶ Program (a ∈ AExp, b ∈ BExp):
S := var = a; | while (b) S | if (b) S else S | if (b) S | S;S
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How to Represent a Program?

1. Source code
if (x>0)

abs = x;
else

abs = −x;
i = 1;
while( i<abs)

i = 2∗i;

▶ Basically sequence of characters
▶ No explicit information about the

structure or paths of programs
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How to Represent a Program?
2. Abstract-syntax tree (AST)

Program

Sequence

if

if-BlockCondition else-Block
x>0

Assignement Assignement
abs=x; abs=-x;

Sequence

Assignment
i=1; while

while-BlockCondition
i<abs

Assignement
i=2*i;

▶ Hierarchical representation
▶ Flow, paths hard to detect
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How to Represent a Program?

3. Control-flow graph

x>0

abs=x; abs=-x;

i=1;

i<abs

i=2*i;

TRUE FALSE

TRUE FALSE

4. Control-flow automaton

l0

l1 l2

l3

l4

l5 l6

[x > 0] [!(x > 0)]

abs = x; abs = -x;

i = 1;

[i < abs]

[!(i < abs)]

i = 2 * i;
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Control-Flow Automaton

Definition
A control-flow automaton (CFA) is a three-tuple P = (L, l0, G)
consisting of
▶ the set L of program locations

(domain of program counter)
▶ the initial program location l0 ∈ L, and
▶ the control-flow edges G ⊆ L × Ops × L.
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Operations Ops

Two types
▶ Assumes (boolean expressions)
▶ Assignments (var = aexpr;)
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From Source Code to Control-Flow Automaton
Assignment var=expr;

v=expr;

While-Statement while (C) S

S

S
C

¬ C

If-Statement if (C) S1 else S2

S1 S2

S1

S2

C

¬C
If-Statement if (C) S

S

SC

¬C

Sequential Composition S1; S2

S1 S2

S1 S2
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Concrete States

Pair of program counter and data state (C = L × Σ)
▶ Program counter

▶ Where am I?
▶ Location in CFA
▶ c(pc) = l refers to program counter of concrete state

▶ Data state σ : V → Z
▶ Maps variables to values
▶ c(d) = σ refers to data state of concrete state

Matthias Kettl © SoSy-Lab, LMU Munich, Germany 39 / 128



Operational Semantics

Defines program meaning by fixing program execution

▶ Transitions describe single execution steps
▶ Level of assignment or assume
▶ Change states
▶ Evaluate semantics of expressions in a state

▶ Execution: sequence of transitions
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Semantics of Arithmetic Expressions

Evaluation function A[[ − ]]σ : AExp → (Σ → Z)

Defined recursively on structure
▶ A[[n]]σ = N [[n]]
▶ A[[var]]σ = σ(var)
▶ A[[t1 opa t2]]σ = A[[t1]]σ opa A[[t2]]σ
▶ A[[ − t]]σ = −A[[t]]σ
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Semantics of Boolean Expressions

Evaluation function B[[ − ]]σ : BExp → (Σ → B)

Defined recursively on structure
▶ arithmetic expression:

B[[a]]σ =

tt if A[[a]]σ ̸= 0
ff otherwise

▶ comparison: B[[a1 opc a2]]σ = A[[a1]]σ opc A[[a2]]σ
▶ logic connection: B[[b1 opb b2]]σ = B[[b1]]σ opb B[[b2]]σ
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State Update

Σ × Opsassignment → Σ

σ[var = a] = σ′

with σ′(v) =
{

σ(v) if v ̸= var
A[[a]]σ else
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Transitions – Single Execution Steps

Transitions T ⊆ C × G × C with (c, (l, op, l′), c′) ∈ T if

1. Respects control-flow, i.e.,

c(pc) = l ∧ c′(pc) = l′

2. Valid data behavior
▶ op assignment var = a; (correct update) :

... ∧ c′(d) = c(d)[var = a;]
▶ op assume bexpr (feasible, no side effects) :

... ∧ B[[bexpr]]c(d) = tt ∧ c(d) = c′(d)
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Program Paths

Defined inductively

▶ every concrete state c with c(pc) = l0 is a program path
▶ if c0

g1→ c1 · · · gn→ cn is a program path and
(cn, gn+1, cn+1) ∈ T ,
then c0

g1→ c1 · · · gn→ cn
gn+1→ cn+1 is a program path

Set of all program paths of program P = (L, G, l0) denoted by
paths(P ).
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Examples for Program Paths

l0

l1 l2

l3

l4

l5 l6

[x > 0] [!(x > 0)]

abs = x; abs = -x;

i = 1;

[i < abs]

[!(i < abs)]

i = 2 * i;

On the board: Shortest and longest program path starting in
state (l0, σ) with σ : abs 7→ 2; i 7→ 0; x 7→ −2

Solves: ∃n ∈ N : 2n − |x| ≥ 0 ∧ ∀m < n : 2m − |x| < 0
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Reachable States

reach(P ) := {c | ∃c0
g1→ c1 · · · gn→ cn ∈ paths(P ) : cn = c}
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Program Properties and
Program Correctness
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Program Properties

Trace Property Hyper Property

Safety Liveness
. . .Termination Responsiveness. . .Reachability Type State

Information-Flow Security
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Reachability Property φR

Defines that a set φR ⊆ C of concrete states must not be
reached

In this lecture:
▶ Certain program locations must not be reached
▶ Denoted by φLsub := {c ∈ C | c(pc) ∈ Lsub}
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Correctness

Definition
Program P is correct wrt. reachability property φR if

reach(P ) ∩ φR = ∅.
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Formalizing Verification Terms

▶ False alarm: v(P, φR) = FALSE ∧ reach(P ) ∩ φR = ∅
▶ False proof: v(P, φR) = TRUE ∧ reach(P ) ∩ φR ̸= ∅
▶ Verifier v is sound if v does not produce false proofs and

v is complete if v does not produce false alarms.
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Abstract Domains
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Problem With Program Semantics

▶ Infinitely many data states σ
⇒ infinitely many reachable states

▶ Cannot analyze program paths individually
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How to deal with infinite state space?

Idea: analyze set of program paths together
▶ Group concrete states ⇒ abstract states
▶ Define (abstract) semantics for abstract states

⇒ Abstract domain
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Partial Order (Recap)

Definition
Let E be a set and ⊑ ⊆ E × E a binary relation on E. The
structure (E, ⊑) is a partial order if ⊑ is
▶ reflexive ∀e ∈ E : e ⊑ e,
▶ transitive ∀e1, e2, e3 ∈ E : (e1 ⊑ e2 ∧ e2 ⊑ e3) ⇒ e1 ⊑ e3,
▶ antisymmetric

∀e1, e2 ∈ E : (e1 ⊑ e2 ∧ e2 ⊑ e1) ⇒ e1 = e2.
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Examples for Partial Orders

▶ (Z, ≤)
▶ (2Q, ⊆)
▶ ({a | . . . | z}∗, lexicographic order)
▶ ({a | . . . | z}∗, suffix)
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Upper Bound (Join)
Let (E, ⊑) be a partial order.

Definition (Upper Bound)
An element e ∈ E is an upper bound of a subset Esub ⊆ E if

∀e′ ∈ Esub : e′ ⊑ e.

Definition (Least Upper Bound (lub))
An element e ∈ E is a least upper bound ⊔ of a subset
Esub ⊆ E if
▶ e is an upper bound of Esub and
▶ for all upper bounds e′ of Esub it yields that e ⊑ e′.
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Lower Bound (Meet)
Let (E, ⊑) be a partial order.

Definition (Lower Bound)
An element e ∈ E is an lower bound of a subset Esub ⊆ E if

∀e′ ∈ Esub : e ⊑ e′.

Definition (Greatest Lower Bound (glb))
An element e ∈ E is a greatest lower bound ⊓ of a subset
Esub ⊆ E if
▶ e is a lower bound of Esub and
▶ for all lower bounds e′ of Esub it yields that e′ ⊑ e.
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Computing Upper Bounds

PO subset ⊔ ⊓
(Z, ≤) {1, 4, 7} ? 1
(Z, ≤) Z ? ?
(N, ≤) ∅ ? ?
(2Q, ⊆) 2Q ? ?
(2Q, ⊆) {∅} ∅ ?
(2Q, ⊆) Y ⊆ 2Q ? ?
(R, ≤) (0; 1) 1 ?
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Computing Upper Bounds

PO subset ⊔ ⊓
(Z, ≤) {1, 4, 7} 7 1
(Z, ≤) Z × ×
(N, ≤) ∅ 0 ×
(2Q, ⊆) 2Q Q ∅
(2Q, ⊆) {∅} ∅ ∅
(2Q, ⊆) Y ⊆ 2Q ⋃

y∈Y y
⋂

y∈Y y
(R, ≤) (0; 1) 1 0
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Facts About Upper and Lower Bounds

1. Least upper bounds and greatest lower bound do not
always exist.
For example,
▶ (Z, ≤)
▶ (N, ≤)
▶ (N, ≥)

2. The least upper bound and the greatest lower bound are
unique if they exist.
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Lattice

Definition
A structure E = (E, ⊑, ⊔, ⊓, ⊤, ⊥) is a lattice if
▶ (E, ⊑) is a partial order
▶ least upper bound ⊔ and greater lower bound ⊓ exist for

all subsets Esub ⊆ E

▶ ⊤ = ⊔E = ⊓∅ and ⊥ = ⊓E = ⊔∅

Note:
For any set Q the structure (2Q, ⊆, ∪, ∩, Q, ∅) is a lattice.
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Which Partial Orders Are Lattices?

(a)

. . .

(b)

. . .

(c)
(d)

(e)
(f)
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Which Partial Orders Are Lattices?

(a) ✓

· . . . ·

(b) ×

. . .

(c) ✓

··

(d) ×

· ·

(e) ×

· ·
(f) ×
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Flat-Lattice
Definition
A flat lattice of set Q consists of
▶ Extended set Q⊤

⊥ = Q ∪ {⊤, ⊥}
▶ Flat ordering ⊑, i.e. ∀q ∈ Q : ⊥ ⊑ q ⊑ ⊤ and ⊥ ⊑ ⊤

▶ ⊔ =


⊥ X = ∅ ∨ X = {⊥}
q X = {q} ∨ X = {⊥, q}
⊤ else

▶ ⊓ =


⊤ X = ∅ ∨ X = {⊤}
q X = {q} ∨ X = {⊤, q}
⊥ else

⊤

. . . Q

⊥
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Product Lattice

Let E1 = (E1, ⊑1, ⊔1, ⊓1, ⊤1, ⊥1) and
E2 = (E2, ⊑2, ⊔2, ⊓2, ⊤2, ⊥2) be lattices.

The product lattice E× = (E1 × E2, ⊑×, ⊔×, ⊓×, ⊤×, ⊥×) with

▶ (e1, e2) ⊑× (e′
1, e′

2) if e1 ⊑1 e′
1 ∧ e2 ⊑2 e′

2

▶ ⊔×Esub = (⊔1{e1 | (e1, ·) ∈ Esub}, ⊔2{e2 | (·, e2) ∈ Esub})

▶ ⊓×Esub = (⊓1{e1 | (e1, ·) ∈ Esub}, ⊓2{e2 | (·, e2) ∈ Esub})

▶ ⊤× = (⊤1, ⊤2) and ⊥× = (⊥1, ⊥2)

is a lattice.
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Join-Semi-Lattice

Complete lattice not always required
⇒ remove unused elements

Definition
Join-Semi-Lattice A structure E = (E, ⊑, ⊔, ⊤) is a lattice if
▶ (E, ⊑) is a partial order
▶ least upper bound ⊔ exists for all subsets Esub ⊆ E

▶ ⊤ = ⊔E
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Abstract Domain

Join-semi-lattice on set of abstract states
+ meaning of abstract states

Definition
An abstract domain D = (C, E , [[ · ]]) consists of
▶ a set C of concrete states
▶ a join-semi-lattice E = (E, ⊑, ⊔, ⊤)
▶ a concretization function [[ · ]] : E → 2C

(assigns meaning of abstract states)
▶ [[⊤]] = C
▶ ∀Esub ⊆ E :

⋃
e∈Esub

[[e]] ⊆ [[ ⊔ Esub]]
(join operator overapproximates, e.g., for flat lattices, )
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Example Concretization

Given a semi-lattice (2Q, ⊆, ∪, Q) where Q is the set of all
predicates, e.g., {x > 0, x < 0, x = 0} ⊂ Q.
What does [[{x > 0}]] mean?

Matthias Kettl © SoSy-Lab, LMU Munich, Germany 70 / 128



Example Concretization

Given a semi-lattice (2Q, ⊆, ∪, Q) where Q is the set of all
predicates, e.g., {x > 0, x < 0, x = 0} ⊂ Q.
What does [[{x > 0}]] mean?

Answer: [[{x > 0}]] = {c ∈ C | x = c(d)(x) ⇒ x > 0}
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Abstract Semantics

Abstract interpretation of a program:
▶ Abstract domain with abstract states E

▶ CFA P = (L, l0, G)
with control-flow edges (l, op, l′) = g ∈ G

Transfer relation ⇝⊆ E × G × E

▶ ∀e ∈ E, g ∈ G :⋃
c∈[[e]]{c′ | (c, g, c′) ∈ T } ⊆ ⋃

(e,g,e′)∈⇝ [[e′]]
(safe over-approximation)

▶ Depends on abstract domain
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Recap: Elements of Abstraction

1. Abstract domain
▶ Join-semi lattice E on set of abstract states E
▶ Concretization of abstract states [[ · ]]

2. Abstract semantics ⇝
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Example Abstractions
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Location Abstraction L

Tracks control-flow of program

▶ Uses flat lattice of set L of location states

▶ [[ℓ]] :=


C if ℓ = ⊤
∅ if ℓ = ⊥
{c ∈ C | c(pc) = ℓ} else

(guarantees that join overapproximates)

▶ (ℓ, (l, op, l′), ℓ′) ∈⇝L if (ℓ = l ∨ ℓ = ⊤) and ℓ′ = l′

Matthias Kettl © SoSy-Lab, LMU Munich, Germany 75 / 128



Value Domain

Assigns values to (some) variables.

▶ Domain elements are partial functions f : Var → Z⊤

▶ f ⊑ f ′ if dom(f ′) ⊆ dom(f)
and ∀v ∈ dom(f ′) : f(v) = f ′(v)

▶ ⊔F = ⋂
F (only keep identical variable-value pairs)

▶ ⊤ = {}
▶ [[f ]] = C \ {c | ∀v ∈ dom(f) : c(d)(v) ̸= f(v)}

Matthias Kettl © SoSy-Lab, LMU Munich, Germany 76 / 128



Value Abstraction V
Uses variable-separated domain
▶ Base domain flat lattice of Z, ⊤ means any value
▶ Notation: ϕ(expr, f) := expr ∧ ∧

v∈dom(f)∧f(v)̸=⊤
v = f(v)

▶ Assignment: (f, (·, w = a; , ·), f ′) ∈⇝V if

f ′(v) =


f(v) if v ̸= w

c if v = w and c is the only satisfying
assignment for v′ in ϕ(v′ = a, f)

⊤ otherwise
▶ Assume: (f, (·, expr, ·), f ′) ∈⇝V if

ϕ(expr, f) is satisfiable and

f ′(v) =


c if c is the only satisfying assignment

for v in ϕ(expr, f)
f(v) otherwise
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Example Abstract Transitions

l0

l1 l2

l3

l4

l5 l6

[x > 0] [!(x > 0)]

abs = x; abs = -x;

i = 1;

[i < abs]

[!(i < abs)]

i = 2 * i;

Start with
f0 : x 7→ 2
f ′

0 : {}
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Cartesian Predicate Abstraction

Represent states by first order logic formulae
▶ Restricted to a set of predicates Pred

(subset of boolean expressions without boolean connectors)
▶ Conjunction of predicates
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Cartesian Predicate Abstraction

▶ Power set lattice on predicates (2Pred, ⊇, ∩, ∪, ∅, Pred)

▶ [[⊤]] = [[∅]] = C
for p ̸= ⊥: [[p]] = {c ∈ C | ∀pred ∈ p : B[[pred]]c(d) = tt}
(guarantees that join overapproximates)

▶ Transfer relation
▶ Assignment

(p, v = a; , p′) with
p′ =

{
t ∈ Pred

∣∣ (∧
t′∈p

t′[v → vold] ∧ v = a[v → vold]
)

⇒ t

}
▶ Assume

(p, b, p′) if
∧

t∈p t ∧ b is satisfiable and
p′ = {t ∈ Pred | (

∧
t′∈p t′ ∧ b) ⇒ t}
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Example Abstract Transitions

Consider set of predicates {i>0, x=10}

On the board:
▶ ⇝ ({x = 10}, (l, i = 1; , l′))
▶ ⇝ ({i > 0}, (l, i = i ∗ 2; , l′))
▶ ⇝ ({i > 0}, (l, i < abs, l′))
▶ ⇝ ({x = 10, i > 0}, (l, x > 10, l′))
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Property Encoding

An observer automaton observes violations of the reachability
property φLsub

qsafe qunsafe

(·, ·, l) ∈ G ∧ l /∈ Lsub

g ∈ G

(·, ·, l) ∈ G ∧ l ∈ Lsub
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Property Abstraction R

Represent observer automaton-encoding of property φLsub as
abstraction

▶ Uses join-semilattice on set {qsafe, qunsafe}
with qsafe ⊑ qunsafe

▶ [[q]] :=
{

C if q = qunsafe
{c ∈ C | c(pc) /∈ Lsub} else

▶ (q, (l, op, l′), q′) ∈⇝R
if q′ = qunsafe ∧ l′ ∈ Lsub or q′ = q ∧ l′ /∈ Lsub
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Composite Abstraction

Combines two abstractions
▶ Product (join-semi) lattice E1 × E2

▶ [[(e1, e2)]] = [[e1]]1 ∩ [[e2]]2

▶ Product transfer relation
((e1, e2), g, (e′

1, e′
2)) ∈⇝

if (e1, g, e′
1) ∈⇝1 and (e2, g, e′

2) ∈⇝2

▶ More precise transfer relations possible
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Two Prominent Combinations

▶ Value analysis L × V × R
▶ Predicate analysis L × P × R
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Configurable Program Analysis
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Starting Position

Two main analysis techniques: dataflow analysis and model
checking
▶ dataflow analysis: path-insensitive, flow-sensitive
▶ model checking: path-sensitive
▶ differences only in behavior when control-flow meets and in

termination check

Use synergies → combine into one configurable analysis
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Comparing Analysis Algorithms

Dataflow analysis Model checking CPA
program program program

input abstraction abstraction abstraction
widening operator ∇ e0, new operators

exploration reached, waitlist reached, waitlist reached, waitlist
pop from waitlist pop from waitlist pop from waitlist
all successors all successors all successors

combination upper bound (∇) never merge operator
(same location)

coverage same location, ⊑ same location, ⊑ stop operator
termination empty waitlist empty waitlist empty waitlist

Note: flow-insensitive analyses can also be expressed with CPA.
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Merge Operator

Defines when and how to combine abstract states

merge : E × E → E

Correctness criterion:
Must consume second parameter (already explored element)

∀e, e′ ∈ E : e′ ⊑ merge(e, e′)
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Examples for Merge Operator

▶ Flow-insensitive: merge(e, e′) = ⊔{e, e′}
▶ Dataflow analysis:

merge((l, e), (l′, e′)) =
{

⊔{(l, e), (l′, e′)} if l = l′

(l′, e′) else
▶ Model checking: merge(e, e′) = e′
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Stop Operator

Defines when to stop exploration (termination check)

stop : E × 2E → {true, false}

Correctness criterion:
Must be covered by second parameter (set of explored elements)

∀e ∈ E, Esub ⊆ E : stop(e, Esub) ⇒ ([[e]] ⊆
⋃

e′∈Esub

[[e′]])
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Examples for Stop Operator

▶ stop(e, Esub) = false

▶ Flow-insensitive: stop(e, Esub) = e ∈ Esub

▶ Dataflow analysis:
stop((l, e), Esub) = ∃(l, e′) ∈ Esub : (l, e) ⊑ (l, e′)

▶ Model checking: stop(e, Esub) = ∃e′ ∈ Esub : e ⊑ e′
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Configurable Program Analysis (CPA)
Abstraction plus merge and stop operator

A CPA C = ((C, (E, ⊑, ⊔, ⊤), [[ · ]]),⇝, merge, stop) consists of
▶ abstract domain (C, (E, ⊑, ⊔, ⊤), [[ · ]])

▶ join-semilattice (E, ⊑, ⊔, ⊤)
▶ [[ · ]] : E → 2C with

▶ [[⊤]] = C
▶ ∀Esub ⊆ E :

⋃
e∈Esub

[[e]] ⊆ [[ ⊔ Esub]]

▶ transfer relation ⇝⊆ E × G × E ∀e ∈ E, g ∈ G :⋃
c∈[[e]]{c′ | (c, g, c′) ∈ T } ⊆

⋃
(e,g,e′)∈⇝ [[e′]]

▶ merge operator merge : E × E → E

∀e, e′ ∈ E : e′ ⊑ merge(e, e′)

▶ stop operator stop : E × 2E → {true, false}
∀e ∈ E, Esub ⊆ E : stop(e, Esub) ⇒ ([[e]] ⊆

⋃
e′∈Esub

[[e′]])
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Value Dataflow Analyses as CPA

▶ abstract domain L × V
▶ transfer relation: product transfer relation ⇝L×V

▶ merge operator

merge((l, v), (l′, v′)) =
{

⊔{(l, v), (l′, v′)} if l = l′

(l′, v′) else
▶ stop operator

stop((l, v), Esub) = ∃(l, v′) ∈ Esub : (l, v) ⊑ (l, v′)
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Predicate Model Checking as CPA

▶ abstract domain L × P
▶ transfer relation: product transfer relation ⇝L×P

▶ merge operator merge(e, e′) = e′

▶ stop operator
stop((l, p), Esub) = ∃(l, p′) ∈ Esub : (l, p) ⊑ (l, p′)
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CPA Algorithm
Input: program P = (L, ℓ0, G)

CPA ((C, (E, ⊑, ⊔, ⊤), [[ · ]]),⇝, merge, stop)
initial abstract state e0 ∈ E

reached={e0}; waitlist={e0};
while (waitlist ̸= ∅) do

pop e from waitlist;
for each e⇝ e′ do

for each er ∈ reached do
em = merge(e′, er)
if (em ̸= er) then

reached=(reached \{er}) ∪ {em};
waitlist=(waitlist \{er}) ∪ {em};

if (¬stop(e′, reached)) then
reached=reached∪{e′};
waitlist=waitlist∪{e′};

return reached
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Termination of CPA Algorithm

▶ Generally not guaranteed (inherited from model checking)
▶ Depends on configuration

(even for loop-free programs may not terminate, e.g.
stop(e, Esub) = false)

▶ Guarantees for individual techniques (flow-insensitive,
dataflow analysis, etc.) still apply
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Soundness
Final set reached overapproximates all reachable states if the
initial abstract state e0 covers all initial states, i.e.,

{c | c(pc) = l0} ⊆ [[e0]] ⇒ reach(P ) ⊆
⋃

e∈reached

[[e]]

Reasons
▶ Explore all successors of states in reached

(always add state to waitlist if added to reached)
▶ Transfer relation overapproximates
▶ Replace state by more abstract (merge property), never

only delete
▶ Must add abstract successor to reached if not covered

(stop property)
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Classifying Configurable Program Analysis

Overapproximating verifier (superset of program behavior)
without precise counterexample check

Program P �

Property φ
Verifier

TRUE ✓

UNKNOWN

FALSE ×

false alarm violation
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Counterexample-Guided
Abstraction Refinement

(CEGAR)
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Why CEGAR for Predicate Abstraction?

Let φR = {l4}

l0

l1 l2

l3

l4

l5

x>0 !(x>0)

y=1; x=1;

x<=0
!(x<=0)

x=y;

Which predicates to use
▶ {x=1} too coarse
▶ {y=1;x=1;x>0} too precise

⇒ inefficient
▶ {x>0} best candidate

Use CEGAR to determine required set of predicates
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Idea of CEGAR

Find good trade-off between precision and efficiency
automatically

▶ Start with efficient abstraction
▶ Refine if fails to (dis)prove property

(spurious counterexample found)
▶ Often, works automatically

Typically, used for model checking
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Counterexample

Syntactical program paths from initial to error location

Definition
Let P = (L, l0, G) be a CFA and
φLsub with Lsub ⊆ L be a reachability property.

A sequence g1g2 . . . gn ∈ G∗ is a counterexample if
▶ g1 = (l0, ·, ·)
▶ gn = (·, ·, le) s.t. le ∈ Lsub

▶ ∀1 ≤ i < n : gi = (·, ·, l) ⇒ gi+1 = (l, ·, ·)
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Feasibility of Counterexamples

A counterexample is feasible if

∃c0
g1→ c1 · · · gn→ cn ∈ paths(P ) .

A counterexample is spurious if it is not feasible.
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Which Counterexamples are Feasible/Spurious?

Consider reachability property φ = {l4}.
▶ l0

x>0→ l1
y=1;→ l3

x<=0→ l4

▶ l0
x>0→ l1

y=2;→ l3
x>0→ l4

▶ l0
!(x>0)→ l2

y=−1;→ l3
y==0→ l4

▶ l0
y=0;→ l1

x>0→ y=5;→ l3
x>10→ l4
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CEGAR Overview

Initial precision π0

Program P

Property φR

Analyze P |= φ?

✓

Feasibility check ×

Abstraction refinement

no counterexample
counterexample found

feasible

spurious

refined precision π
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Adapting Model Checking Algorithm for CEGAR
Input: program P = (L, ℓ0, G)

abstraction ((L × E × R, ⊑, ⊔, ⊤), [[]],⇝)
reached⊆ E and waitlist⊆ E

reached=waitlist={(l0, ⊤, qsafe)};
while (waitlist ̸= ∅) do

pop (l, e, q)) from waitlist;
for each ((l, e, q), g, (l′, e′, q′)) ∈⇝π do

if q′ = qunsafe then
reached=reached∪{(l′, e′, q′)};
waitlist=waitlist∪{(l, e, q)};
return (reached, waitlist)

if (¬∃(l′, e′′, q′′) ∈ reached : (l′, e′, q′) ⊑ (l′, e′′, q′′)) then
reached=reached∪{(l′, e′, q′)};
waitlist=waitlist∪{(l′, e′, q′)};

return (reached, waitlist)
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CEGAR Algorithm

Input: program P = (L, ℓ0, G)
abstraction A = ((L × E × R, ⊑, ⊔, ⊤), [[]],⇝)

reached=waitlist={(l0, ⊤, qsafe)};
π = ∅;
while (waitlist ̸= ∅) do

modelcheck(P, Aπ, reached, waitlist);
if ∃(·, ·, qunsafe) ∈ reached then

cex = extractErrorPath(reached);
if isFeasible(cex) then

return unsafe
π = refine(cex);
reached=waitlist={(l0, ⊤, qsafe)};

return safe
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CEGAR Overview

Initial precision π0

Program P

Property φR

Analyze P |= φ?

✓

Feasibility check ×

Abstraction refinement

no counterexample
counterexample found

feasible

spurious

refined precision π
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Initial Abstraction

Should be efficient, may be coarse
⇒ Use coarsest abstraction possible, i.e., empty set of
predicates for predicate analysis.
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CEGAR Overview

Initial precision π0

Program P

Property φR

Analyze P |= φ?

✓

Feasibility check ×

Abstraction refinement

no counterexample
counterexample found

feasible

spurious

refined precision π
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Checking Feasibility of Counterexample

Two (dual) possibilities
1. Forward approach

▶ Compute strongest postcondition starting with true
▶ If unsatisfiable, counterexample spurious

2. Backward approach
▶ Compute weakest precondition starting from false
▶ If tautology, counterexample spurious
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Strongest Postcondition (Recap)

Known from predicate abstraction
Smallest set of successors

For operations:
▶ Assume b: sp(b, f) = f ∧ b

▶ Assignment v=a;:

sp(v = a; , f) = ∃v′ : f [v → v′] ∧ v = a[v → v′]

Extension to sequences
▶ sp(ε, f) = f

▶ sp(op1 . . . opn, f) = sp(op2 . . . opn, sp(op1, f))
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Examples for Strongest Postcondition

Consider following sequences of edges Gi. Compute strongest
post condition sp(Gi, true).

▶ G1 := x > 0, y = 1; , x <= 0
▶ G2 := x > 0, y = 2; , x > 0
▶ G3 :=!(x > 0), y = −1; , y == 0
▶ G4 := y = 0; , x > 0, y = 5; , x > 10

Which formulae are satisfiable?
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Skolemization

Eliminate existential quantifiers
(only consider formuala without universal quantifiers (∀))

General schema
∃x : f replaced by f [x → c] such that c does not occur in f

In this lecture:
Use static single assignment (SSA) like skolemization
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SSA-based Skolemization
▶ Use indexed variables, i.e., xi for x
▶ Start with index 0
▶ Expressions (assume or right hand side of assignments) use

highest index seen so far
▶ Increase index in assignments, i.e., the index of the

assigned variable is maximum seen so far plus 1

Example
sp(y = 0; , x > 0, y = 5; , x > 10, true)

= sp(x > 0, y = 5; , x > 10, y1 = 0)
= sp(y = 5; , x > 10, y1 = 0 ∧ x0 > 0)
= sp(x > 10, y1 = 0 ∧ x0 > 0 ∧ y2 = 5)
= sp(ε, y1 = 0 ∧ x0 > 0 ∧ y2 = 5 ∧ x0 > 10)
= y1 = 0 ∧ x0 > 0 ∧ y2 = 5 ∧ x0 > 10
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CEGAR Overview

Initial precision π0

Program P

Property φR

Analyze P |= φ?

✓

Feasibility check ×

Abstraction refinement

no counterexample
counterexample found

feasible

spurious

refined precision π
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Abstraction Refinement

Increases precision (more precise abstraction)
Based on counterexample

Goal
New exploration excludes counterexample
(ensures progress)

In this lecture: refinement via interpolation
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Craig Interpolant

Let f1 and f2 be two formulas such that f1 ∧ f2 unsatisfiable.

A formula f is an interpolant if
▶ f1 ⇒ f

▶ f ∧ f2 unsatisfiable
▶ var(f) ⊆ (var(f1) ∩ var(f2))
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Which Formulae are Craig Interpolants?

Consider the formulae

f1 = x0 > 10 ∧ y1 = 1

f2 = x0 ≤ 0 ∧ z0 = 0

Which of the following formulae are interpolants for f1 and f2?

▶ f1

▶ x0 > 0 ∧ (z0 > 0 ∨ z0 ≤ 0)
▶ false
▶ x0 ̸= 0
▶ x0 > 0
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Computing New Predicates via Interpolation
Let op1 . . . opn be sequence of operations on spurious
counterexample

For all 1 ≤ k < n compute
1. Compute f1 = sp(op1 . . . opk, true) and

f2 = sp(opk+1 . . . opn, true) (index shift!)
(can reuse strongest postcondition from feasibility check,
only need to split appropriately)

2. Compute interpolant f for f1 and f2

3. Use all literals from f after removing indices as new
predicates

In practice:
solver computes interpolants from unsatisfiability proof
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CEGAR with Predicate Abstraction

Let φR = {l4} and initial set of predicates {}

l0

l1 l2

l3

l4

l5

x>0 !(x>0)

y=1; x=1;

x<=0
!(x<=0)

x=y;

(l0, ∅, qsafe)

(l1, ∅, qsafe) (l2, ∅, qsafe)

(l3, ∅, qsafe)

(l4, ∅, qunsafe)

x>0 !(x>0)

y=1; x=1;

x<=0

Two counterexamples:
▶ l0

x>0→ l1
y=1;→ l3

x<=0→ l4

▶ l0
!(x>0)→ l2

x=1;→ l3
x<=0→ l4
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Compute Strongest Postcondition

Consider counterexample l0
x>0→ l1

y=1;→ l3
x<=0→ l4

Strongest post x0 > 0 ∧ y1 = 1 ∧ x0 <= 0 infeasible
⇒ counterexample spurious
⇒ refine
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Computing New Predicates via Interpolation

Split formula x0 > 0 ∧ y1 = 1 ∧ x0 <= 0 at program locations

1. f1 = x0 > 0 and f2 = y1 = 1 ∧ x0 <= 0
interpolant f = x0 > 0

2. f1 = x0 > 0 ∧ y1 = 1 and f2 = x0 <= 0
interpolant f = x0 > 0

Consider all literals (predicates) occurring in interpolants
Remove SSA indices from these literals and then add them to
set of predicates
⇒ new predicates x>0
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Restart Predicate Model Checking

Let φR = {l4} and set of predicates {x>0}

l0

l1 l2

l3

l4

l5

x>0 !(x>0)

y=1; x=1;

x<=0
!(x<=0)

x=y;

(l0, ∅, qsafe)

(l1, {x > 0}, qsafe) (l2, ∅, qsafe)

(l3, {x > 0}, qsafe)

(l5, {x > 0}, qsafe)

x>0 !(x>0)

y=1; x=1;

!(x<=0)

Property proved.
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CEGAR for Value Analysis

What would be the precision for value analysis?
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