#### Semantics: Application to C Programs Lecture

#### Matthias Kettl

© SoSy-Lab, LMU Munich, Germany Slides and Material prepared by D. Beyer, M.-C. Jakobs, M. Spießl, T. Lemberger, and M. Kettl





# Organization

#### Lecture and Exercise

#### **Lecture** Feb 27, 2025, 12:30 - 16:00

#### **Exercise** Feb 28, 2025, 10:00 - 16:00

#### **Course Material**

https: //www.sosy-lab.org/Teaching/2024-WS-Semantik/

#### Required software:

- Linux
- Java 17
- CPAchecker 4.0
- Python >= 3.12
- pip (usually comes with python)

# Introduction

## Bingo

С Use-Def Specification Invariant State Space Formal Verification Dead Code Model Checking Taint Analysis Least Upper Bound **Constant Propagation** Partial Order **Program Syntax** CPAchecker SMT Predicate Abstraction

Program Path

**Operational Semantics** 

Matthias Kettl

Computes an (over-)approximation of a program's behavior.

Applications

- Optimization
- Correctness (i.e., whether program satisfies a given property)
- Developer Assist

#### What Could an Analysis Find out?

```
double divTwiceCons(double y) {
    int cons = 5;
    int d = 2*cons;
    if (cons != 0)
        return y/(2*cons);
    else
        return 0;
}
```

## Some Analysis Results

```
double divTwiceCons(double y) {
   int cons = 5:
   // expression 2*cons has value 10
    // variable d not used
    int d = 2*cons;
    if (cons != 0)
       // expression 2*cons evaluated before
       return y/(2*cons);
    else
       // dead code
       return 0:
```

}

## One Resulting Code Optimization

```
double divTwiceCons(double y) {
    int cons = 5;
    // expression 2*cons has value 10
    // variable d not used
    int d = 2*cons;
    if (cons != 0)
        // expression 2*cons evaluated before
        return y/(2*cons);
    else
        // dead code
        return 0;
}
```

```
double divTwiceConsOptimized(double y) {
    return y/10;
```

Matthias Kettl

}

Formally proves whether a program P satisfies a property  $\varphi$ .

- Requires program semantics, i.e., meaning of program
- Relies on mathematical methods,
  - logic
  - induction
  - . . .

#### Software Verification

**Formally** proves whether a program P satisfies a property  $\varphi$ .



Disprove (×) Find a program execution (counterexample) that violates the property  $\varphi$ 

Prove  $(\checkmark)$  Show that **every** execution of the program satisfies the property  $\varphi$ .

Matthias Kettl

```
double avgUpTo(int[] numbers, int length) {
    double sum = 0;
    for(int i=0;i<length;i++)
        sum += numbers[i];
    return sum/(double)length;
}</pre>
```

#### Problems With This Code

```
double avgUpTo(int[] numbers, int length) {
    double sum = 0;
    for(int i=0;i<length;i++)
        // possible null pointer access (numbers==null)
        // index out of bounds (length>numbers.length)
        sum += numbers[i];
        // division by zero (length==0)
        return sum/(double) length;
}
```



Analysis and Verification Tools



CPAchecker ···

## Overview on Analysis and Verification Techniques



Matthias Kettl

17 / 128

## Why Different Static, Automatic Techniques?

#### Theorem of Rice

Any non-trivial, semantic property of programs is undecidable.

#### Consequences

Techniques are

- incomplete, e.g. answer UNKNOWN, or
- unsound, i.e., report
  - false alarms (non-existing bugs),
  - false proofs (miss bugs).



# Verifier Design Space

 Overapproximating verifier (superset of program behavior) without precise counterexample check



## Illustration Underapproximation

Consider the following program (assume  $int = \mathbb{Z}$ ):

Assume that our verifier **underapproximates** with y > 0.

*Q:* What's the verdict? *A:* FALSE

or **Q:** Can we be sure that there is indeed an error? **A:** Yes

## Illustration Underapproximation

Consider the following program (assume  $int = \mathbb{Z}$ ):

Assume that our verifier **underapproximates** with y < 0.

*Q:* What's the verdict? *A:* TRUE

or **Q:** Can we be sure that there is no error? **A:** No!

## Illustration Overapproximation

Consider the following program (assume  $int = \mathbb{Z}$ ):

Assume that our verifier can only track y > 0 and  $y \le 0$ and **overapproximates** with y > 0 within the first if statement.

**Q:** What's the verdict? **A:** FALSE

**Q:** Can we be sure that there is an error? **A:** No!

#### Illustration Overapproximation

Consider the following program (assume  $int = \mathbb{Z}$ ):

Assume that our verifier can only track y > 10 and  $y \le 10$  and **overapproximates** with y > 10 within the first if statement.

*Q:* What's the verdict?*A:* TRUE

**Q**: Can we be sure that the program is safe? **A**: Yes!

## Other Reasons to Use Different Static Techniques

- State space grows exponentially with number of variables
- (Syntactic) paths grow exponentially with number of branches
- $\Rightarrow$  Precise techniques may require too many resources (memory, time,...)
- $\Rightarrow$  Trade-off between precision and costs

#### Order of statements not considered

E.g., does not distinguish between these two programs x=0; x=0; y=x; x=x+1; x=x+1; y=x;

 $\Rightarrow$  very imprecise

#### Flow-Sensitivity Plus Path-Insensitivity

- Takes order of statements into account
- Mostly, ignores infeasibility of syntactical paths
- Ignores branch correlations

E.g., does not distinguish between these two programs

| <b>if</b> (x>0) | if (x>0)        |
|-----------------|-----------------|
| y=1;            | y=1;            |
| else            | else            |
| y=0;            | y=0;            |
| <b>if</b> (x>0) | <b>if</b> (x>0) |
| y=y+1;          | y=y+2           |
| else            | else            |
| y=y+2;          | y=y+1           |

#### Path-Sensitivity

- Takes (execution) paths into account
- Excludes infeasible, syntactic paths (not necessarily all infeasible ones)
- Covers flow-sensitivity

 $if(x{>}0)$ 

y=1;

else

y=0; if (x>0) y=y+2;

else

y=y+1;

To detect that  $\boldsymbol{y}$  has value 1 or 3

- must exclude infeasible, syntactic path along first else-branch and second then-branch
- need to detect correlation between the if-conditions
- requires path-sensitivity



Matthias Kettl

© SoSy-Lab, LMU Munich, Germany

#### Precision vs. Costs



# **Program Syntax and Semantics**

Matthias Kettl

© SoSy-Lab, LMU Munich, Germany

30 / 128

#### Programs

#### **Theory**: simple while-programs

- Restriction to integer constants and variables
- Minimal set of statements (assignment, if, while)
- Techniques easier to teach/understand

#### Practice: C programs

- Widely-used language
- Tool support

#### While-Programs

Arithmetic expressions (var  $\in V$ ,  $n \in \text{Num}$ ,  $a_i \in \text{AExp}$ ):  $\texttt{AExp} := n \mid \texttt{var} \mid -a_0 \mid a_1 \ op_a \ a_2$  $op_{a}$  standard arithmetic operation like  $+, -, /, \%, \ldots$ ▶ Boolean expressions  $(a_i \in AExp, b_i \in BExp)$ :  $BExp := a_0 | a_1 op_c a_2 | ! b_0 | b_1 op_b b_2$  $\blacktriangleright$  integer value  $0 \equiv ff$ , remaining values represent true  $\triangleright$  op<sub>c</sub> comparison operator like <, <=, >=, >, ==, !=  $\triangleright$  op<sub>b</sub> logic connective like &&, ||, ^ Program ( $a \in AExp, b \in BExp$ ): S := var = a; | while (b) S | if (b) S else S | if (b) S | S;S

1. Source code if (x>0) abs = x;else abs = -x; i = 1;while(i < abs) i = 2\*i;

- Basically sequence of characters
- No explicit information about the structure or paths of programs

2. Abstract-syntax tree (AST)



- Hierarchical representation
- Flow, paths hard to detect

Matthias Kettl

3. Control-flow graph



3. Control-flow graph

4. Control-flow automaton


# **Control-Flow Automaton**

#### Definition

A control-flow automaton (CFA) is a three-tuple  $P = (L, l_0, G)$  consisting of

- the set L of program locations (domain of program counter)
- ▶ the initial program location  $l_0 \in L$ , and
- the control-flow edges  $G \subseteq L \times Ops \times L$ .

### **Operations** *Ops*

Two types

- Assumes (boolean expressions)
- Assignments (var = aexpr;)

Assignment var=expr;



Assignment var=expr;



While-Statement while (C) S



Assignment var=expr;



While-Statement while (C)  $S \longrightarrow S \longrightarrow O$ 





Assignment var=expr;



While-Statement while (C)  $S \longrightarrow S \longrightarrow \bigcirc$ 





Assignment var=expr;









If-Statement if (C)  $S_1$  else  $S_2$  $\rightarrow S_1$  - $\bigcirc \longrightarrow S_2$  $S_1$ С Sequential Composition  $S_1; S_2$  $\rightarrow S_2$ 



© SoSy-Lab, LMU Munich, Germany

Pair of program counter and data state ( $C = L \times \Sigma$ )

- Program counter
  - ► Where am I?
  - Location in CFA
  - c(pc) = l refers to program counter of concrete state
- $\blacktriangleright \text{ Data state } \sigma: V \to \mathbb{Z}$ 
  - Maps variables to values
  - $c(d) = \sigma$  refers to data state of concrete state

Defines program meaning by fixing program execution

Transitions describe single execution steps

- Level of assignment or assume
- Change states
- Evaluate semantics of expressions in a state
- Execution: sequence of transitions

#### Semantics of Arithmetic Expressions

Evaluation function  $\mathcal{A}[\![-]\!]\sigma: \mathtt{AExp} \to (\Sigma \to \mathbb{Z})$ 

Defined recursively on structure

$$\begin{array}{l} \blacktriangleright \quad \mathcal{A}[\![n]\!]\sigma = \mathcal{N}[\![n]\!] \\ \blacktriangleright \quad \mathcal{A}[\![\mathrm{var}]\!]\sigma = \sigma(\mathrm{var}) \\ \blacktriangleright \quad \mathcal{A}[\![t_1 \ op_a \ t_2]\!]\sigma = \mathcal{A}[\![t_1]\!]\sigma \ op_a \ \mathcal{A}[\![t_2]\!]\sigma \\ \blacktriangleright \quad \mathcal{A}[\![-t]\!]\sigma = -\mathcal{A}[\![t]\!]\sigma \end{array}$$

#### Semantics of Boolean Expressions

Evaluation function  $\mathcal{B}[\![-]\!]\sigma: \mathtt{BExp} \to (\Sigma \to \mathbb{B})$ 

Defined recursively on structure

arithmetic expression:

$$\mathcal{B}[\![a]\!]\sigma = egin{cases} tt & ext{if } \mathcal{A}[\![a]\!]\sigma 
eq 0 \ ff & ext{otherwise} \end{cases}$$

► comparison:  $\mathcal{B}\llbracket a_1 \ op_c \ a_2 \rrbracket \sigma = \mathcal{A}\llbracket a_1 \rrbracket \sigma \ op_c \ \mathcal{A}\llbracket a_2 \rrbracket \sigma$ ► logic connection:  $\mathcal{B}\llbracket b_1 \ op_b \ b_2 \rrbracket \sigma = \mathcal{B}\llbracket b_1 \rrbracket \sigma \ op_b \ \mathcal{B}\llbracket b_2 \rrbracket \sigma$ 

# State Update

$$\Sigma \times Ops_{\text{assignment}} \to \Sigma$$

$$\sigma[\mathtt{var} = a] = \sigma'$$
  
with  $\sigma'(v) = \begin{cases} \sigma(v) & \text{if } v \neq \mathtt{var} \\ \mathcal{A}\llbracket a \rrbracket \sigma & \text{else} \end{cases}$ 

Matthias Kettl

#### Transitions – Single Execution Steps

Transitions  $\mathcal{T} \subseteq C \times G \times C$  with  $(c, (l, op, l'), c') \in \mathcal{T}$  if

1. Respects control-flow, i.e.,

$$c(pc) = l \land c'(pc) = l'$$

2. Valid data behavior

Defined inductively

Set of all program paths of program  $P = (L, G, l_0)$  denoted by paths(P).

### Examples for Program Paths



On the board: Shortest and longest program path starting in state  $(l_0, \sigma)$  with  $\sigma$  : abs  $\mapsto 2$ ;  $i \mapsto 0$ ;  $x \mapsto -2$ 

Solves:  $\exists n \in N : 2^n - |x| \ge 0 \land \forall m < n : 2^m - |x| < 0$ 

Matthias Kettl

© SoSy-Lab, LMU Munich, Germany

#### **Reachable States**

#### $reach(P) := \{ c \mid \exists c_0 \xrightarrow{g_1} c_1 \cdots \xrightarrow{g_n} c_n \in paths(P) : c_n = c \}$

# Program Properties and Program Correctness

## **Program Properties**



# Reachability Property $\varphi_R$

# Defines that a set $\varphi_R \subseteq C$ of concrete states must not be reached

In this lecture:

- Certain program locations must not be reached
- ▶ Denoted by  $\varphi_{L_{sub}} := \{c \in C \mid c(pc) \in L_{sub}\}$



#### 

$$reach(P) \cap \varphi_R = \emptyset.$$

### Formalizing Verification Terms

- False alarm:  $v(P, \varphi_R) = \mathsf{FALSE} \land reach(P) \cap \varphi_R = \emptyset$
- ► False proof:  $v(P, \varphi_R) = \mathsf{TRUE} \land reach(P) \cap \varphi_R \neq \emptyset$
- Verifier v is sound if v does not produce false proofs and v is complete if v does not produce false alarms.

# **Abstract Domains**

# **Problem With Program Semantics**

- ► Infinitely many data states σ ⇒ infinitely many reachable states
- Cannot analyze program paths individually

### How to deal with infinite state space?

Idea: analyze set of program paths together

- Group concrete states  $\Rightarrow$  abstract states
- Define (abstract) semantics for abstract states

 $\Rightarrow$  Abstract domain

# Partial Order (Recap)

#### Definition

Let E be a set and  $\sqsubseteq \subseteq E \times E$  a binary relation on E. The structure  $(E, \sqsubseteq)$  is a *partial order* if  $\sqsubseteq$  is

• reflexive 
$$\forall e \in E : e \sqsubseteq e$$
,

▶ transitive  $\forall e_1, e_2, e_3 \in E : (e_1 \sqsubseteq e_2 \land e_2 \sqsubseteq e_3) \Rightarrow e_1 \sqsubseteq e_3$ ,

#### antisymmetric

 $\forall e_1, e_2 \in E : (e_1 \sqsubseteq e_2 \land e_2 \sqsubseteq e_1) \Rightarrow e_1 = e_2.$ 

#### Examples for Partial Orders

(ℤ, ≤)
 (2<sup>Q</sup>, ⊆)
 ({a | ... | z}\*, lexicographic order)
 ({a | ... | z}\*, suffix)

# Upper Bound (Join)

Let  $(E, \sqsubseteq)$  be a partial order.

#### Definition (Upper Bound)

An element  $e \in E$  is an upper bound of a subset  $E_{\rm sub} \subseteq E$  if

 $\forall e' \in E_{\rm sub} : e' \sqsubseteq e.$ 

#### Definition (Least Upper Bound (lub))

An element  $e \in E$  is a least upper bound  $\sqcup$  of a subset  $E_{\rm sub} \subseteq E$  if

- $\blacktriangleright~e$  is an upper bound of  $E_{\rm sub}$  and
- ▶ for all upper bounds e' of  $E_{sub}$  it yields that  $e \sqsubseteq e'$ .

# Lower Bound (Meet)

Let  $(E, \sqsubseteq)$  be a partial order.

#### Definition (Lower Bound)

An element  $e \in E$  is an lower bound of a subset  $E_{sub} \subseteq E$  if

 $\forall e' \in E_{\rm sub} : e \sqsubseteq e'.$ 

#### Definition (Greatest Lower Bound (glb))

An element  $e \in E$  is a greatest lower bound  $\sqcap$  of a subset  $E_{\rm sub} \subseteq E$  if

- $\blacktriangleright$  e is a lower bound of  $E_{
  m sub}$  and
- ▶ for all lower bounds e' of  $E_{sub}$  it yields that  $e' \sqsubseteq e$ .

# Computing Upper Bounds

| PO                   | subset            | et ⊔ |   |
|----------------------|-------------------|------|---|
| $(\mathbb{Z},\leq)$  | $\{1, 4, 7\}$     | ?    | 1 |
| $(\mathbb{Z}, \leq)$ | $\mathbb{Z}$      | ?    | ? |
| $(\mathbb{N}, \leq)$ | Ø                 | ?    | ? |
| $(2^Q, \subseteq)$   | $2^Q$             | ?    | ? |
| $(2^Q, \subseteq)$   | $\{\emptyset\}$   | Ø    | ? |
| $(2^Q, \subseteq)$   | $Y \subseteq 2^Q$ | ?    | ? |
| $(\mathbb{R},\leq)$  | (0; 1)            | 1    | ? |

# Computing Upper Bounds

| PO                  | subset            | $\Box$                | Π                     |
|---------------------|-------------------|-----------------------|-----------------------|
| $(\mathbb{Z},\leq)$ | $\{1, 4, 7\}$     | 7                     | 1                     |
| $(\mathbb{Z},\leq)$ | $\mathbb{Z}$      | ×                     | ×                     |
| $(\mathbb{N},\leq)$ | Ø                 | 0                     | ×                     |
| $(2^Q, \subseteq)$  | $2^Q$             | Q                     | Ø                     |
| $(2^Q, \subseteq)$  | $\{\emptyset\}$   | Ø                     | Ø                     |
| $(2^Q, \subseteq)$  | $Y \subseteq 2^Q$ | $\bigcup_{y \in Y} y$ | $\bigcap_{y \in Y} y$ |
| $(\mathbb{R},\leq)$ | (0;1)             | ້1                    | 0                     |

# Facts About Upper and Lower Bounds

- 1. Least upper bounds and greatest lower bound do not always exist.
  - For example,



2. The least upper bound and the greatest lower bound are unique if they exist.

#### Lattice

#### Definition

A structure  $\mathcal{E} = (E,\sqsubseteq,\sqcup,\sqcap,\top,\bot)$  is a lattice if

- ▶  $(E, \sqsubseteq)$  is a partial order
- ▶ least upper bound ⊔ and greater lower bound ⊓ exist for all subsets  $E_{sub} \subseteq E$

$$\blacktriangleright \ \top = \sqcup E = \sqcap \emptyset \text{ and } \bot = \sqcap E = \sqcup \emptyset$$

#### Note:

For any set Q the structure  $(2^Q, \subseteq, \cup, \cap, Q, \emptyset)$  is a lattice.



Matthias Kettl

© SoSy-Lab, LMU Munich, Germany

64 / 128



(c) 🗸

### **Flat-Lattice**

#### Definition

A flat lattice of set  $\boldsymbol{Q}$  consists of

Extended set 
$$Q_{\perp}^{\top} = Q \cup \{\top, \bot\}$$
Flat ordering  $\sqsubseteq$ , i.e.  $\forall q \in Q : \bot \sqsubseteq q \sqsubseteq \top$  and  $\bot \sqsubseteq \top$ 
 $\sqcup = \begin{cases} \bot \quad X = \emptyset \lor X = \{\bot\} \\ q \quad X = \{q\} \lor X = \{\bot, q\} \\ \top \quad \text{else} \end{cases}$ 
 $\sqcap = \begin{cases} \top \quad X = \emptyset \lor X = \{\top\} \\ q \quad X = \{q\} \lor X = \{\top, q\} \\ \bot \quad \text{else} \end{cases}$ 



<sup>©</sup> SoSy-Lab, LMU Munich, Germany

#### **Product Lattice**

Let  $\mathcal{E}_1 = (E_1, \sqsubseteq_1, \sqcup_1, \sqcap_1, \top_1, \bot_1)$  and  $\mathcal{E}_2 = (E_2, \sqsubseteq_2, \sqcup_2, \sqcap_2, \top_2, \bot_2)$  be lattices.

The product lattice  $\mathcal{E}_{\times} = (E_1 \times E_2, \sqsubseteq_{\times}, \sqcup_{\times}, \sqcap_{\times}, \top_{\times}, \bot_{\times})$  with ( $e_1, e_2$ )  $\sqsubseteq_{\times} (e'_1, e'_2)$  if  $e_1 \sqsubseteq_1 e'_1 \land e_2 \sqsubseteq_2 e'_2$ 

$$\sqcup_{\times} E_{\text{sub}} = (\sqcup_1 \{ e_1 \mid (e_1, \cdot) \in E_{\text{sub}} \}, \sqcup_2 \{ e_2 \mid (\cdot, e_2) \in E_{\text{sub}} \})$$

$$\square_{\times} E_{\text{sub}} = (\square_1 \{ e_1 \mid (e_1, \cdot) \in E_{\text{sub}} \}, \square_2 \{ e_2 \mid (\cdot, e_2) \in E_{\text{sub}} \})$$

is a lattice.

Matthias Kettl
Complete lattice not always required

 $\Rightarrow$  remove unused elements

#### Definition

Join-Semi-Lattice A structure  $\mathcal{E} = (E, \sqsubseteq, \sqcup, \top)$  is a lattice if

- ▶  $(E, \sqsubseteq)$  is a partial order
- ▶ least upper bound  $\sqcup$  exists for all subsets  $E_{sub} \subseteq E$

 $\blacktriangleright \ \top = \sqcup E$ 

#### Abstract Domain

# Join-semi-lattice on set of abstract states + meaning of abstract states

#### Definition

An abstract domain  $D = (C, \mathcal{E}, \llbracket \cdot \rrbracket)$  consists of

- ▶ a set C of concrete states
- ▶ a join-semi-lattice  $\mathcal{E} = (E, \sqsubseteq, \sqcup, \top)$
- a concretization function [[·]]: E → 2<sup>C</sup> (assigns meaning of abstract states)

#### **Example Concretization**

Given a semi-lattice  $(2^Q, \subseteq, \cup, Q)$  where Q is the set of all predicates, e.g.,  $\{x > 0, x < 0, x = 0\} \subset Q$ . What does  $[\![\{x > 0\}]\!]$  mean?

#### **Example Concretization**

Given a semi-lattice  $(2^Q, \subseteq, \cup, Q)$  where Q is the set of all predicates, e.g.,  $\{x > 0, x < 0, x = 0\} \subset Q$ . What does  $[\![\{x > 0\}]\!]$  mean?

**Answer:**  $[[{x > 0}]] = {c \in C | x = c(d)(x) \Rightarrow x > 0}$ 

#### **Abstract Semantics**

Abstract interpretation of a program:

Abstract domain with abstract states E

▶ CFA 
$$P = (L, l_0, G)$$
  
with control-flow edges  $(l, op, l') = g \in G$ 

Transfer relation 
$$\leadsto \subseteq E \times G \times E$$

$$\forall e \in E, g \in G : \\ \bigcup_{c \in \llbracket e \rrbracket} \{c' \mid (c, g, c') \in \mathcal{T}\} \subseteq \bigcup_{(e, g, e') \in \leadsto} \llbracket e' \rrbracket \\ \text{(safe over-approximation)}$$

#### Recap: Elements of Abstraction

- 1. Abstract domain
  - ▶ Join-semi lattice  $\mathcal{E}$  on set of abstract states E
  - ▶ Concretization of abstract states [[ · ]]
- 2. Abstract semantics  $\rightsquigarrow$

#### Example Abstractions

#### Location Abstraction $\mathbb L$

Tracks control-flow of program

Uses flat lattice of set L of location states

$$\bullet \llbracket \ell \rrbracket := \begin{cases} C & \text{if } \ell = \top \\ \emptyset & \text{if } \ell = \bot \\ \{c \in C \mid c(pc) = \ell\} & \text{else} \end{cases}$$
(guarantees that join overapproximates)

▶ 
$$(\ell, (l, op, l'), \ell') \in \rightsquigarrow_{\mathbb{L}}$$
if  $(\ell = l \lor \ell = \top)$  and  $\ell' = l'$ 

Matthias Kettl

#### Value Domain

Assigns values to (some) variables.

Domain elements are partial functions f : Var → Z<sub>T</sub>
f ⊆ f' if dom(f') ⊆ dom(f) and ∀v ∈ dom(f') : f(v) = f'(v)
□F = ∩ F (only keep identical variable-value pairs)
T = {}
[[f]] = C \ {c | ∀v ∈ dom(f) : c(d)(v) ≠ f(v)}

#### Value Abstraction $\mathbb{V}$

Uses variable-separated domain

- ▶ Base domain flat lattice of  $\mathbb{Z}$ ,  $\top$  means any value
- ▶ Notation:  $\phi(expr, f) := expr \land \bigwedge_{v \in dom(f) \land f(v) \neq \top} v = f(v)$

► Assignment:  $(f, (\cdot, w = a;, \cdot), f') \in \rightsquigarrow_{\mathbb{V}}$  if

$$f'(v) = \begin{cases} f(v) & \text{if } v \neq w \\ c & \text{if } v = w \text{ and } c \text{ is the only satisfying} \\ & \text{assignment for } v' \text{ in } \phi(v' = a, f) \\ \top & \text{otherwise} \end{cases}$$

► Assume:  $(f, (\cdot, expr, \cdot), f') \in \rightsquigarrow_{\mathbb{V}}$  if  $\phi(expr, f)$  is satisfiable and

$$f'(v) = \begin{cases} c & \text{if } c \text{ is the only satisfying assignment} \\ & \text{for } v \text{ in } \phi(expr, f) \\ f(v) & \text{otherwise} \end{cases}$$

Matthias Kettl

© SoSy-Lab, LMU Munich, Germany

#### Example Abstract Transitions



# Start with $f_0: x \mapsto 2$ $f'_0: \{\}$

Matthias Kettl

© SoSy-Lab, LMU Munich, Germany

#### Cartesian Predicate Abstraction

Represent states by first order logic formulae

- Restricted to a set of predicates Pred (subset of boolean expressions without boolean connectors)
- Conjunction of predicates

#### Cartesian Predicate Abstraction

▶ Power set lattice on predicates  $(2^{Pred}, \supseteq, \cap, \cup, \emptyset, Pred)$ 

• 
$$\llbracket \top \rrbracket = \llbracket \emptyset \rrbracket = C$$
  
for  $p \neq \bot$ :  $\llbracket p \rrbracket = \{c \in C \mid \forall pred \in p : \mathcal{B}\llbracket pred \rrbracket c(d) = tt\}$   
(guarantees that join overapproximates)

#### Transfer relation

#### Example Abstract Transitions

Consider set of predicates  $\{i>0, x=10\}$ 

On the board:

$$\begin{array}{l} & \rightsquigarrow (\{x = 10\}, (l, i = 1; , l')) \\ & \rightsquigarrow (\{i > 0\}, (l, i = i * 2; , l')) \\ & \rightsquigarrow (\{i > 0\}, (l, i < abs, l')) \\ & \rightsquigarrow (\{x = 10, i > 0\}, (l, x > 10, l')) \end{array}$$

### Property Encoding

An observer automaton observes violations of the reachability property  $\varphi_{L_{\rm sub}}$ 



### Property Abstraction $\mathbb{R}$

Represent observer automaton-encoding of property  $\varphi_{L_{\rm sub}}$  as abstraction

▶ Uses join-semilattice on set {q<sub>safe</sub>, q<sub>unsafe</sub>} with q<sub>safe</sub> ⊑ q<sub>unsafe</sub>
▶ [[q]] := { C if q = q<sub>unsafe</sub> { c ∈ C | c(pc) ∉ L<sub>sub</sub>} else
▶ (q, (l, op, l'), q') ∈ ~~R if q' = q<sub>unsafe</sub> ∧ l' ∈ L<sub>sub</sub> or q' = q ∧ l' ∉ L<sub>sub</sub>

#### **Composite Abstraction**

Combines two abstractions

▶ Product (join-semi) lattice  $E_1 \times E_2$ 

$$[ [(e_1, e_2)] ] = [ [e_1] ]_1 \cap [ [e_2] ]_2$$

- Product transfer relation  $((e_1, e_2), g, (e'_1, e'_2)) \in \rightsquigarrow$ if  $(e_1, g, e'_1) \in \rightsquigarrow_1$  and  $(e_2, g, e'_2) \in \rightsquigarrow_2$
- More precise transfer relations possible

#### **Two Prominent Combinations**

- $\blacktriangleright \quad \mathsf{Value \ analysis} \ \mathbb{L} \times \mathbb{V} \times \mathbb{R}$
- $\blacktriangleright \ \ \mathsf{Predicate \ analysis} \ \ \mathbb{L}\times\mathbb{P}\times\mathbb{R}$

# **Configurable Program Analysis**

Two main analysis techniques: dataflow analysis and model checking

- dataflow analysis: path-insensitive, flow-sensitive
- model checking: path-sensitive
- differences only in behavior when control-flow meets and in termination check

Use synergies  $\rightarrow$  combine into one configurable analysis

### Comparing Analysis Algorithms

|                         | Dataflow analysis                                                                      | Model checking                                           | CPA                                                                               |
|-------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------|
|                         | program                                                                                | program                                                  | program                                                                           |
| input                   | abstraction                                                                            | abstraction                                              | abstraction                                                                       |
| exploration             | widening operator $\nabla$<br>reached, waitlist<br>pop from waitlist<br>all successors | reached, waitlist<br>pop from waitlist<br>all successors | $e_0$ , new operators<br>reached, waitlist<br>pop from waitlist<br>all successors |
| combination             | upper bound $( abla)$<br>(same location)                                               | never                                                    | merge operator                                                                    |
| coverage<br>termination | same location, ⊑<br>empty waitlist                                                     | same location, $\sqsubseteq$ empty waitlist              | stop operator<br>empty waitlist                                                   |

Note: flow-insensitive analyses can also be expressed with CPA.

Defines when and how to combine abstract states

$$\mathsf{merge}: E \times E \to E$$

Correctness criterion:

Must consume second parameter (already explored element)

$$\forall e, e' \in E : e' \sqsubseteq \mathsf{merge}(e, e')$$

#### Examples for Merge Operator

- Flow-insensitive: merge(e, e') = \(\begin{aligned} \{e, e'\} \\ bataflow analysis: merge((l, e), (l', e')) = \{ \(\begin{aligned} \(\begin{aligned} l, e), (l', e')\\ l, e'\\ l, e'\\ else \end{aligned} \)
- ▶ Model checking: merge(e, e') = e'

### Stop Operator

Defines when to stop exploration (termination check)

$$stop: E \times 2^E \rightarrow \{true, false\}$$

Correctness criterion:

Must be covered by second parameter (set of explored elements)

$$\forall e \in E, E_{\text{sub}} \subseteq E : \mathsf{stop}(e, E_{\text{sub}}) \Rightarrow (\llbracket e \rrbracket \subseteq \bigcup_{e' \in E_{\text{sub}}} \llbracket e' \rrbracket)$$

#### Examples for Stop Operator

- ▶  $stop(e, E_{sub}) = false$
- ▶ Flow-insensitive:  $stop(e, E_{sub}) = e \in E_{sub}$
- ► Dataflow analysis:  $stop((l, e), E_{sub}) = \exists (l, e') \in E_{sub} : (l, e) \sqsubseteq (l, e')$
- ▶ Model checking:  $stop(e, E_{sub}) = \exists e' \in E_{sub} : e \sqsubseteq e'$

### Configurable Program Analysis (CPA)

Abstraction plus merge and stop operator

A CPA  $\mathbb{C} = ((C, (E, \sqsubseteq, \sqcup, \top), \llbracket \cdot \rrbracket), \rightsquigarrow, \mathsf{merge}, \mathsf{stop})$  consists of

▶ abstract domain  $(C, (E, \sqsubseteq, \sqcup, \top), \llbracket \cdot \rrbracket)$ 

▶ transfer relation  $\rightsquigarrow \subseteq E \times G \times E \ \forall e \in E, g \in G :$  $\bigcup_{c \in \llbracket e \rrbracket} \{c' \mid (c, g, c') \in \mathcal{T}\} \subseteq \bigcup_{(e, g, e') \in \backsim} \llbracket e' \rrbracket$ 

• merge operator merge :  $E \times E \rightarrow E$ 

$$\forall e, e' \in E : e' \sqsubseteq \mathsf{merge}(e, e')$$

▶ stop operator stop :  $E \times 2^E \rightarrow \{true, false\}$ 

 $\forall e \in E, E_{\mathrm{sub}} \subseteq E : \mathsf{stop}(e, E_{\mathrm{sub}}) \Rightarrow (\llbracket e \rrbracket \subseteq \bigcup \llbracket e' \rrbracket)$ 

Matthias Kettl

© SoSy-Lab, LMU Munich, Germany

 $e' \in E_{sub}$ 

#### Value Dataflow Analyses as CPA

 $\blacktriangleright$  abstract domain  $\mathbb{L}\times\mathbb{V}$ 

▶ transfer relation: product transfer relation  $\rightsquigarrow_{\mathbb{L} \times \mathbb{V}}$ 

merge operator  

$$merge((l, v), (l', v')) = \begin{cases} \ \sqcup\{(l, v), (l', v')\} & \text{if } l = l' \\ (l', v') & \text{else} \end{cases}$$

► stop operator  $stop((l, v), E_{sub}) = \exists (l, v') \in E_{sub} : (l, v) \sqsubseteq (l, v')$ 

#### Predicate Model Checking as CPA

- $\blacktriangleright$  abstract domain  $\mathbb{L} imes \mathbb{P}$
- transfer relation: product transfer relation  $\rightsquigarrow_{\mathbb{L}\times\mathbb{P}}$
- merge operator merge(e, e') = e'
- ► stop operator  $stop((l, p), E_{sub}) = \exists (l, p') \in E_{sub} : (l, p) \sqsubseteq (l, p')$

## **CPA** Algorithm

```
Input: program P = (L, \ell_0, G)
           \mathsf{CPA} ((C, (E, \sqsubseteq, \sqcup, \top), \llbracket \cdot \rrbracket), \rightsquigarrow, \mathsf{merge}, \mathsf{stop})
           initial abstract state e_0 \in E
   reached=\{e_0\}; waitlist=\{e_0\};
   while (waitlist \neq \emptyset) do
        pop e from waitlist;
        for each e \rightsquigarrow e' do
             for each e_r \in reached do
                  e_m = merge(e', e_r)
                  if (e_m \neq e_r) then
                       reached=(reached \setminus \{e_r\}) \cup \{e_m\};
                       waitlist=(waitlist \setminus \{e_r\}) \cup \{e_m\};
             if (\neg stop(e', reached)) then
                  reached=reached\cup{e'};
                  waitlist=waitlist\cup{e'};
```

#### return reached

Matthias Kettl

#### Termination of CPA Algorithm

- Generally not guaranteed (inherited from model checking)
- Depends on configuration (even for loop-free programs may not terminate, e.g. stop(e, E<sub>sub</sub>) = false)
- Guarantees for individual techniques (flow-insensitive, dataflow analysis, etc.) still apply

#### Soundness

Final set reached overapproximates all reachable states if the initial abstract state  $e_0$  covers all initial states, i.e.,

$$\{c \mid c(pc) = l_0\} \subseteq \llbracket e_0 \rrbracket \Rightarrow reach(P) \subseteq \bigcup_{e \in reached} \llbracket e \rrbracket$$

#### Reasons

- Explore all successors of states in reached (always add state to waitlist if added to reached)
- Transfer relation overapproximates
- Replace state by more abstract (merge property), never only delete
- Must add abstract successor to reached if not covered (stop property)

### Classifying Configurable Program Analysis

Overapproximating verifier (superset of program behavior) without precise counterexample check



Counterexample-Guided Abstraction Refinement (CEGAR)

### Why CEGAR for Predicate Abstraction?

Let 
$$\varphi_R = \{l_4\}$$



Which predicates to use

- ► {x=1} too coarse
- ► {y=1;x=1;x>0} too precise ⇒ inefficient
- {x>0} best candidate

#### Use CEGAR to determine required set of predicates

#### Idea of CEGAR

Find good trade-off between precision and efficiency automatically

- Start with efficient abstraction
- Refine if fails to (dis)prove property (spurious counterexample found)
- Often, works automatically

Typically, used for model checking

Syntactical program paths from initial to error location

 $\begin{array}{l} \mbox{Definition}\\ \mbox{Let } P = (L, l_0, G) \mbox{ be a CFA and}\\ \varphi_{L_{\rm sub}} \mbox{ with } L_{\rm sub} \subseteq L \mbox{ be a reachability property.} \end{array}$ 

A sequence  $g_1g_2\ldots g_n\in G^*$  is a counterexample if

$$\begin{array}{l} \bullet \quad g_1 = (l_0, \cdot, \cdot) \\ \bullet \quad g_n = (\cdot, \cdot, l_e) \text{ s.t. } l_e \in L_{\text{sub}} \\ \bullet \quad \forall 1 \leq i < n : g_i = (\cdot, \cdot, l) \Rightarrow g_{i+1} = (l, \cdot, \cdot) \end{array}$$

Matthias Kettl
# Feasibility of Counterexamples

A counterexample is feasible if

$$\exists c_0 \xrightarrow{g_1} c_1 \cdots \xrightarrow{g_n} c_n \in paths(P) \ .$$

#### A counterexample is spurious if it is not feasible.

## Which Counterexamples are Feasible/Spurious?

Consider reachability property  $\varphi = \{l_4\}.$ 

$$\begin{array}{c} l_{0} \xrightarrow{x>0} l_{1} \xrightarrow{y=2;} l_{3} \xrightarrow{x>0} l_{4} \\ \hline l_{0} \xrightarrow{x>0} l_{1} \xrightarrow{y=2;} l_{3} \xrightarrow{x>0} l_{4} \\ \hline l_{0} \xrightarrow{!(x>0)} l_{2} \xrightarrow{y=-1;} l_{3} \xrightarrow{y==0} l_{4} \\ \hline l_{0} \xrightarrow{y=0;} l_{1} \xrightarrow{x>0y=5;} l_{3} \xrightarrow{x>10} l_{4} \end{array}$$

# **CEGAR** Overview



# Adapting Model Checking Algorithm for CEGAR

**nput:** program 
$$P = (L, \ell_0, G)$$
  
abstraction  $((L \times E \times R, \sqsubseteq, \sqcup, \top), []], \rightsquigarrow)$   
reached $\subseteq E$  and waitlist $\subseteq E$   
reached=waitlist= $\{(l_0, \top, q_{safe})\};$   
**while** (waitlist  $\neq \emptyset$ ) **do**  
pop  $(l, e, q)$ ) from waitlist;  
for each  $((l, e, q), g, (l', e', q')) \in \rightsquigarrow_{\pi}$  **do**  
**if**  $q' = q_{unsafe}$  **then**  
reached=reached $\cup\{(l', e', q')\};$   
waitlist=waitlist $\cup\{(l, e, q)\};$   
**return** (reached, waitlist)  
**if**  $(\neg \exists (l', e'', q'') \in \text{ reached} : (l', e', q') \sqsubseteq (l', e'', q''))$  **then**  
reached=reached $\cup\{(l', e', q')\};$   
waitlist=waitlist $\cup\{(l', e', q')\};$   
waitlist=waitlist $\cup\{(l', e', q')\};$ 

return (reached, waitlist)

I

# **CEGAR** Algorithm

**Input:** program  $P = (L, \ell_0, G)$ abstraction  $\mathbb{A} = ((L \times E \times R, \sqsubseteq, \sqcup, \top), \llbracket], \rightsquigarrow)$ reached=waitlist={ $(l_0, \top, q_{safe})$ };  $\pi = \emptyset$ : while (waitlist  $\neq \emptyset$ ) do modelcheck(P,  $\mathbb{A}_{\pi}$ , reached, waitlist); if  $\exists (\cdot, \cdot, q_{\text{unsafe}}) \in \text{reached then}$ cex = extractErrorPath(reached);if isFeasible(cex) then return unsafe  $\pi = \text{refine}(\text{cex});$ reached=waitlist={ $(l_0, \top, q_{safe})$ };

return safe

Matthias Kettl

# **CEGAR** Overview



Should be efficient, may be coarse  $\Rightarrow$  Use coarsest abstraction possible, i.e., empty set of predicates for predicate analysis.

# **CEGAR** Overview



# Checking Feasibility of Counterexample

Two (dual) possibilities

- 1. Forward approach
  - Compute strongest postcondition starting with true
  - If unsatisfiable, counterexample spurious
- 2. Backward approach
  - Compute weakest precondition starting from false
  - If tautology, counterexample spurious

# Strongest Postcondition (Recap)

Known from predicate abstraction Smallest set of successors

For operations:

Assume b: 
$$sp(b, f) = f \wedge b$$

Assignment v=a;:

$$sp(v=a;,f) = \exists v': f[v \to v'] \land v = a[v \to v']$$

Extension to sequences

► 
$$sp(\varepsilon, f) = f$$
  
►  $sp(op_1 \dots op_n, f) = sp(op_2 \dots op_n, sp(op_1, f))$ 

Matthias Kettl

© SoSy-Lab, LMU Munich, Germany

### Examples for Strongest Postcondition

Consider following sequences of edges  $G_i$ . Compute strongest post condition  $sp(G_i, true)$ .

• 
$$G_1 := x > 0, y = 1; x <= 0$$
  
•  $G_2 := x > 0, y = 2; x > 0$   
•  $G_3 :=!(x > 0), y = -1; y == 0$   
•  $G_4 := y = 0; x > 0, y = 5; x > 10$ 

#### Which formulae are satisfiable?

# Eliminate existential quantifiers (only consider formuala without universal quantifiers $(\forall)$ )

# General schema $\exists x: f \text{ replaced by } f[x \rightarrow c] \text{ such that } c \text{ does not occur in } f$

In this lecture: Use static single assignment (SSA) like skolemization

### SSA-based Skolemization

- Use indexed variables, i.e.,  $x_i$  for x
- Start with index 0
- Expressions (assume or right hand side of assignments) use highest index seen so far
- Increase index in assignments, i.e., the index of the assigned variable is maximum seen so far plus 1

#### Example

$$sp(y = 0; x > 0, y = 5; x > 10, true)$$
  
=  $sp(x > 0, y = 5; x > 10, y_1 = 0)$   
=  $sp(y = 5; x > 10, y_1 = 0 \land x_0 > 0)$   
=  $sp(x > 10, y_1 = 0 \land x_0 > 0 \land y_2 = 5)$   
=  $sp(\varepsilon, y_1 = 0 \land x_0 > 0 \land y_2 = 5 \land x_0 > 10)$   
=  $y_1 = 0 \land x_0 > 0 \land y_2 = 5 \land x_0 > 10$ 

# **CEGAR** Overview



## Abstraction Refinement

Increases precision (more precise abstraction) Based on counterexample

#### Goal

New exploration excludes counterexample (ensures progress)

In this lecture: refinement via interpolation

Let  $f_1$  and  $f_2$  be two formulas such that  $f_1 \wedge f_2$  unsatisfiable.

A formula f is an interpolant if

 $\blacktriangleright f_1 \Rightarrow f$ 

•  $f \wedge f_2$  unsatisfiable

$$var(f) \subseteq (var(f_1) \cap var(f_2))$$

## Which Formulae are Craig Interpolants?

Consider the formulae

$$f_1 = x_0 > 10 \land y_1 = 1$$
  
 $f_2 = x_0 \le 0 \land z_0 = 0$ 

Which of the following formulae are interpolants for  $f_1$  and  $f_2$ ?

*f*<sub>1</sub> *x*<sub>0</sub> > 0 ∧ (*z*<sub>0</sub> > 0 ∨ *z*<sub>0</sub> ≤ 0)
false *x*<sub>0</sub> ≠ 0 *x*<sub>0</sub> > 0

## Computing New Predicates via Interpolation

Let  $op_1 \dots op_n$  be sequence of operations on spurious counterexample

For all  $1 \le k < n$  compute

- 1. Compute  $f_1 = sp(op_1 \dots op_k, true)$  and  $f_2 = sp(op_{k+1} \dots op_n, true)$  (index shift!) (can reuse strongest postcondition from feasibility check, only need to split appropriately)
- 2. Compute interpolant f for  $f_1$  and  $f_2$
- 3. Use all literals from f after removing indices as new predicates

In practice:

solver computes interpolants from unsatisfiability proof

Matthias Kettl

#### CEGAR with Predicate Abstraction

Let  $\varphi_R = \{l_4\}$  and initial set of predicates  $\{\}$ 



Two counterexamples:  $\blacktriangleright$   $l_0 \xrightarrow{x>0} l_1 \xrightarrow{y=1} l_3 \xrightarrow{x <=0} l_4$  $\blacktriangleright$   $l_{0} \stackrel{!(x>0)}{\rightarrow} l_{2} \stackrel{x=1;}{\rightarrow} l_{2} \stackrel{x\leq=0}{\rightarrow} l_{4}$ 

x<=0

### **Compute Strongest Postcondition**

 $\text{Consider counterexample } l_0 \stackrel{x > 0}{\to} l_1 \stackrel{y=1;}{\to} l_3 \stackrel{x <= 0}{\to} l_4$ 

Strongest post  $x_0 > 0 \land y_1 = 1 \land x_0 <= 0$  infeasible  $\Rightarrow$  counterexample spurious  $\Rightarrow$  refine

### Computing New Predicates via Interpolation

Split formula  $x_0 > 0 \land y_1 = 1 \land x_0 <= 0$  at program locations

- 1.  $f_1 = x_0 > 0$  and  $f_2 = y_1 = 1 \land x_0 <= 0$ interpolant  $f = x_0 > 0$
- 2.  $f_1 = x_0 > 0 \land y_1 = 1$  and  $f_2 = x_0 <= 0$ interpolant  $f = x_0 > 0$

Consider all literals (predicates) occurring in interpolants Remove SSA indices from these literals and then add them to set of predicates

 $\Rightarrow$  new predicates x>0

### Restart Predicate Model Checking

Let  $\varphi_R = \{l_4\}$  and set of predicates  $\{x > 0\}$ 



## **CEGAR** for Value Analysis

#### What would be the precision for value analysis?