
VL Semantik Winter Term 2024/2025
Lehrstuhl für Software and Computational Systems
Dirk Beyer, Matthias Kettl

Q&A 2025/02/28

Reference: https://www.sosy-lab.org/research/pub/2018-HBMC.Combining_Model_Checking_
and_Data-Flow_Analysis.pdf

1 Questions and Answers

1. How does an observer automaton look like for the different LTL operators?

qinitstart qerr

φ

¬φ

Figure 1: □ϕ (always φ)

qinitstart q⋄

¬φ ⊤

φ

Figure 2: ⋄φ (finally φ)

qinitstart q◦

qerr

φ

¬φ

⊤

Figure 3: ◦ϕ (next ϕ)

qinitstart qW

qerr

r

¬l ∧ ¬r

⊤l ∧ ¬r

Figure 4: l W r (l weak until r)

https://uni2work.ifi.lmu.de/course/W20/IfI/SV
https://www.sosy-lab.org/research/pub/2018-HBMC.Combining_Model_Checking_and_Data-Flow_Analysis.pdf
https://www.sosy-lab.org/research/pub/2018-HBMC.Combining_Model_Checking_and_Data-Flow_Analysis.pdf


qinitstart qU

qerr

r

⊤

¬l ∧ ¬r

l ∧ ¬r

Figure 5: l U r (l until r)

2. When does the stopsep operator return true with abstract domain P?

The operator stopsep(e, reached) returns true if ∃e′ ∈ reached : e ⊑ e′. For P we define
⊑ with ⊇, meaning that we stop whenever we have an element in the reached set, that is
a subset of the current element e. Why is this sound? Because we have already explored a
superset of abstract paths that this state would allow.

3. Is reachability analysis glorified dead code detection?

Yes. However, it is not easy to check a magnitude of existing real states. If we want
to verify a function with input parameter y, then we would have to manually check the
unreachability of every concrete assignment. Assume int = Z, then we already have in-
finitely many states to check. With abstraction we can track constraints over y, helping
us to bundle infinitely many states (e.g., with y < 0) in one abstract state allowing us to
decide the reachability of certain locations for simple programs. Additionally, it is crucial
that all asserts hold in a program. Therefore, it makes sense to use reachability analysis to
check for possible violations.

2 Questions

The below questions are supposed to support you in exam preparation. They are not meant to
be complete (i.e., they do not represent all content that you have to know).

Software Verification

1. Define the notion of “Software Verification”.

2. What is the difference between formal verification and testing?

Lattices

1. Define lattice in words.

2. Define a semi-lattice.

3. What is the meaning of the individual components of a lattice?



CPA Algorithm

1. What is the purpose of reachability analyses?

2. What is the difference between model checking and data-flow analysis?

3. How does the CPA algorithm differ from model checking?

4. Name all components of a CPA and state the purpose of each.

Constant-propagation Analysis, Reaching Definitions

1. What information does the constant-propagation analysis track?

2. What information does the reaching-definitions analysis track?

3. Let us assume our constant-propagation analysis does not use mergejoin, but mergesep. How
does its behavior change?

Bounded Model Checking

1. Is bounded model checking more expressive than constant-propagation analysis?

2. How does bounded model checking work?

3. Is it possible to prove a program correct with regards to a certain property, with bounded
model checking?

Predicate Abstraction

1. What is the difference between bounded model checking and predicate abstraction?

Observer Analysis

1. What do we use the observer analysis for?

2. Is it possible to apply the CPA algorithm with more than a single observer analysis at the
same time? If so, how?

3. Can observer analyses describe any program property?


	Questions and Answers
	Questions

