
Adaptive Algorithm Selection for Btor2 Verification Tasks
Google Summer of Code 2024 Project Report

Zhengyang John Lu ∗ john.lu2@uwaterloo.ca

Abstract

We developed the first algorithm selector, Btor2-Select, for the word-level hardware
model-checking problem described in the Btor2 language. Given a Btor2 instance,
Btor2-Select selects and applies the expected best verifier(s) from a pool of hardware
and software tools. These decisions are based on various machine learning (ML) models,
trained upon historical performance data, mapping from instance features to algorithm
selections.

We proposed two embeddings for Btor2 instances: bag of keywords and bit-width ag-
gregation. Two traditional algorithm-selection ML models, i.e., empirical hardness model
and pairwise classifiers, were implemented in Btor2-Select. More importantly, we de-
veloped a novel algorithm selection and scheduling framework based on deep reinforcement
learning. This framework allows for adaptive algorithm selection throughout the solv-
ing process, leveraging dynamic information such as previous attempts and elapsed time.
Upon evaluation, the adaptive algorithm selector outperformed the best non-portfolio solver
(SBS) by 24.4%. Moreover, it closed 6.69% more SBS-VBS gaps than the best non-adaptive
algorithm-selection method, a common performance indicator for algorithm selectors.

All the codes, experiments, and data can be found at this GitLab repo.

1. Introduction

It has long been observed that for computationally hard problems, no single algorithm
performs well on all instances, and different algorithms perform well on distinct classes
of instances. To leverage such complementary strengths, machine learning (ML)–based
algorithm selection is gaining popularity (Xu et al., 2012). For each given instance, an
algorithm selector predicts and selects the optimal algorithm(s) from a set of complementary
candidates, based on previously collected empirical performance data.

Our research focuses on algorithm selection for the hardware model-checking problem in
the Btor2 format (Niemetz et al., 2018). Hardware model checking plays a crucial role in
ensuring the correctness and reliability of critical hardware systems, as even minor errors in
hardware designs can lead to catastrophic failures. Traditionally, hardware model checkers
such as ABC (Brayton & Mishchenko, 2010) have been developed to verify the correctness of
hardware designs against given specifications. What makes this problem more interesting
is the recent development of Btor2C (Beyer et al., 2023), a Btor2-to-C translator, which
allows software verifiers to be applied to hardware verification tasks as well.

We propose, to the best of our knowledge, the first algorithm selector for the hard-
ware verification problem. Our tool, called Btor2-Select, leverages the strength of both

∗. GSoC Mentors: Po-Chun Chien and Nian-Ze Lee (LMU Munich)
The author also thanks Arie Gurfinkel (UWaterloo), Vijay Ganesh (Georgia Tech), Cedric Richter (Pader-
born University), and Chris Cameron (UBC) for guidance and help.

1

mailto:john.lu2@uwaterloo.ca
https://gitlab.com/sosy-lab/software/btor2-select

1 sort bitvec 3

2 zero 1

3 state 1

4 init 1 3 2

5 input 1

6 add 1 3 5

7 one 1

8 sub 1 6 7

9 next 1 3 8

10 ones 1

11 sort bitvec 1

12 eq 11 3 10

13 bad 12

(a) Btor2 circuit

extern void abort(void);

extern unsigned char nondet_uchar();

void main() {

typedef unsigned char SORT_1;

typedef unsigned char SORT_11;

const SORT_1 var_2 = 0b000;

const SORT_1 var_7 = 0b001;

const SORT_1 var_10 = 0b111;

SORT_1 input_5;

SORT_1 state_3 = var_2;

for (;;) {

input_5 = nondet_uchar();

input_5 = input_5 & 0b111;

SORT_11 var_12 = state_3 == var_10;

SORT_11 bad_13 = var_12;

if (bad_13) {

ERROR: abort();

}

SORT_1 var_6 = state_3 + input_5;

var_6 = var_6 & 0b111;

SORT_1 var_8 = var_6 - var_7;

var_8 = var_8 & 0b111;

state_3 = var_8;

}

}

(b) C program (simplified for demo)

Figure 1: An example Btor2 circuit (a) and its translated C program (b) from Beyer et al.
(2023)

hardware and software verifiers. More importantly, it can dynamically adjust the algorithm-
selection choice during the solving process according to runtime information. This adaptive
feature is empowered by reinforcement learning (RL). We implemented our adaptive algo-
rithm selector Btor2-Select in Python and conducted experimental evaluations on the
tool. Experimental results showed that the adaptive algorithm selector outperformed the
single best non-portfolio solver (SBS) by 24.4% in terms of the PAR-2 runtime score. More-
over, it closed 6.69% more gaps between the SBS and the virtual-best-solver than the best
baseline non-adaptive algorithm-selection method.

All the codes, experiments, and data can be found at this GitLab repo.

2. Background

2.1 Btor2 and Btor2C

Btor2 is a word-level model-checking format for sequential circuits. The modeling-checking
problem decides whether a safety property holds on all possible executions of a circuit.
Btor2 is adopted by HWMCC (A. Biere et al., 2020), the international competitive event
for hardware model checkers, as the format for the word-level track.

2

https://gitlab.com/sosy-lab/software/btor2-select

In a Btor2 file, each line serves a specific purpose and is distinguished by keywords. For
example, the keyword sort is used to define arbitrary bit-vector and array sorts. Registers
and memories are specified by the keyword state, and their initialization and transitions
are defined with the keywords init and next. The combinational circuits are described by
various operators, such as not, and, and add. The keyword bad encodes negations of the
safety property.

We provide a Btor2 example in Figure 1a. This instance describes a circuit whose
state is a bit-vector of width 3. In lines 2-4, the state is initialized to 0. In each iteration,
the value of this state bit-vector will first be incremented by an external input (lines 5-6)
and then decremented by 1 (lines 7-8). The circuit breaks the safety property if the state
bit-vector equals 0b111 (lines 12-13).

2.2 Algorithm Selection

For computationally intractable problems, it is common for one algorithm to perform bet-
ter than other algorithms on certain instances, while performing dramatically worse on
some other instances. Rice (1976) first proposed the algorithm selection problem: given an
instance from a particular problem, which algorithm(s) should be run to optimize the per-
formance? One pioneering and successful application of algorithm selection is SatZilla (Xu
et al., 2008), an algorithm-selection-based portfolio SAT solver that won multiple medals
in both the 2007 and 2009 SAT Competitions (Le Berre et al., 2024a, 2024b). Over the
decades, algorithm selection has also been widely used in areas such as SMT (Scott et al.,
2023), constraint satisfaction problems (O’Mahony et al., 2008), and planning (Cenamor
et al., 2014). While algorithm selection has been explored in the context of software veri-
fication (Leeson & Dwyer, 2024; Richter & Wehrheim, 2020; Richter et al., 2020; Tulsian
et al., 2014), to the best of our knowledge, no prior work has investigated its application to
hardware verification.

The objective of the algorithm selection is to select the optimal algorithm from a set of
candidates for each instance from a problem set. However, it is impractical to efficiently
find a guaranteed perfect solution to the algorithm selection problem. Instead, algorithm
selectors are usually trained, upon historical performance data, to predict algorithms’ per-
formance given some cheaply computable features of an input instance. We refer to the
hypothetically perfect or oracle selector as the virtual best solver (VBS). The VBS pro-
vides a performance upbound. We call the individual algorithm with the best performance
among all candidates the single best solver (SBS). Realistic algorithm selectors are usually
evaluated by the fraction of the VBS-SBS performance gap closed by the selector.

Below are introductions to two prevalent algorithm-selection models.

Empirical Hardness Model Empirical Hardness Model (EHM) (Leyton-Brown et al.,
2002) is a predictor of an algorithm’s runtime on a given instance. It is an ML model
trained on the algorithm’s past performance. EHMs are widely used for algorithm selection
(Scott et al., 2023; Xu et al., 2008), by building an EHM for each component algorithm,
and, at runtime, selecting the algorithm with the best-predicted performance for the given
instance.

3

Cost-Sensitive Pairwise Classifier A cost-sensitive pairwise classifier (PWC) (Xu et
al., 2012) is a classifier that predicts, given a pair of algorithms, which one would perform
better. During training, samples are weighted by the performance difference between the
pair. When used for algorithm selection, one PWC is trained for every pair of candidate al-
gorithms. During inference, for a given instance, all PWCs are evaluated, and the algorithm
that receives the highest votes is selected.

2.3 Algorithm Scheduling

Typically, an algorithm selector selects a solver and commits to it. By contrast, algorithm
scheduling defines a sequence of solvers to be tried, each with an individual internal time
limit.

Although scheduling cannot outperform the perfect algorithm selector VBS, constructing
such an ideal selector is impractical. Moreover, it has been observed in many scenarios that
if an instance is solvable by a particular algorithm, it is usually solved in a short time. Thus,
algorithm scheduling helps hedge the bet, strategically distributing the given time budget
to different solvers, thereby potentially increasing the likelihood of success.

2.4 Deep Reinforcement Learning

Reinforcement learning (RL) is a framework in which an agent learns to make sequential
decisions within an environment modeled as a Markov Decision Process (MDP) (Sutton &
Barto, 2018). In an MDP, the agent transitions through states by taking actions, with each
transition yielding a reward. The goal is to develop a policy that maximizes cumulative
rewards over time.

Deep reinforcement learning (DRL) extends RL by leveraging deep neural networks to
approximate the policy or value functions, which is crucial for handling environments with
high-dimensional state representations, suitable for our problem. Through DRL, agents
effectively learn in complex environments, with popular algorithms like Deep Q-Networks
(DQN) (Mnih et al., 2015) and AlphaZero (Silver et al., 2017) achieving superhuman per-
formance in challenging video and board games.

2.5 Measurements of Contribution to a Portfolio

One of our research goals is to evaluate how each component verifier in our algorithm-
selection portfolio contributes to the overall performance. Fréchette et al. (2016) proposed
to evaluate an algorithm’s contribution to a portfolio using the Shapley values (Shapley,
1953). The Shapley value, originating from cooperative game theory, is widely regarded as
a fair measure of individual components’ contribution to a coalition’s performance. Among
various ways to do such gain distribution, the Shapley value uniquely satisfies a set of
desirable properties: efficiency, symmetry, dummy, and additivity.

The Shapley value computes the average marginal contribution of each player over all
possible orders to join a coalition. Let us define a cooperative game as a pair (V, p), where
V = {v1, ..., vn} is a set of n players and p : 2V → R is a function that maps each coalition

4

of players C ⊆ V to a real number p(C), representing the gain of C. Then, the Shapley
value of player vi ∈ V is calculated as:

ϕvi =
1

n!

∑
π∈ΠV

(p(Cπ
vi ∪ {vi})− p(Cπ

vi)) (1)

where ΠV denotes the set of all permutations of V ; Cπ
vi denotes the coalition consisting of

all predecessors of vi in π.

3. Adaptive Algorithm Selection and Scheduling for Btor2

3.1 Instance Representation of Btor2

Since algorithm selection operates on an instance basis, a well-constructed representation
of each problem instance is crucial. The representation shall be efficiently computable,
suitable as input for ML models, and preserving essential information that distinguishes
performance among solvers. With these goals in mind, we propose two types of Btor2
instance representations: Bag of Keywords (BoKW) and Bit-Width Aggregation (BWA).

Bag of Keywords For each instance, BoKW counts the occurrence of each keyword
from a predefined set of 69 keywords, such as state, sort, and not, to form the instance
representation. For example, in the Btor2 instance shown in Figure 1a, state appears
once, sort twice, and not does not appear. The BoKW representation of this example
would be a vector of 69 integers, with entries corresponding to the frequencies of state,
sort, and not set to 1, 2, and 0, respectively.

Bit-Width Aggregation Most keywords (with the exception of bad, constraint, fair,
output, and justice) return a variable of a certain bit-width. For example, the two sort’s
in Figure 1a return a 3-bit vector and a 1-bit vector, respectively. BWA, instead of counting
the occurrence, sums the bit-widths of all returned variables for each relevant keyword. For
bad, constraint, fair, output, and justice, BWA simply counts the occurrence of these
keywords. There, the BWA representation of the Btor2 example would be a vector of 69
integers, with entries corresponding to state, sort, not, and bad set to 3, 4, 0, and 1,
respectively.

3.2 Modelling Algorithm Selection and Sheduling

We model our algorithm selection and scheduling problem as a Markov Decision Process
(MDP). An MDP is a mathematical framework in which an agent makes action decisions
in a series of states, with each action leading to a state transition and a reward. The agent
seeks to maximize rewards over time through choices of actions.

In our formulation of the problem, each MDP episode is the process of dynamically
selecting verifiers to solve one particular Btor2 instance bi with an external time limit T .
At each step, the agent, i.e., the algorithm selector, chooses a verifier v from a predefined set
V , possibly with a specified internal time limit t, as actions. The execution of the selected
verifier may lead to successfully solving the instance, or failing due to various reasons such
as reaching the time limits. The dynamic runtime information collected during the solving
process can be embedded in the states to help future action choices. The goal of the agent is

5

to successfully solve as many as possible instances and, in the meantime, minimize solving
time.

Formal Description We provide a formal description of our problem MDP, defined by
the tuple (S,A,D), where each component is detailed below.

• States S: Each state s ∈ S represents the current status of solving a specific Btor2
instance bi. Every episode begins in a specific initial state s0, which is sampled to
reflect the start of solving bi from an instance distribution Db of interests. An s is a
terminal state if the instance is successfully solved, or the external time limit T has
been reached. In our current design, each state s comprises two main components:
instance features and solving history. We described the different types of instance
features we use in Section 3.1. For the dynamic solving history, we include (1) what
solvers have already been attempted, and (2) the elapsed time since the start of
solving.

• Actions A: Each a ∈ A is defined as a pair (v, t), where v is a selected verifier
from V and t is an assigned internal time limit chosen from several prefixed options.
Therefore, A is a discrete action space.

• Dynamic Function D and Reward R: The dynamic function D(s, a) = (s′, r)
deterministically returns both the next state s′ and the reward r after taking action
a = (v, t) in state s. This state transition reflects the results of executing v with t on
the corresponding instance. Our reward r is designed to encourage successfully solving
the instance, with a preference for achieving this in a shorter time. Specifically, at
each step, r is defined as below:

r =

{
1− tactual/T, if the instance is successfully solved

−tactual/T, otherwise

where, tactual is the actual execution time of v. tactual may be equal to t, if v does
not return in the assigned t, or tactual may be less than t when v terminates before
the assigned time limit. This design of r restrains r between -1 and 1, a common
design for RL. r is 1 when the instance is solved instantly, and 0 when the instance
is solved using all of T . If the episode fails, i.e., the instance is not solved in T , r is
-1. This design shares the same principle as the PAR-2 score, a measure that counts
the actual used time for successful instances, while penalizing double the timeout for
failed instances.

3.3 Deep Reinforcement Learning

We apply the DQN algorithm (Mnih et al., 2015) to train a policy for this algorithm selection
and scheduling problem. A deep neural network Q(s, a; θ) is used to approximate the Q-
value function Q∗(s, a), which estimates the expected cumulative reward for taking action
a in state s and following the policy thereafter. The network is trained through interactions
with the environment by updating weights to minimize the difference between predicted
Q-values and target Q-values, defined by the Bellman equation:

6

Figure 2: Adaptive Btor2-Select architecture

Q(s, a)← r +max
a′

Q(s′, a′) (2)

where s′ is the next state after taking action a.

The training process involves collecting experience tuples (s, a, r, s′) and storing them
in a replay buffer. These tuples are collected from sampling solving episodes on instances
drawn from the distributionDb. Periodically, the agent samples batches of experience tuples
from the replay buffer to update θ according to Equation 2. Through iterative updates and
training on experience tuples, Q(s, a; θ) is expected to approximate the optimal Q-value
function Q∗(s, a).

It is interesting to note that, if we restrict ourselves to committing to a single solver
without scheduling a sequence, the Q-value function acts as an EHM, predicting the per-
formance of each solver upon a given instance. Therefore, in our DQN setting, the Q-value
function can be viewed as an extension of the EHM, adapted to the scheduling scenario.

3.4 Architecture

Figure 2 shows the architecture of our adaptive algorithm selector Btor2-Select. Given
an input instance, the selector selects a component verifier v and assigns an internal timeout
t for its execution. If the previous attempt is not successful, the selector iteratively makes
this choice at each step. This architecture applies to both training and inference time.

We include four model checkers with various configurations in our verifier set. Two hard-
ware model checkers AVR (Goel & Sakallah, 2020) and ABC (Brayton & Mishchenko, 2010)
are the winners of the HWMCC’20 competition; software verifiers CBMC (Clarke et al., 2004)
and ESBMC (Gadelha et al., 2018) showed strong performance on Btor2 instances in our
previous work (Beyer et al., 2023). A configuration of the model checker refers to the imple-
mentation of a specific algorithm, including property directed reachability (PDR) (Bradley,
2011), bounded model checking (BMC) (Biere et al., 1999), interpolating model check-
ing (IMC) (McMillan, 2003), and k-induction (K-Ind) (Sheeran et al., 2000). See a more
detailed description of our component verifiers in Section 4.2.

7

Verifier #Solved PAR-2 (sec)

ABC.BMC 373 1932691.0
ABC.IMC 690 1382558.4
ABC.PDR 961 909922.1
AVR.BMC 377 1934160.3
AVR.K-Ind 571 1577432.5
AVR.PDR 784 1219703.5
CBMC.BMC 440 1821186.9
CBMC.K-Ind 664 1431101.6
ESBMC.BMC 426 1850108.2
ESBMC.K-Ind 515 1685649.6

Table 1: List of component verifiers and their performance on all 1 441 benchmarks.

4. Experiment Design

We evaluated Btor2-Select on extensive Btor2 benchmarks. This section documents
the experiment design while Section 5 presents the results.

4.1 Benchmark Dataset

We have built a comprehensive Btor2 benchmark set at
https://gitlab.com/sosy-lab/research/data/word-level-hwmc-benchmarks/ from HWMCC
as well as other sources. At this stage, we only focus on the 1 441 benchmarks that do
not include array reasoning. Our experiments were conducted over this benchmark set.

4.2 Component Verifiers and their Performance

As mentioned in Section 3.4, we included four model checkers with different configurations
in our verifier candidate set V . The model checkers are ABC version 1.01, AVR version 2.1,
CBMC version 5.95.1, and ESBMC version 7.4.0. Table 1 lists all component verifiers with their
performance on all 1 441 benchmarks. The performance measurement of all verifier-instance
pairs was executed on Ubuntu 22.04 machines, each with a 3.4 GHz CPU (Intel Xeon E3-
1230 v5) with 8 processing units and 33 GB of RAM. Each task was assigned 2 CPU cores,
15 GB RAM, and 15 min of CPU time limit. We used the BenchExec framework (Beyer,
2016) to ensure reliable resource measurement and reproducible results.

4.3 Adaptive Btor2-Select and Baselines

We implemented our DQN-based adaptive algorithm selector Btor2-Select in Python.
In our experiments, the external timeout T was set to 900 seconds. We configured the
internal timeout t options to be 100, 300, and 900 seconds. We modeled our MDP problem
in Gymnasium (Towers et al., 2024) and used the Stable-Baseline3 (Raffin et al., 2021)
implementation for DQN. We included two common algorithm selection methods, i.e., EHM
and PWC as baselines. We used XGBoost (Chen & Guestrin, 2016) as the runtime regressor
for EHM and the verifier ranker for PWC.

8

https://gitlab.com/sosy-lab/research/data/word-level-hwmc-benchmarks/

Verifier #Solved PAR-2 (sec) VBS-SBS Closed

EHM-BoKW 211.6 147 632.2 54.82%
EHM-BWA 212.4 146 383.0 57.50%
PWC-BoKW 215.0 140 617.7 66.56%
PWC-BWA 214.0 142 287.7 64.41%
DQN-BoKW 217.4 137 577.0 71.10%

SBS (ABC-PDR) 192.2 181 984.4 -

VBS 227.0 119 526.3 -

Table 2: Testing results (average from 5-fold cross-validation) of various Btor2-Select
models. The closed gap between VBS and SBS was measured in PAR-2 performance.

4.4 Training and Testing

We evaluated all algorithm selection methods through a training-testing scheme, i.e., the
underlying ML models were trained on solving experiences over a training benchmark set,
and the trained algorithm selectors were evaluated over a separate testing benchmark set.
To ensure robust evaluation, we used 5-fold cross-validation. In this process, the benchmark
set was split into five subsets; each subset was used once as the testing set while the others
formed the training set. The results from all five iterations were averaged to assess overall
performance. This cross-validation evaluation scheme is widely used in algorithm selection
literatures (O’Mahony et al., 2008; Scott et al., 2023; Xu et al., 2012).

5. Experiment Results and Analysis

The test results from 5-fold cross-validation are shown in Table 2. The number of test
instances was either 288 or 289. One key observation is that all algorithm-selection mod-
els effectively improved performance compared to individual tools. The best among non-
scheduling methods was the PWC model with BoKW embedding. It closed 66.6% of the
VBS-SBS gap. Notably, the DQN model with BoKW embedding, with its power of adaptive
scheduling, achieved the best performance among algorithm selectors, closing 71.1% of the
VBS-SBS gap. It solved 13.1% more instances and reduced PAR-2 by 24.4% compared to
the SBS, ABC-PDR.

Measuring Contributions of Component Verifiers Algorithm selection showed strong
results on Btor2 problems. Based on these results, we were also interested to see how each
component verifier contributed to the collective performance, and especially, how benefi-
cial was to include the software tools in the portfolio. Therefore, following the approach
of Fréchette et al. (2016), we measured the Shapely contribution ϕvn of each component
verifier vi ∈ V to the PWC-BoKW portfolio solver, as shown in equation 1. In our case, p
maps C, a subset of V , to the number of instances solved by the algorithm selector built
from C.

The results are shown in Figure 3. Leveraging the additivity property of the Shapley
value, we evaluated the collective contribution of all software verifiers by summing the
Shapley values of the individual ones. Overall, the software components contributed 27.2%
to the performance of the PWC-BoKW solver.

9

Figure 3: Each component verifier’s Shapley-value contribution to PWC-BoKW.

6. HWMCC’24 Submission

We submitted the PWC-BoKW version of Btor2-Select to the HWMCC’24 competition.
See the codes and more detailed description of this submission at the repos for the submitted
compositional solver and algorithm selector.

7. Future Work

Some to-dos and future directions are outlined below:

• We are implementing the graph-kernel representation (Richter et al., 2020) for Btor2.

• We are investigating the explainability of our algorithm selector. We have done some
explorations using the SHAP framework (Lundberg & Lee, 2017).

• More dynamic runtime information can be included in our state representation to help
the adaptive selection.

References

A. Biere, N. Froleyks, & M. Preiner. (2020). 11th Hardware Model Checking Competition
(HWMCC 2020) [Accessed: 2024-09-13].

Beyer, D. (2016). Reliable and reproducible competition results with BenchExec and wit-
nesses (report on SV-COMP 2016). In M. Chechik & J. Raskin (Eds.), Tools and
algorithms for the construction and analysis of systems - 22nd international con-
ference, TACAS 2016, held as part of the european joint conferences on theory and
practice of software, ETAPS 2016, eindhoven, the netherlands, april 2-8, 2016, pro-
ceedings (pp. 887–904, Vol. 9636). Springer. https://doi.org/10.1007/978-3-662-
49674-9\ 55

Beyer, D., Chien, P.-C., & Lee, N.-Z. (2023). Bridging hardware and software analysis with
Btor2C: A word-level-circuit-to-c translator. TACAS 2023, 152–172.

10

https://hwmcc.github.io/2024/
https://gitlab.com/sosy-lab/software/btor2-selectmc
https://github.com/JohnLyu2/btor2select_pw
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-662-49674-9_55

Biere, A., Cimatti, A., Clarke, E., & Zhu, Y. (1999). Symbolic model checking without bdds.
Tools and Algorithms for the Construction and Analysis of Systems: 5th Interna-
tional Conference, TACAS’99 Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS’99 Amsterdam, The Netherlands, March
22–28, 1999 Proceedings 5, 193–207.

Bradley, A. R. (2011). SAT-based model checking without unrolling. International Work-
shop on Verification, Model Checking, and Abstract Interpretation, 70–87.

Brayton, R., & Mishchenko, A. (2010). Abc: An academic industrial-strength verification
tool. CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings 22, 24–40.

Cenamor, I., de la Rosa, T., Fernández, F., et al. (2014). Ibacop and ibacop2 planner. IPC
2014 planner abstracts, 35–38.

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. ACM SIGKDD
2016, 785–794.

Clarke, E., Kroening, D., & Lerda, F. (2004). A tool for checking ANSI-C programs. TACAS
2004, Barcelona, Spain, March 29-April 2, 2004. Proceedings 10, 168–176.

Fréchette, A., Kotthoff, L., Michalak, T., Rahwan, T., Hoos, H., & Leyton-Brown, K. (2016).
Using the shapley value to analyze algorithm portfolios. AAAI 2016, 30.

Gadelha, M. R., Monteiro, F. R., Morse, J., Cordeiro, L. C., Fischer, B., & Nicole, D. A.
(2018). Esbmc 5.0: An industrial-strength c model checker. ACE 2024, 888–891.

Goel, A., & Sakallah, K. (2020). Avr: Abstractly verifying reachability. TACAS 2020,
Dublin, Ireland, April 25–30, 2020, Proceedings, Part I 26, 413–422.

Le Berre, D., Roussel, O., & Simon, L. (2024a). SAT competition 2007 [Accessed: 2024-10-
27]. https://satcompetition.github.io/

Le Berre, D., Roussel, O., & Simon, L. (2024b). SAT competition 2009 [Accessed: 2024-10-
27]. https://satcompetition.github.io/

Leeson, W., & Dwyer, M. B. (2024). Algorithm selection for software verification using
graph neural networks. ACM Transactions on Software Engineering and Methodol-
ogy, 33 (3), 1–36.

Leyton-Brown, K., Nudelman, E., & Shoham, Y. (2002). Learning the empirical hardness of
optimization problems: The case of combinatorial auctions. Principles and Practice
of Constraint Programming-CP 2002: 8th International Conference, CP 2002 Ithaca,
NY, USA, September 9–13, 2002 Proceedings 8, 556–572.

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R.
Garnett (Eds.), Advances in neural information processing systems 30 (pp. 4765–
4774). Curran Associates, Inc. http : / / papers . nips . cc / paper / 7062 - a - unified -
approach-to-interpreting-model-predictions.pdf

McMillan, K. L. (2003). Interpolation and SAT-based model checking. Computer Aided
Verification: 15th International Conference, CAV 2003, Boulder, CO, USA, July
8-12, 2003. Proceedings 15, 1–13.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control
through deep reinforcement learning. nature, 518 (7540), 529–533.

Niemetz, A., Preiner, M., Wolf, C., & Biere, A. (2018). Btor2, btormc and boolector 3.0.
CAV 2018, 587–595.

11

https://satcompetition.github.io/
https://satcompetition.github.io/
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf

O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., & O’Sullivan, B. (2008). Using case-
based reasoning in an algorithm portfolio for constraint solving. Irish conference on
artificial intelligence and cognitive science, 210–216.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., & Dormann, N. (2021). Stable-
baselines3: Reliable reinforcement learning implementations. J. Mach. Learn. Res.,
22, 268:1–268:8. https://jmlr.org/papers/v22/20-1364.html

Rice, J. R. (1976). The algorithm selection problem. In Advances in computers (pp. 65–118,
Vol. 15). Elsevier.

Richter, C., Hüllermeier, E., Jakobs, M.-C., & Wehrheim, H. (2020). Algorithm selection for
software validation based on graph kernels. Automated Software Engineering, 27 (1),
153–186.

Richter, C., & Wehrheim, H. (2020). Attend and represent: A novel view on algorithm
selection for software verification. Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, 1016–1028.

Scott, J., Niemetz, A., Preiner, M., Nejati, S., & Ganesh, V. (2023). Algorithm selection
for SMT: MachSMT: Machine learning driven algorithm selection for SMT solvers.
International Journal on Software Tools for Technology Transfer, 25 (2), 219–239.

Shapley, L. S. (1953). A value for n-person games. Contributions to the Theory of Games,
2.

Sheeran, M., Singh, S., & St̊almarck, G. (2000). Checking safety properties using induction
and a SAT-solver. International conference on formal methods in computer-aided
design, 127–144.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M.,
Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T. P., Simonyan, K., & Hassabis, D.
(2017). Mastering chess and shogi by self-play with a general reinforcement learning
algorithm. CoRR, abs/1712.01815. http://arxiv.org/abs/1712.01815

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
Towers, M., Kwiatkowski, A., Terry, J. K., Balis, J. U., Cola, G. D., Deleu, T., Goulão, M.,

Kallinteris, A., Krimmel, M., KG, A., Perez-Vicente, R., Pierré, A., Schulhoff, S.,
Tai, J. J., Tan, H., & Younis, O. G. (2024). Gymnasium: A standard interface for
reinforcement learning environments. CoRR, abs/2407.17032. https://doi.org/10.
48550/ARXIV.2407.17032

Tulsian, V., Kanade, A., Kumar, R., Lal, A., & Nori, A. V. (2014). Mux: Algorithm selection
for software model checkers. Proceedings of the 11th Working Conference on Mining
Software Repositories, 132–141.

Xu, L., Hutter, F., Hoos, H., & Leyton-Brown, K. (2012). Evaluating component solver
contributions to portfolio-based algorithm selectors. SAT 2012, 228–241.

Xu, L., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2008). SATzilla: Portfolio-based
algorithm selection for SAT. J. Artif. Intell. Res., 32, 565–606. https://doi.org/10.
1613/jair.2490

12

https://jmlr.org/papers/v22/20-1364.html
http://arxiv.org/abs/1712.01815
https://doi.org/10.48550/ARXIV.2407.17032
https://doi.org/10.48550/ARXIV.2407.17032
https://doi.org/10.1613/jair.2490
https://doi.org/10.1613/jair.2490

	Introduction
	Background
	Btor2 and Btor2C
	Algorithm Selection
	Algorithm Scheduling
	Deep Reinforcement Learning
	Measurements of Contribution to a Portfolio

	Adaptive Algorithm Selection and Scheduling for Btor2
	Instance Representation of Btor2
	Modelling Algorithm Selection and Sheduling
	Deep Reinforcement Learning
	Architecture

	Experiment Design
	Benchmark Dataset
	Component Verifiers and their Performance
	Adaptive Btor2-Select and Baselines
	Training and Testing

	Experiment Results and Analysis
	HWMCC'24 Submission
	Future Work

