
INSTITUT FÜR INFORMATIK
Ludwig-Maximilians-Universität München

TRANSFORMATION OF
REACHABILITY YAML WITNESSES

TO NO-OVERFLOW YAML
WITNESSES

Tim Kriegelsteiner

Bachelor Thesis

Supervisor Prof. Dr. Dirk Beyer
Mentor Marek Jankola

Submission Date August 21, 2024

b

Statement of Originality

English:

Declaration of Authorship

I hereby confirm that I have written the accompanying thesis by myself, without
contributions from any sources other than those cited in the text and acknowledg-
ments.

Deutsch:

Eidesstattliche Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst habe
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, August 21, 2024 Tim Kriegelsteiner

Acknowledgements

Code fragments written in the repository of the witness transformation algorithm,
that are generated by or with the help of ChatGPT1 are marked in the respective
code file or the README file of the repository.2 Furthermore, ChatGPT was used to
generate LateX commands and tables, that were otherwise tiresome to produce
manually. It was also utilized to enhance the style of single sentences.

Thanks are due to the Software Systems Lab of the LMU Munich for providing
a thesis subject. Furthermore, I am indebted to Marek Jankola for his mentoring.
Greetings and gratitude are also extended to the elements of my social environment,
particularly to my neighbor’s dogs, whose constant barking could only be inter-
preted as their way of cheering me on during the writing of this thesis. Lastly, I am
much obliged to the deities of our modern pantheon: Superman, Snoopy, Spongebob
and their like. May they guide you, dear reader, through this thesis.

1https://chatgpt.com.
2https://gitlab.com/sosy-lab/software/specification-transformation.

https://chatgpt.com
https://gitlab.com/sosy-lab/software/specification-transformation

ii

Abstract

One important aspect of improving formal verification software is to improve
its decisiveness, that means, its yielding of more results that are either true
or false. With the possibility of using the reachability analysis to check no-
overflow properties, this and other performance can be improved. Though this
can be achieved by transforming the program to be verified by instrumenting
it with assertions, the resulting witness contains verification information on
this transformed program and not the original one. As the intent of verification
is to have information on the latter, there is a need for adaption of the result-
ing witnesses to maintain its information and validation value regarding the
original program. This was achieved by writing an algorithm that converts
the witness to a version that is the same type as a witness produced by the
usual no-overflow property. The validations, which are using the transformed
witnesses, demonstrate the effectiveness of the property conversion and the
potential of a property transformation approach.

CONTENTS iii

Contents

Contents iii

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Motivation . 1
1.2 Overall Approach . 2
1.3 Example . 3
1.4 Contributions . 5
1.5 Related Work . 5

2 Background 7
2.1 CPAchecker . 7
2.2 Formal verification and Model checking 7
2.3 Properties . 8
2.4 Program Transformation . 10
2.5 Witnesses . 10

3 Witness Transformation Algorithm 17
3.1 Preparation . 17
3.2 Line Matching . 19

Summary . 20
Details . 21

3.3 Realignment . 23
3.4 Replacement . 24

Replacement Algorithm For Correctness Witnesses 25
Replacement Algorithm For Violation Witnesses 26

4 Application 28
4.1 Research Questions . 28
4.2 Experimental Setup . 28

Program Transformation . 30
Verification . 31
Witness Transformation . 36

iv CONTENTS

Validation . 36
4.3 Results . 38

Validation of reachability correctness witnesses of transformed pro-
grams . 38

Validation of transformed no-overflow correctness witnesses 38
4.4 Evaluation . 38

Research Question 1 . 39
Research Question 2 . 39

5 Conclusion 40
5.1 Witness Transformation Algorithm . 40
5.2 Verification And Validation Results . 40

Bibliography 42

LIST OF FIGURES v

List of Figures

1.1 Overall workflow . 2
1.2 Transformed program . 3
1.3 Witness . 4
1.4 Original program . 5
1.5 Witness before and after transformation 6

2.1 Simple workflow . 7
2.2 Property example: no-overflow.prp . 8
2.3 Specification example: overflow.spc . 9
2.4 Property example: unreach-call.prp . 9
2.5 Reachability assertion . 9
2.6 Old and new assertion format . 11
2.7 Full witness example . 12
2.8 Witness structure snippet . 13
2.9 Program and corresponding correctness witness 15
2.10 Program and corresponding violation witness 16

3.1 Connections between line matching data 18
3.2 Snippets from Ackerman-1.c and its transformed version 18
3.3 Line data object . 19
3.4 Index data of the original program . 19
3.5 Transformation types example 1 . 20
3.6 Transformation types example 2 . 21
3.7 Line match data . 22
3.8 Line match data object . 22
3.9 Line matching pseudo code . 23
3.10 Realignment . 24
3.11 Witness template snippet before and after transformation 25
3.12 Invalid witness column . 26
3.13 Multi-operation handling in comparison 27
3.14 Assertion and operation listing . 27

4.1 Steps of the experiment . 29
4.2 Used benchmark files . 29
4.3 Program transformation step . 30
4.4 Task definition file example . 31
4.5 Transform program command . 31

vi LIST OF TABLES

4.6 Verification step . 31
4.7 XML file for benchmark verification . 32
4.8 Cloud benchmark verification command 33
4.9 CPU time comparison of new and old program transformation 34
4.10 Memory comparison of new and old program transformation 34
4.11 CPU time comparison filtered by the expected result: "true" 35
4.12 CPU time comparison filtered by the expected result: "false" 35
4.13 Witness transformation step . 36
4.14 Witness transformation command . 36
4.15 Validiation step . 37
4.16 Single file validation command . 37
4.17 Comparison step . 39

List of Tables

3.1 Final index data . 24

4.1 Setup for verification . 32
4.2 Performance of old and new program transformations 33
4.3 Verification results of the (new) program transformations 35
4.4 Results of the transformed correctness witness verification by relevance 35
4.5 Results of the reachability correctness witness verification by relevance . 38
4.6 Results of the reachability correctness witness validation 38
4.7 Results of the reachability correctness witness validation by relevance . 38
4.8 Results of the transformed correctness witness validation 38
4.9 Results of the transformed correctness witness validation by relevance . 38

1

1 Introduction

1.1 Motivation

Software verification is an integral method of error detection and avoidance in
computer software engineering. Software verification, here synonymously used
with "formal verification", is the practice of proving the correctness of a computer
program with the use of mathematical logic [10]. Automated formal verification,
which means verification done by a verification program (also called “verifier”), is
a feasible option to prove the fail-safety of code, especially as the codebase grows
larger. Improving and developing such verifiers is a research field to which this
thesis aims to contribute.

A verification can mainly result in one of the three evaluations: true, false or un-
known [2] [6]. If the result is the latter, a decision was not possible due to the
complexity of the program or the condition, their inherent undecidability, or the
insufficient resources of the algorithm to compute the verification task. Verifying
consists of checking a program for specified conditions called "properties". A no-
overflow property for example does not apply to a program, if an overflow error is
detected. A verifier uses different tools and algorithms depending on which prop-
erty is analysed. Nevertheless, some properties are similar in kind and therefore
convertible. This also means that if one analyzer performs better than another, a
conversion can lead to better performances checking a property. Zheng 2024 showed
the possibility of a reachability analysis of overflow errors by transforming the pro-
grams before they are verified [13]. It was found that this transformation approach
has the potential to compete with the standard approach [13]. Therefore, it should
be further explored and developed.

Besides generating a verification result, a verifier also produces a witness. A witness
is a protocol holding information on the verification, which can be used to validate
the result manually or automatically [7]. While an algorithm was contributed by [13]
to instrument programs for a reachability analysis of a no-overflow property, the
witness produced by verifying the instrumented program is referring to the very
program. This is of course the intentional behavior of the verifier, but for information
on the original program, this witness will not be sufficient. Therefore, the thesis
examines the possibility of transforming the witness produced by the verification of
an altered program to a version equal to a no-overflow analysis witness.

2 CHAPTER 1. INTRODUCTION

1.2 Overall Approach

For the task of witness transformation, CPAchecker1 is used as verification and
validation tool [8]. Furthermore, the programs verified are written in C. From gener-
ating a transformed program to obtaining the results of the validation of the new
witness, the process can be summarized as follows:

1. The program is transformed.

2. The transformed program is verified.

3. The resulting witness is transformed into an altered witness fitting the original
program.

4. The transformed witness can be used for validation and information.

To get the no-overflow result and information by using reach-safety analysis, the
transformed version of the program that should be verified is needed. If it is not there,
it needs to be generated. This program has to be verified resulting in a witness. The
witness then needs to be transformed with the original program, the transformed
program and the witness used as input. Providing the new witness and the original
program to validate the proof and getting the results, completes the process (see
Figure 1.1).

Transformed
C Program

Verification Program
(CPAchecker)

Property

C Program

Transformation
Algorithm

Result

Witness

Validation Program
(CPAchecker)

Transformation
Algorithm

Transformed
Witness

Result

No-overflow Level

Reachability Level

User

Figure 1.1: Overall workflow

1https://gitlab.com/sosy-lab/software/cpachecker.

https://gitlab.com/sosy-lab/software/cpachecker

1.3. EXAMPLE 3

1.3 Example

The program transformation alters the code with additions (line 1-9, 23, 28-34)
and deletions (line 23/24) (see Figure 1.2).2

1 extern void __assert_fail(const char *, const char *, unsigned int,
const char *) __attribute__((__nothrow__, __leaf__)) __attribute__
((__noreturn__));

2 extern void abort(void);
3 void reach_error() { __assert_fail("0", "bin-suffix-5.c", 3,

"reach_error"); }
4 void __VERIFIER_assert(int cond) {
5 if (!(cond)) {
6 ERROR: {reach_error();abort();}
7 }
8 return;
9 }

10 /*
11 * Date: 2012-08-10
12 * Author: leike@informatik.uni-freiburg.de
13 *
14 * This program has the following 2-nested ranking function:
15 * f_0(x, y) = y + 1
16 * f_1(x, y) = x
17 */
18
19 typedef enum { false, true } bool;
20
21 extern int __VERIFIER_nondet_int(void);
22
23 int main() {

{
24 int x, y;
25 x = __VERIFIER_nondet_int();
26 y = __VERIFIER_nondet_int();
27 while (x >= 0) {
28 if (!((y >= 0 && x <= (2147483647 - y)) ||

(y <= 0 && x >= -2147483648 - y))) {
29 ERROR1: {reach_error();abort();}
30 }
31 x = x + y;
32 if (!((1 >= 0 && y >= -2147483648 + 1) ||

(1 <= 0 && y <= 2147483647 + 1))) {
33 ERROR2: {reach_error();abort();}
34 }
35 y = y - 1;
36 }
37 return 0;
38 }
39

Figure 1.2: Transformed program

2https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/main/c/
termination-crafted/2Nested-2.c.

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/main/c/termination-crafted/2Nested-2.c
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/main/c/termination-crafted/2Nested-2.c

4 CHAPTER 1. INTRODUCTION

1 - entry_type: "violation_sequence"
2 metadata:
3 format_version: "2.0"
4 uuid: "da12266b-0c9f-4c5f-a264-1bdf812b554b"
5 creation_time: "2024-07-09T21:04:21+02:00"
6 producer:
7 name: "CPAchecker"
8 version: "2.3.1-svn-77

fd7b5113039273790bb136467e329a9c19d72d"
9 configuration: "svcomp24"

10 task:
11 input_files:
12 - "./transformed_2Nested-2.c"
13 input_file_hashes:
14 "./transformed_2Nested-2.c": "544

efbc0324ad7239b54d3089e6cbd7e59072532b93e64f2f2d08fb9407cc9db
"

15 specification: "G ! call(reach_error())"
16 data_model: "LP64"
17 language: "C"
18 content:
19 - segment:
20 - waypoint:
21 type: "assumption"
22 action: "follow"
23 constraint:
24 value: "(x == 2147483647)"
25 format: "c_expression"
26 location:
27 file_name: "./transformed_2Nested-2.c"
28 file_hash: "file_hash"
29 line: 27
30 column: 10
31 function: "main"
32 - segment:
33 - waypoint:
34 type: "target"
35 action: "follow"
36 location:
37 file_name: "./transformed_2Nested-2.c"
38 file_hash: "file_hash"
39 line: 29
40 column: 16
41 function: "main"

Figure 1.3: Witness

The transformed program is verified resulting in a witness, here with an error
detection, referring to the transformed program (see Figure 1.3). The locations one
(line 27, column 10) and two (line 29 and column 16) are pointing to
the code positions where the error occurred.

1.4. CONTRIBUTIONS 5

The corresponding lines of the original and transformed program are matched to
get the data, including the new locations (in the program Figure 1.2: line 19,
column 5 & line 20, column 15, in the witness Figure 1.3: line 28, 29
& line 37, 38) to transform the witness (see Figure 1.4 and Figure 1.5).

1 /*
2 * Date: 2012-08-10
3 * Author: leike@informatik.uni-freiburg.de
4 *
5 * This program has the following 2-nested ranking function:
6 * f_0(x, y) = y + 1
7 * f_1(x, y) = x
8 */
9

10 typedef enum {false, true} bool;
11
12 extern int __VERIFIER_nondet_int(void);
13
14 int main()
15 {
16 int x, y;
17 x = __VERIFIER_nondet_int();
18 y = __VERIFIER_nondet_int();
19 while (x >= 0) {
20 x = x + y;
21 y = y - 1;
22 }
23 return 0;
24 }

Figure 1.4: Original program

1.4 Contributions

The thesis contibutes the follwing:
• In the context of no-overflow to reachability transformation, an algorithm to

transform witnesses is provided.
• The success of the programmed witness transformation opens up the pos-

sibility of testing no-overflow errors by reach-safety analysis with having
information concerning the original program.

• The successful validation of the transformed witnesses also shows that the
program transformation is correct.

1.5 Related Work

Literature on the transformation of witnesses is scarce. The only publication found
was the recently finished bachelor’s thesis of Anna Ovezova which is a case study in
transforming witnesses to fit the original program, if the program was altered and
therefore the produced witness was referring to the altered version of the program
[11]. While it is the same task as the one in this thesis, it is not focused on a specific

6 CHAPTER 1. INTRODUCTION

18 content:
19 - segment:
20 - waypoint:
21 type: "assumption"
22 action: "follow"
23 constraint:
24 value: "(x ==

2147483647)"
25 format: "

c_expression"
26 location:
27 file_name:

"./transformed_
2Nested-2.c"

28 file_hash: "
file_hash"

29 line: 27
30 column: 3
31 function: "main"
32 - segment:
33 - waypoint:
34 type: "target"
35 action: "follow"
36 location:
37 file_name:

"./transformed_
2Nested-2.c"

38 file_hash: "
file_hash"

39 line: 29
40 column: 16
41 function: "main"

18 content:
19 - segment:
20 - waypoint:
21 type: "assumption"
22 action: "follow"
23 constraint:
24 value: "(x ==

2147483647)"
25 format: "

c_expression"
26 location:
27 file_name:

"./2Nested-2.c"

28 line: 19
29 column: 5
30 function: "main"
31 - segment:
32 - waypoint:
33 type: "target"
34 action: "follow"
35 location:
36 file_name:

"./2Nested-2.c"

37 line: 20
38 column: 15
39 function: "main"

Figure 1.5: Witness before and after transformation

software, but follows a systematic approach. The main reason the paper was not
considered was that it was published after the algorithm presented in this thesis had
already been completed. Another reason is that the implementation of the approach
presented there would have been more time-consuming than the solution given
here, which was tailored to the specific problem being addressed.

7

2 Background

C Program

Verification Program
(CPAchecker)

Property

Result

Witness

Validation Program
(CPAchecker) Result

Figure 2.1: Simple workflow

2.1 CPAchecker

Basic insights about verification were formulated in Section 1.1. To deepen the
understanding of it, the following sections are provided. To start with, a presentation
of CPAchecker, the tool used for verification and validation experiments in this
thesis, is given. It should serve as an example for the sections that come after.
CPAchecker is a software verification program developed by the SoSy-Lab at the
LMU Munich.1 It is based on configurable program analysis (CPA) and control-flow
automata (CFA) data structure [8]. The latter is generated from parsing the verified
program into an abstract syntax tree [8]. Though it can verify programs written in
Java, its focus lies on C programs [3]. The workflow of CPAchecker without the
transformation steps gives a better overview regarding the basic verification process
and is therefore shown in Figure 2.1.

2.2 Formal verification and Model checking

Formal verification can be done by model checking, which is also used by verifiers.
Modelling and checking can be described based on Emerson et al. 2009 [10] as
follows:

1. Model:
A model is an abstract representation of the system (or computer program) to
be verified.

1https://www.sosy-lab.org/.

https://www.sosy-lab.org/.

8 CHAPTER 2. BACKGROUND

2. Specification:
A specification is the representation of the intended behavior of the system.
It is expressed through temporal logic for example Computation Tree Logic
(CTL) or Linear Temporal Logic (LTL) (see also Piterman and Pnueli 2018 [12])

3. Checking:
When checking a system, every state of it is explored to check whether the spec-
ification holds: Given a model M, a state s of M, and a formula (specification)
f, the checking of one state can be written as

M,s |= f

In summary, when model checking, a verification program checks if a program does
what it should do following its specification.

2.3 Properties

"Properties" is another word for "specifications". CPAchecker has implemented
these under the term "properties" as well as "specifications".2 Properties are formu-
lated in a type of LTL, while specifications use a type of CTL, seen in Figure 2.2 and
Figure 2.3 and taken from the CPAchecker repository.3

1 CHECK(init(main()), LTL(G ! overflow))

Figure 2.2: Property example: no-overflow.prp

The two for this thesis important properties are no-overflow and reachability. They
are defined as follows.
No-overflow:

"It can never happen that the resulting type of an operation is a signed
integer type but the resulting value is not in the range of values that are
representable by that type." [4]

Reachability:
This property holds, if a specified function is not called or rather a
condition will never be reached that leads directly to this function [2] [4].

To understand, how no-overflow checking can be substituted by reachability check-
ing, it is worth noting the following: Verifiers use different analyzers to check
different properties: A reachability property is analyzed by a reachability analyzer,
a no-overflow property is analyzed by a no-overflow analyzer and so on. While
no-overflow analyzers check cues the program code already inherits, reachabil-
ity analysis checks, if a specified reachability function was called (see Figure 2.4).
That means, a reachability function and its calls are added to the code. In practice,
reachability assertions are placed in the code that call the reachability function as
seen in Figure 2.5. The __VERIFIER_assert() function (line 4 & 39) calls

2https://gitlab.com/sosy-lab/software/cpachecker/-/tree/trunk/config.
3Explanations of the languages can be found at Beyer 2015 [2] and https://gitlab.com/sos

y-lab/software/cpachecker/-/blob/trunk/doc/SpecificationAutomata.md.

https://gitlab.com/sosy-lab/software/cpachecker/-/tree/trunk/config
https://gitlab.com/sosy-lab/software/cpachecker/-/blob/trunk/doc/SpecificationAutomata.md
https://gitlab.com/sosy-lab/software/cpachecker/-/blob/trunk/doc/SpecificationAutomata.md

2.3. PROPERTIES 9

1 // This file is part of CPAchecker,
2 // a tool for configurable software verification:
3 // https://cpachecker.sosy-lab.org
4 //
5 // SPDX-FileCopyrightText: 2007-2020 Dirk Beyer

<https://www.sosy-lab.org>
6 //
7 // SPDX-License-Identifier: Apache-2.0
8
9 // This automaton contains the specification of the

10 // category Overflows of the
11 // Competition on Software Verification.
12 CONTROL AUTOMATON Overflows
13
14 INITIAL STATE Init;
15
16 STATE USEFIRST Init :
17 CHECK("overflow") -> ERROR("no-overflow: integer overflow in

$location");
18
19 END AUTOMATON

Figure 2.3: Specification example: overflow.spc

1 CHECK(init(main()), LTL(G ! call(reach_error())))

Figure 2.4: Property example: unreach-call.prp

1 extern void __assert_fail(const char *, const char *, unsigned int,
const char *) __attribute__ ((__nothrow__ , __leaf__))
__attribute__ ((__noreturn__));

2 extern void abort(void);
3 void reach_error() { __assert_fail("0", "bin-suffix-5.c", 3, "

reach_error"); }
4 void __VERIFIER_assert(int cond) {
5 if (!(cond)) {
6 ERROR: {reach_error();abort();}
7 }
8 return;
9 }

...
39 __VERIFIER_assert((1 >= 0 && x >= -2147483648 + 1)

|| (1 <= 0 && x <= 2147483647 + 1));
40 x--;

Figure 2.5: Reachability assertion

an error function (line 3 & 6), if the assertion condition (line 39)
does not hold. As the condition leading to the function call is not specified by
the reachabiltiy property, it is possible to let these conditions represent no-overflow
conditions and thereby enable reachbility analysis to check overflow errors.

10 CHAPTER 2. BACKGROUND

2.4 Program Transformation

The first nine lines shown in Figure 2.5 plus the assertions before every signed
integer operation represent the core part of the transformation of C programs pre-
sented in the work by Xiyue Zheng [13]. Her thesis revolves around the task of
transforming C programs to make them suitable for overflow checking by reachabil-
ity analysis. This was done by extracting CFA data generated by CPAchecker and
analyzing it [13]. Apart from that, some original code had to be commented out that
would otherwise have affected the functionality or compilation of the transformed
code [13]. The results regarding the performance did not lead to a preference of one
analysis other the other: While reachability analysis performed better under some
circumstances, no-overflow analysis did under others [13]. This is a positive result
as it shows that the transformational approach can compete with the original one.
Thus, improvement and further development is fruitful.
The witness transformation outlined here is based upon the witnesses that were
produced along the transformed programs generated by the algorithm presented
in Zheng 2014 [13]. This algorithm was not written with the task in mind to trans-
form the witnesses. Therefore, it was necessary to alter the algorithm as shown in
Figure 2.6.
The former assertion is a function void __VERIFIER_assert(int cond) (line
3 & 22) defined in the beginning and called later. This caused a problem with trans-
forming violation witnesses, because the line reference for every error was line
5, which is a function call from within the assertion function: ERROR: {reach_-
error();abort();} (line 53). It is not possible from this line to deduce, at
which state of the code the error actually happens. Therefore, instead of calling the
assertion function, the function body (line 4) had to be put at every assertion
check separately (line 22) along with creating new "ERROR" labels by numerating
them (line 23).
The performance of this new transformation is discussed in Section 4.2.

2.5 Witnesses

The procedure of analyzing transformed programs has some side effects regarding
the additional output of the verification. The witnesses, which contain information
about the program and the verification process, are witnesses belonging to the
transformed programs. Because of fixed sets of test files and the simple practical
reason, that one wants to have information on the program, which will be used
in ones project, and not some transformed version of it, the witnesses have to be
transformed to fit the original programs. To understand, which parts have to be
changed, the following selective description of witnesses is given (see Figure 2.8).
For a full description, see Ayaziová et al. 2024 [1]. For a full example, see Figure 2.7.4

4Witness in Figure 2.7 is the verification result of this program: https://gitlab.com/sosy-l
ab/benchmarking/sv-benchmarks/-/blob/main/c/termination-crafted-lit/Alias
DarteFeautrierGonnord-SAS2010-easy1.c.

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/main/c/termination-crafted-lit/AliasDarteFeautrierGonnord-SAS2010-easy1.c
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/main/c/termination-crafted-lit/AliasDarteFeautrierGonnord-SAS2010-easy1.c
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/main/c/termination-crafted-lit/AliasDarteFeautrierGonnord-SAS2010-easy1.c

2.5. WITNESSES 11

Old assertion:

1 extern void abort(void);
2 void reach_error() { __assert_fail("0", "bin-suffix-5.c", 3, "

reach_error"); }
3 void __VERIFIER_assert(int cond) {
4 if (!(cond)) {
5 ERROR: {reach_error();abort();}
6 }
7 return;
8 }
9 extern void __assert_fail(const char *, const char *, unsigned int,

const char *) __attribute__ ((__nothrow__ , __leaf__))
__attribute__ ((__noreturn__));

...
21 if (m == 0) {
22 __VERIFIER_assert((1 >= 0 && n <= (2147483647 - 1))

|| (1 <= 0 && n >= -2147483648 - 1));
23 return n + 1;
24 }

New assertion:

21 if (m == 0) {
22 if (!((1 >= 0 && n <= (2147483647 - 1))

|| (1 <= 0 && n >= -2147483648 - 1))){
23 ERROR1: {reach_error();abort();}
24 }
25 return n + 1;
26 }

Figure 2.6: Old and new assertion format

Witnesses are protocols of automated verification processes and are produced with
data of the verification process. They follow a certain format, which was agreed upon
in the formal verification community, and contain information on the verification,
including locations of invariants or error traces in the code [1].

"The validation of verification results, in particular, verification witnesses,
becomes more and more important for various reasons: verification
witnesses justify and help to understand and interpret a verification
result, they serve as exchange object for intermediate results, and they
allow to make use of imprecise verification techniques (e.g., via machine
learning)." [3]

The usability of a witness is twofold: On one hand, it is designed to help understand
the verification process on user side [6]. On the other hand, it can be used for valida-
tion of the verification process, that means as input for an automatized validator,

12 CHAPTER 2. BACKGROUND

1 - entry_type: "invariant_set"
2 metadata:
3 format_version: "2.0"
4 uuid: "d4bf7e44-5a8e-481f-ab5b-d7acf27b9216"
5 creation_time: "2024-07-09T15:11:46+02:00"
6 producer:
7 name: "CPAchecker"
8 version: "2.3.1-svn-77

fd7b5113039273790bb136467e329a9c19d72d"
9 configuration: "svcomp24"

10 task:
11 input_files:
12 - "./transformed_AliasDarteFeautrierGonnord-SAS2010-easy1

.c"
13 input_file_hashes:
14 "./transformed_AliasDarteFeautrierGonnord-SAS2010-easy1

.c": "
f9b56e72ba5eb010016cf0e8b7b4aef4a2c4952c0cf4cc40345b
6187bc21dea8"

15 specification: "G ! overflow"
16 data_model: "LP64"
17 language: "C"
18 content:
19 - invariant:
20 type: "loop_invariant"
21 location:
22 file_name: "./transformed_AliasDarteFeautrierGonnord-

SAS2010-easy1.c"
23 line: 13
24 column: 1
25 function: "main"
26 value: "y == (100) && (x == (12) || x == (34) || [...])"
27 format: "c_expression"

Figure 2.7: Full witness example

that tries to reconstruct the proving of the verification program with the information
the witness contains [3]. Witnesses are categorized into violation witnesses and
correctness witnesses [5]. This separation is rooted in the different requirements
and efforts needed to prove that something is correct or incorrect. Subsequently,
the proving tools are implemented differently regarding the result, which leads to
different information needed in the witness [5].
The current version (2.0) of witnesses is in YAML5 format and the only version dealt
with in this thesis [1]. The structure of the witness in YAML format can be described
as an array of objects.6 Although this is the case, I also will refer to these objects
or their names as "keys". The YAML witness has three main keys: entry_type,

5Also called YML, with the file endings .yml or .yaml.
6See https://sosy-lab.gitlab.io/benchmarking/sv-witnesses/yaml/violatio

n-witnesses.html.

https://sosy-lab.gitlab.io/benchmarking/sv-witnesses/yaml/violation-witnesses.html
https://sosy-lab.gitlab.io/benchmarking/sv-witnesses/yaml/violation-witnesses.html

2.5. WITNESSES 13

witness

entry_type metadata content

element 1

type location

line column

element 2 ...

file_name function

Figure 2.8: Witness structure snippet

metadata and content.7 The value of entry_type determines the witness type.
It is either invariant_set for correctness witnesses, or violation_sequence
for violation witnesses. Metadata contain, as the name says, metadata which is
not relevant regarding the transformation of witnesses. The content section is a
list of elements called invariants (with their types loop and location), when
dealing with correctness witnesses and segments, when dealing with violation
witnesses. Segments consist of one or more waypoints. Every waypoint and
every invariant hold information on a program state that is relevant for showing
correctness or violation. This information is found at location and divided into
four objects: file_name, line, column and function. While function does
not need to be altered and file_name does not impact the automated validation
(see also Ayaziová et al. 2024 [1]), but is substituted in the witness transformation
presented in this thesis, line and column need to be changed. The values of both
are dependent on the witness type. For each type of waypoint or invariant,
there is a definition regarding the location:

7Every description of the witness format given is found in Ayaziová et al. 2024 [1].

14 CHAPTER 2. BACKGROUND

Correctness witness (see Figure 2.9):8,9

loop_invariant:

"[The] location of a loop_invariant must point to the first character of a
keyword at the beginning of a loop (i.e., for, while, or do)." [1]

location_invariant:

"The location of a location_invariant must point to the first character of a
statement". [1]

Violation Witness (see Figure 2.10):10

assumption:

"The location has to point to the first character of a statement." [1]

branching:

"The location points to the first character of a branching keyword like if,
while, switch, or to the character ? in the ternary operator (?:)." [1]

function_enter:

"The location points to the right parenthesis after the function arguments
of a function call." [1]

function_return:

"The location points to the right parenthesis after the function arguments
at the function call." [1]

target:

"[T]he location points at the first character of the statement or full expres-
sion whose evaluation is sequenced directly before the violation occurs,
i.e., there is no other evaluation sequenced before the violation and after
the sequence point associated with the location. This also implies that it
can point to a function call only if it calls a function of the C standard li-
brary that violates the property or if the function call itself is the property
violation." [1]

2.5. WITNESSES 15

12 int main(void) {
13 int A[2048];
14 int i;
15
16 for (i = 0; i < 1024; i++) {
17 A[i] = i;
18 }
19
20 __VERIFIER_assert(A[1023] != 1023);
21 }

18 content:
19 - invariant:
20 type: "loop_invariant"
21 location:
22 file_name: "./array_1-1.c"
23 line: 16
24 column: 3
25 function: "main"
26 value: "i == (455) || i == (558) || ..."
27 format: "c_expression"
28 - invariant:
29 type: "location_invariant"
30 location:
31 file_name: "./array_1-1.c"
32 line: 17
33 column: 5
34 function: "main"
35 value: "i == (83) || i == (236) || ..."
36 format: "c_expression"

Figure 2.9: Program and corresponding correctness witness

The main part of the algorithm presented in this thesis revolves around the replace-
ment of the lines and columns pointing to the code positions of the transformed
program with the numbers pointing to the positions of the original program (see Fig-
ure 2.8).11 Currently, the violation witnesses generated by the transformed program
verification only have the types assumption and target. Therefore, examples of
the other types can not be provided. Nonetheless, a description of the handling of
these cases by the witness transformation is presented in Section 3.4.

8https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/main/c/
loop-acceleration/array_1-1.c.

9The value section was shortened ("...") for readability.
10Excerpt already used in Figure 1.2
11To better subsume the witness types, "element" stands for segment and waypoint regarding

violation witnesses, while for correctness witnesses it represents invariant.

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/main/c/loop-acceleration/array_1-1.c
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/main/c/loop-acceleration/array_1-1.c

16 CHAPTER 2. BACKGROUND

14 int main()
15 {
16 int x, y;
17 x = __VERIFIER_nondet_int();
18 y = __VERIFIER_nondet_int();
19 while (x >= 0) {
20 x = x + y;
21 y = y - 1;
22 }
23 return 0;
24 }

18 content:
19 - segment:
20 - waypoint:
21 type: "assumption"
22 action: "follow"
23 constraint:
24 value: "(x == 2147483647)"
25 format: "c_expression"
26 location:
27 file_name: "./2Nested-2.c"
28 line: 19
29 column: 5
30 function: "main"
31 - segment:
32 - waypoint:
33 type: "target"
34 action: "follow"
35 location:
36 file_name: "./2Nested-2.c"
37 line: 20
38 column: 15
39 function: "main"

Figure 2.10: Program and corresponding violation witness

17

3 Witness Transformation
Algorithm

The algorithm written to transform the witnesses is mainly focused on the replace-
ment of the line and column references and can be split into four steps: Preparation,
Line Matching, Realignment, Replacement (see Figure 3.1): (I) The Preparation step
includes acquiring the program line data and transforming it, to enable its pro-
cessing, including the removing of whitespaces, in order to make the programs
comparable. (II) With the prepared data, it is then possible to match the lines of the
original program with the corresponding lines of the transformed program. The
result is a data object with mappings of columns and lines of the program and
its transformed version. (III) As the first step removes whitespaces and therefore
alters the lines, which leads to indices and other data referring to these alterations,
it is necessary to realign them with the unaltered lines. (IV) In the final step, the
lines and columns found in the witness are replaced with corresponding line and
column numbers of the original C program, by using the acquired data. To illustrate
the transformation process, snippets from the benchmark file Ackermann-1.c1 are
used (see Figure 3.2).2

3.1 Preparation

All required data from the C program and its transformation are stored in a data
object, including different versions of the program lines, the program names, the
object that holds the matching data, and the column indices of the programs (see
Figure 3.3).
Because whitespaces are altered in the transformed programs, not only at the edges
of a line, but also in the middle of it, it was necessary to delete them in order to make
a program and its transformed version comparable. Another problem were the tabs
which were replaced by whitespaces in the transformed program. Therefore, tabs
were replaced by four whitespaces before whitespaces were stripped from the lines.
After that, line indices data is stored for both program versions. Line indices data
is a list of a list of every non-whitespace character with its column numbers from

1https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/main/c/
termination-crafted/Ackermann-1.c.

2The "ASSERTION" label in Figure 3.2 is a placeholder for an equation and used for readability.
The coloring in this figure should only facilitate the comparison and help to understand the structure
of changes in the example.

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/main/c/termination-crafted/Ackermann-1.c
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/main/c/termination-crafted/Ackermann-1.c

18 CHAPTER 3. WITNESS TRANSFORMATION ALGORITHM

Original Lines
(Whitespace)

Transformed Lines
(Whitespace)

Original Lines
(Non-Whitespace)

Transformed Lines
(Non-Whitespace)

II: Line Matching

IV: Replacement

III: RealignmentI: Preparation III: RealignmentI: Preparation

Figure 3.1: Connections between line matching data

Original program:
8 int Ack(int m, int n)
9 {

10 if (m == 0) return n+1;
11 else if (n == 0) return Ack(m-1, 1);
12 else return Ack(m-1, Ack(m, n-1));
13 }

Transformed program:
20 int Ack(int m, int n) {
21 if (m == 0) {
22 if (!(ASSERTION1)) {
23 ERROR1
24 }
25 return n + 1;
26 } else if (n == 0) {
27 if (!(ASSERTION2)) {
28 ERROR2
29 }
30 return Ack(m - 1, 1);
31 } else {
32 if (!(ASSERTION3)) {
33 ERROR3
34 }
35 if (!(ASSERTION4)) {
36 ERROR4
37 }
38 return Ack(m - 1, Ack(m, n - 1));
39 }
40 }

Figure 3.2: Snippets from Ackerman-1.c and its transformed version

the whitespace version and the non-whitespace version (see Figure 3.4). This data is
later used for realignment.

3.2. LINE MATCHING 19

1 class LineData:
2 original_program_name: str
3 transformed_program_name: str
4 original_program_lines: list[str]
5 transformed_program_lines: list[str]
6 original_program_lines_wo_tabs: list[str]
7 transformed_program_lines_wo_tabs: list[str]
8 original_program_lines_wo_whitespaces: list[str]
9 transformed_program_lines_wo_whitespaces: list[str]

10 original_index_data: list[list[[IndexData]]
11 transformed_index_data: list[list[[IndexData]]
12 line_matcher: LineMatcher

Figure 3.3: Line data object

Original program with whitespaces:
8 int Ack(int m, int n)
9 {

10 if (m == 0) return n+1;
11 else if (n == 0) return Ack(m-1, 1);
12 else return Ack(m-1, Ack(m, n-1));
13 }

Original program without whitespaces:
8 intAck(intm,intn)
9 {

10 if(m==0)returnn+1;
11 elseif(n==0)returnAck(m-1,1);
12 elsereturnAck(m-1,Ack(m,n-1));
13 }

List of index data objects:

character i f (m = = 0) r e t u r n n + 1 ;
with whitespaces 3 4 6 7 9 10 12 13 15 16 17 18 19 20 22 23 24 25

without whitespaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 3.4: Index data of the original program

3.2 Line Matching

The key to writing the line matching algorithm was to understand in which ways
the transformed lines can differ from its original counterparts.
The following alterations could occur (see Figure 3.5 and Figure 3.6):3

1. Curly brackets were added.
2. Breaks were removed.
3. Breaks were added.
4. Whitespaces were added.
5. Combinations of the four above.
6. Code was commented out.

3Second example from: https://gitlab.com/sosy-lab/benchmarking/sv-benchmark
s/-/blob/main/c/memsafety-ext3/getNumbers4-1.c.

 https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/main/c/memsafety-ext3/getNumbers4-1.c
 https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/main/c/memsafety-ext3/getNumbers4-1.c

20 CHAPTER 3. WITNESS TRANSFORMATION ALGORITHM

7. Assertion conditions were added above lines containing operations.
8. Additions to while, for and if statements.
9. Indentation was changed from a tab or four whitespaces to two whitespaces.

10. The first nine lines were new code lines added (does always occur). (see
Figure 2.5)

Original program:
8 int Ack(int m, int n)
9 {

10 if (m == 0) return n+1;
11 else if (n == 0) return Ack(m-1, 1);
12 else return Ack(m-1, Ack(m, n-1));
13 }

Transformed program:
20 int Ack(int m, int n) {
21 if (m == 0) {
22 if (!(ASSERTION1)) {
23 ERROR1
24 }
25 return n + 1;
26 } else if (n == 0) {
27 if (!(ASSERTION2)) {
28 ERROR2
29 }
30 return Ack(m - 1, 1);
31 } else {
32 if (!(ASSERTION3)) {
33 ERROR3
34 }
35 if (!(ASSERTION4)) {
36 ERROR4
37 }
38 return Ack(m - 1, Ack(m, n - 1));
39 }
40 }

Figure 3.5: Transformation types example 1

The main obstacle was to handle the combination of changes in a clean and compre-
hensible way. The result was the following.

Summary

The line matching algorithm is inside a line matcher object, thus uses its global
variables, and works as follows (see Figure 3.9): There is a nested while loop: The
outside loop goes through the lines of the original program (o-lines) (line 13) and
the inner loop iterates through lines of the transformed program (t-lines) (line 17),
both are freed from whitespaces. Both loops start with checking if the line, which
is the line at the current line pointer of the respective lines is an empty line. If it is,
the line index is increased, and the code jumps to the next iteration (line 14-16,
22-24). If not, the current iteration proceeds. Regarding the outer loop that is all

3.2. LINE MATCHING 21

Original program:
43 int main (void) {
44
45 ____int *numbers = getNumbers4();
46 ____for (int i = 0; i < 10; i++) {
47 ____printf("%d\n", *(numbers + i));
48

Transformed program:
88 int main(void) {
89
90 __int *numbers = getNumbers4();
91 __int i = 0;
92 __if (!(ASSERTION9)) {
93 __ERROR9: {reach_error();abort();}
94 __}
95 __for (int i = 0; i < 10; i++) {
96 //________printf("%d\n", *(numbers + i));

...
Figure 3.6: Transformation types example 2

that happens besides the inner loop. If the line is not empty, the nested loop then
tries to find a match. If there is a match, data on the match is stored. If the current
o-line is completely matched after the latest match, all relevant data regarding this
o-line is firstly stored in a temporary data object. Line and column pointers are
updated depending on the case. A list of line match data objects is returned (see
Figure 3.7 and Figure 3.8).

Details

The possible states of a transformed line, which are represented as conditions in the
code are listed here (see Figure 3.9):

1. Transformed line == original line
2. Transformed line in original line
3. Transformed line without added bracket in the beginning in original line
4. Transformed line without added bracket in the end in original line
5. Transformed line without added brackets at both edges in original line
6. Transformed line without comment keyword at the beginning in original line

If there is an exact match, the line match data with the lines and indices given, is
saved and the loop iterates forward. If not, parts of the t-line have to be compared
with the current part of the o-line (line 18, 19). For identifying the match, there
are column pointers, which mark the remaining part of the lines, that have not
been matched yet. In order to compare the lines, different versions for the t-line
were created (line 20). That means, depending on which addition is checked,
characters were cut. T-lines with added brackets at the start are separated from their
first character, t-lines with added brackets in the end are separated from their last
character and so on. For every t-line version, it is checked, whether the remaining

22 CHAPTER 3. WITNESS TRANSFORMATION ALGORITHM

Original program without whitespaces:
8 intAck(intm,intn)
9 {

10 if(m==0)returnn+1;
11 elseif(n==0)returnAck(m-1,1);
12 elsereturnAck(m-1,Ack(m,n-1));
13 }

Transformed program without whitespaces:
20 intAck(intm,intn){
21 if(m==0){
22 if(!(ASSERTION1)){
23 ERROR1
24 }
25 returnn+1;
26 }elseif(n==0){
27 if(!(ASSERTION2)){
28 ERROR2
29 }
30 returnAck(m-1,1);
31 }else{
32 if(!(ASSERTION3)){
33 ERROR3
34 }
35 if(!(ASSERTION4)){
36 ERROR4
37 }
38 returnAck(m-1,Ack(m,n-1));
39 }
40 }

Line match data:

{o-line 10: "if(m==0)returnn+1;"} :

[{t-line 21: "if(m==0)"}, {t-line 25: "returnn+1;"}]

["i": {t-line 21: o-column 1}, "r": {t-line 25: o-column 9}]

["i": {t-line 21: t-column 1}, "r": {t-line 25: t-column 1}]

Figure 3.7: Line match data

1 class LineMatchData:
2 original_program_line: str
3 original_program_line_number: int
4 line_matches: dict[int, str]
5 original_line_starting_points: dict[int, int]
6 tranformed_line_starting_points: dict[int, int]

Figure 3.8: Line match data object

o-line has fewer characters left than them, or not. If so, the t-line versions were
reduced to the length of the remaining o-line (line 21). With these modifications,

3.3. REALIGNMENT 23

1 class LineMatcher:
2 t-line_pointer: int
3 o-line_pointer: int
4
5 t-column_pointer: int
6 o-column_pointer: int
7
8 match_is_found: bool
9

10 match_data_list: list[LineMatchData]
11
12 def match_lines(o-lines, t-lines) -> list[LineMatchData]
13 while o-line_index < len(o-lines):
14 if o-line is empty:
15 o-line_index++
16 continue
17 while ! match_is_found:
18 t-part = t-line[t-column_pointer:]
19 o-part = o-line[o-column_pointer:]
20 t_parts = create_versions()
21 t_parts = reduce_to_o-part_length()
22 if t-line is empty:
23 t-line_index++
24 continue
25 if o-line == t-line:
26 handle_exact_match()
27 else if t-part in o-part:
28 handle(regular part)
29 else if (t-part without frist character) in o-part:
30 handle(leading bracket)
31 else if (t-part without last character) in o-part:
32 handle(tailing bracket)
33 else if (t-part without edge characters) in o-part:
34 handle(surrounding brackets)
35 else if (t-part without first two characters) in o-part:
36 handle(comment)
37 return match_data_list

Figure 3.9: Line matching pseudo code

the cases are checked (line 25-36). If the algorithm works correctly, every original
line has its transformed counterparts at the end of the loops.

3.3 Realignment

After the line matching, the data of the matched lines are referring to the program
lines without whitespaces. With the help of the indices data created along data
preparation, it is possible to correct the line mapping data (see Figure 3.10). To
update the integers (indices), one has just to search for them in the indices data
and assign the corresponding integer. To update the strings (= lines and line parts),
differences between whitespace and non-whitespace columns of a character are used
to calculate the missing whitespaces that are then added to recreate the unaltered
lines. After the realignment, new indices data is generated that links every single
character in the o-line with the corresponding character in the matched t-part (see
Table 3.1).

24 CHAPTER 3. WITNESS TRANSFORMATION ALGORITHM

Before: Line match data:

{o-line 10: "if(m==0)returnn+1;"} :
[{t-line 21: "if(m==0)"}, {t-line 25: "returnn+1;"}]

["i": {t-line 21: o-column 1}, "r": {t-line 25: o-column 9}]

["i": {t-line 21: t-column 1}, "r": {t-line 25: t-column 1}]

Index data lookup:

character i f (m = = 0) r e t u r n n + 1 ;
with whitespaces 3 4 6 7 9 10 12 13 15 16 17 18 19 20 22 23 24 25

without whitespaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
character i f (m = = 0) r e t u r n n + 1 ;

with whitespaces 3 4 5 7 8 9 10 11 5 6 7 8 9 10 12 13 14 15
without whitespaces 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10

After: Line match data with whitespaces:

{o-line 10: " if (m == 0) return n+1;"} :
[{t-line 21: " if (m == 0)"},
{t-line 25: " return n + 1;"}]

["i": {t-line 21: o-column 3}, "r": {t-line 25: o-column 15}]

["i": {t-line 21: t-column 3}, "r": {t-line 25: t-column 5}]

Figure 3.10: Realignment

character i f (m = = 0) r e t u r n n + 1 ;
original line nr. 10

original column nr. 3 4 6 7 9 10 12 13 15 16 17 18 19 20 22 23 24 25
transformed line nr. 21 25

transformed column nr. 3 4 5 7 8 9 10 11 5 6 7 8 9 10 12 13 14 15

Table 3.1: Final index data

3.4 Replacement

Besides the replacement of line and column, which was prepared up to this
point, other little value changes have to be undertaken. The specification should be
overflow (G ! overflow) instead of reachability (G ! call(reach_error()))
(see also the SV-COMP website [4]). The input_file value and input_file_-
hash keys both contain the name of the checked program and are also changed. The
current naming convention of transformed programs is adding a "transformed_-
" prefix, thus removing it for the new witness could be easily done. But as this
convention is very loose, the file name is derived from the original program name.
A template snippet of which parts of the witness are transformed is shown in

3.4. REPLACEMENT 25

Figure 3.11. A more challenging part comes with the line and column number

10 task:
11 input_files:
12 - "./transformed_program.c"
13 input_file_hashes:
14 "./transformed_program.c":

"43616e20796f7520
7265616420746869733f"

15 specification: "G ! call(
reach_error())"

22 location:
23 file_name:

"./transformed_progam.c"
24 line: 25
25 column: 13

10 task:
11 input_files:
12 - "./program.c"
13 input_file_hashes:
14 "./program.c": "43616

e20796f752072656164
20746869733f"

15 specification: "G !
overflow)"

22 location:
23 file_name:

"./program.c"
24 line: 10
25 column: 23

Figure 3.11: Witness template snippet before and after transformation

changes. The algorithm for the line and column replacement can be sketched as
follows: All line and column pairs are retrieved from the witness. Then, depending
on the type of witness, different replacement algorithms are used.

Replacement Algorithm For Correctness Witnesses

For correctness witnesses, the following is done: For every line and column pair,
the corresponding pair is searched via indices data, which was stored inside the line
map object. If no match is found, there are two reasons, why:

1. The column number of the witness is invalid.
2. The line number points to a line which is not in the original program.

The first cause is handled by checking if the witness line number is found in a line
map object. If the line number is matching, but no matching column number is found
(column 18 > column 15) and the line number is not found in the next line map
object (line 26 > line 25), it has to be an invalid column (see Figure 3.12).
The algorithm responds with replacing the column number with the first column
number, which yields a character that is not a whitespace, thereby considering the
location definitions for invariant types.
Otherwise, it handles the second cause and searches for the next t-part that has a
link to the original program. This is done because it is likely that the line number
points to an assertion. As assertions are always put the nearest above the respective
operation and the line of this operation is the line we want it to point to, it will
always be the next line with a match (because other assertions, which could be
beneath the one pointed to, have no match in the original program). If the line
number is pointing to line five or another of the first nine lines, it is clear that it can
not have a match in the original program and can also be substituted by pointing to

26 CHAPTER 3. WITNESS TRANSFORMATION ALGORITHM

Line and column of witness:

22 location:
23 file_name:

"./transformed_progam.c"
24 line: 25
25 column: 18

Index data for original line nr. 10:

transformed line nr. character i f (m = = 0)

21
original column nr. 3 4 6 7 9 10 12 13

transformed column nr. 3 4 5 7 8 9 10 11
transformed line nr. character r e t u r n n + 1 ;

25
original column nr. 15 16 17 18 19 20 22 23 24 25

transformed column nr. 5 6 7 8 9 10 12 13 14 15

Index data for original line nr. 11:

transformed line nr. character e l s e i f (n = = 0)
original column nr. 3 4 5 6 8 9 11 12 14 15 17 18

26
transformed column nr. 5 6 7 8 10 11 13 14 16 17 19 20

transformed line nr. character r e t u r n A c k (m - 1 , 1) ;

30
original column nr. 20 21 22 23 24 25 27 28 29 30 31 32 33 34 36 37 38

transformed column nr. 5 6 7 8 9 10 12 13 14 15 16 18 20 21 23 24 25

Figure 3.12: Invalid witness column

an assertion. Because of this and therefore the redundancy, these line and column
pairs are just deleted. The result is the transformed witness.

Replacement Algorithm For Violation Witnesses

The line matching between witness data and line match data follows the same ap-
proach as for the correctness witness. The assumption and branching waypoint
types can also be completely handled by the correctness transformation procedure.
The handling for function_enter and function_return checks, if the found
column number points to a right parenthesis. If it does, continue. if not, the matched
line is checked against right parenthesis’. If more than one parenthesis is found,
the line is analysed by C function syntax cues. Else if no parenthesis is found, -1 is
inserted to show the invalid result.
As the target locations of a violation witness generated by verifying a transformed
program point to the added assertion, the new column pointer cannot be deduced by
the old one, but has to be computed by analysing the line, the new line pointer refers
to. 4 To determine, which operation causes the overflow, when having multiple
operations in the line, is supported by the new transformation instrumentation
of the programs, which clearly identifies, where the problem occurs, as shown in

4As it was discussed with my mentor, the locations of target point to the operation that causes the
overflow, despite the definition given in Section 2.5. My apologies, if there was an misunderstanding.
If the pointing is handled as defined in [1], it is the same as for assumption and branching. With
the following description, it is assumed, that the column number must point to the operation that
causes the error.

3.4. REPLACEMENT 27

Old transformation of two operations in one statement
4 void __VERIFIER_assert(int cond) {
5 if (!(cond)) {
6 ERROR: {reach_error();abort();}
7 }
8 return;
9 }

...
50 __VERIFIER_assert(ASSERTION1);
51 __VERIFIER_assert(ASSERTION2);
52 v = v + 2 * Y;

New transformation of two operations in one statement
54 if (!(ASSERTION1)) {
55 ERROR3: {reach_error();abort();}
56 }
57 if (!(ASSERTION2)) {
58 ERROR4: {reach_error();abort();}
59 }
60 v = v + 2 * Y;

Figure 3.13: Multi-operation handling in comparison

List of assertions:
[line 55, line 58]

List of operations:
[column 9, column 13]

Match by index:
index assertion operation

0 line 55 column 9
1 line 58 column 13

Figure 3.14: Assertion and operation listing

Figure 3.13. Every reach_error call provoked by an overflow condition has its
own location for every operation in question (line 55, 58 & 60). While trans-
forming the program, the assertions are placed above the corresponding expression
in order of appearance of its operations. To determine, which operation caused the
overflow, every line of assertion, which refers to the expression, is listed, as well as
the column number of the operations in the expression. The index of the assertion
in the assertion list the witness points to, is the index of the operation in the list of
operations, which was searched for (see Figure 3.14).

28 CHAPTER 4. APPLICATION

4 Application

4.1 Research Questions

To check, whether the transformed witnesses represent the verification result of an
unaltered program, the following questions can be posed:

1. Can reach-safety violation witnesses of the transformed programs be vali-
dated?

2. Can reach-safety correctness witnesses of the transformed programs be vali-
dated?

3. Can transformed no-overflow violation witnesses be validated?
4. Can transformed no-overflow correctness witnesses be validated?

As the validation of witnesses of transformed programs was not undertaken by
Zheng 2024 [13], it is a presupposing task. Because of the differences of violation
and correctness witnesses (see Section 2.5), it is split into two tasks, as well as
the validation of the transformed witnesses. The separation is mandatory, because
the validation of violation witnesses in YAML format with CPAchecker has not
been implemented yet (see also [3]). Consequently, the violation questions must be
discarded. Two research questions remain:

RQ1:
Can reach-safety correctness witnesses of the transformed programs be validated?

RQ2:
Can transformed no-overflow correctness witnesses be validated?

To tackle these, the experimental requirements and its results are described in the
next sections.

4.2 Experimental Setup

The path leading to the validation of the witnesses consist of several steps. This
chapter will show which steps are necessary, and which experimental setup can
be used and was used in order to gain comparable results. Along the descriptions
of the steps, console commands will be presented to support the recreation of the
experiment. First of all, CPAchecker is the main tool required. It can be found
at: https://gitlab.com/sosy-lab/software/cpachecker. Though
the benchmarking tool benchexec can be executed with CPAchecker, it might

https://gitlab.com/sosy-lab/software/cpachecker

4.2. EXPERIMENTAL SETUP 29

be worth noting the documentation: https://gitlab.com/sosy-lab/sof
tware/benchexec. The verification tasks used are listed in Figure 4.2.1 The
steps of generating results, including the evaluation, consists of five steps: Program
Transformation, Verification, Witness Transformation, Validation and Comparison.
Every step is explained and illustrated below (see Figure 4.1).2

Program Program
Transformation (.py) Transformed Program Verification

(CPAchecker) Witness Witness
Transformation (.py) Transformed Witness

Validation
(CPAchecker)

Validation
(CPAchecker)

Outcome OutcomeComparison

Result

Figure 4.1: Steps of the experiment

• loop-acceleration
• loop-invgen
• loop-lit
• loops
• loops-crafted-1
• loop-simple
• loop-zilu
• memsafety
• memsafety-bftpd
• memsafety-ext3
• nla-digbench
• nla-digbench-scaling
• ntdrivers-simplified

• recursified_loop-simple
• recursive
• recursive-simple
• recursive-with-pointer
• seq-mthreaded
• signedintegeroverflow-regression
• termination-crafted
• termination-crafted-lit
• termination-memory-alloca
• termination-memory-linkedlists
• termination-nla
• termination-numeric
• termination-restricted-15

Figure 4.2: Used benchmark files

1Every item in the list of Figure 4.2 is linked to the corresponding folder in the SV-Benchmarks
repository.

2Note, that not every input and output is shown in Figure 4.1. The purpose is to illustrate the
workflow and the relevant results regarding the experiment.

https://gitlab.com/sosy-lab/software/benchexec
https://gitlab.com/sosy-lab/software/benchexec
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/loop-acceleration
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/loop-invgen
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/loop-lit
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/loops
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/loops-crafted-1
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/loop-simple
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/loop-zilu
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/memsafety
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/memsafety-bftpd
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/memsafety-ext3
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/nla-digbench
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/nla-digbench-scaling
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/ntdrivers-simplified
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/recursified_loop-simple
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/recursive
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/recursive-simple
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/recursive-with-pointer
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/seq-mthreaded
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/signedintegeroverflow-regression
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/termination-crafted
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/termination-crafted-lit
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/termination-memory-alloca
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/termination-memory-linkedlists
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/termination-nla
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/termination-numeric
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/termination-restricted-15

30 CHAPTER 4. APPLICATION

Program Transformation

Program Program
Transformation (.py) Transformed Program

Figure 4.3: Program transformation step

The first step consists of taking the C programs in question and instrument them
for reachability analysis (see Figure 4.3). The program transformation algorithm has
not been integrated into CPAchecker yet. Currently, it can be found at: https:
//gitlab.com/sosy-lab/software/specification-transformation.
The latest version can be pulled form the branch called "transform_witness".
Though it is not integrated, it requires CPAchecker and especially its version on
the locate-candidates-to-overflow branch in order to work properly. The
execution command can be found beneath (see Figure 4.5) and requires some notes
to consider:

• The argument of --program has to be a folder containing the program files
and .yml task definitions (see Figure 4.4).

• To match the program with the witness, there are currently three patterns that
can be used:

– <file name>

– <original_<file ending>_<file name>>

– <intrumented_original_<file ending>_<file name>>

• The whole algorithm includes the CPAchecker verification of the original
program for processing reasons. Due to the restrictions of the script, it is not
possible to generate multiple witnesses and therefore not suitable for mass
verification

• The output contains all the results of a default configured verification, plus the
transformed programs and task definition files as well as the original program
files and its task definitions, provided that the file can be transformed.

https://gitlab.com/sosy-lab/software/ specification-transformation
https://gitlab.com/sosy-lab/software/ specification-transformation

4.2. EXPERIMENTAL SETUP 31

1 format_version: ’2.0’
2

3 # old file name: array_false-unreach-call1_true-termination.c
4 input_files: ’array_1-1.c’
5

6 properties:
7 - property_file: ../../../config/properties/no-overflow.prp
8 expected_verdict: true
9 - property_file: ../../../config/properties/unreach-call.prp

10 expected_verdict: true
11

12 options:
13 language: C
14 data_model: ILP32

Figure 4.4: Task definition file example

cd "<repository>"
python3 src/specification-transformation-with-yml.py \
--from-property overflow \
--to-property reachability \
--algorithm Transform_Overflow_Algorithm \
--program \
"<folder of verifiable programs and task definitions>" \
--output-dir "<output directory>"

Figure 4.5: Transform program command

Verification

Transformed Program Verification
(CPAchecker) Witness

Figure 4.6: Verification step

Acquired by step one, the transformed programs are now verified with CPAchecker
to get the witnesses (see Figure 4.6). New and old program transformations are
compared. As the necessity of a new transformation algorithm is rooted in the old
violation witness, whose line and column pointers do not provide useful information
on where the code fails, it might be optional to only use the new transformation
for files expected to result in false, while the old algorithm can be kept for correct
programs. The results will show, if this is possible.

32 CHAPTER 4. APPLICATION

Bechmark Run

For comparable verification results of CPAchecker, it is recommended to use
benchmarkexec or another reliable benchmark tool. It is possible to use BenchCloud
for this3 as it was done here with the setup shown in Table 4.1. For comparable
testing, see also [9]. The command used for this experiment is shown in Figure 4.8.

resource limits: hardware requirements:
memory: 15000.0 MB cpu model: E3-1230
time: 900 s cpu cores: 2
cpu cores: 2 memory: 15000.0 MB

Table 4.1: Setup for verification

Some notes regarding the reproduction of results:
• The set file in the required XML file contains the path to YML task definition

files (see Figure 4.7).
• For further information on the XML file, see: https://gitlab.com/sos
y-lab/software/benchexec/-/blob/main/doc/benchexec.md.

• An account might be required when using Benchcloud.

1 <?xml version="1.0"?>
2 <!DOCTYPE benchmark PUBLIC "+//IDN sosy-lab.org//DTD BenchExec

benchmark 1.9//EN" "https://www.sosy-lab.org/benchexec/
benchmark-2.3.dtd">

3 <benchmark tool="cpachecker" timelimit="15 min" hardtimelimit="
16 min" memlimit="15 GB" cpuCores="2">

4

5 <require cpuModel="Intel Xeon E3-1230 v5 @ 3.40 GHz"/>
6 <option name="-svcomp24"/>
7 <option name="-preprocess"/>
8 <option name="-setprop">counterexample.export.yaml=

violation_witness.yml</option>
9 <option name="-setprop">cpa.arg.yamlProofWitness=

corectness_witness.yml</option>
10

11 <rundefinition name="<custom name>">
12 <tasks name="<custom name>">
13 <includesfile><path to .set file></includesfile>
14 <propertyfile><path to>/unreach-call.prp</propertyfile>
15 </tasks>
16 </rundefinition>
17 <resultfiles>**/*witness*</resultfiles>
18

19 </benchmark>

Figure 4.7: XML file for benchmark verification

3Also called "VerifierCloud": https://vcloud.sosy-lab.org/cpachecker/webcli
ent/master/info.

https://gitlab.com/sosy-lab/software/benchexec/-/blob/main/doc/benchexec.md
https://gitlab.com/sosy-lab/software/benchexec/-/blob/main/doc/benchexec.md
https://vcloud.sosy-lab.org/cpachecker/webclient/master/info
https://vcloud.sosy-lab.org/cpachecker/webclient/master/info

4.2. EXPERIMENTAL SETUP 33

cd "<CPAchecker>"
scripts/benchmark.py \
--cloud \
--cloudUser "<username>" \
--cloudCPU 1230 \
--cloudPriority LOW \
--no-container \
--revision direct-witness-export:46261 \
--cloudMaster \
https://vcloud.sosy-lab.org/cpachecker/webclient/ \
"<XML file>"

Figure 4.8: Cloud benchmark verification command

Verification Results

To compare the performance of the transformation versions, two BenchCloud runs
where executed, resulting in the numbers of Table 4.2. The results for the old trans-
formed programs are slightly worse than the numbers presented in Zheng 2024 [13].
While the differences in correct and unknown results is negligible, the incorrect
outcomes are a problem that has to be discussed.

run total correct incorrect unknown
witnesses presentend in Zheng 2024 [13] 856 687 2 167
witnesses of old program transformation 856 670 2 184
witnesses of new program transformation 856 660 5 191

Table 4.2: Performance of old and new program transformations

Examining the transformation of the three new incorrect files hard2_unwindbound-
50.c4, hard2_unwindbound100.c5 and b.05.c6, errors are easily spotted: the
unwindbound files have a noticeably amount of assertion duplicates in a row. Some
assertions themselves raise also suspicion like (2 != 0 && (p != -2147483648
|| 2 != -1)). The transformed b.05.c code contains assertions statements in-
side another condition which is otherwise empty. It is unclear, why this is the case,
as the changes to the transformation process should not have affected the core algo-
rithm. They are in fact just substitutions at the end of it. Running the transformation
in the current build without the substitution code lines, yields a comparable result.
At some point of development, a side effect must have occurred. Unfortunately, the
bug has not been detected yet. Because the old numbers are superior to the rerun
of the old transformation, the former will be taken to be measured against in the

4https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/main/c/
nla-digbench-scaling/hard2_unwindbound50.c.

5https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/main/c/
nla-digbench-scaling/hard2_unwindbound100.c.

6https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/main/c/
termination-restricted-15/b.05.c.

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/main/c/nla-digbench-scaling/hard2_unwindbound50.c
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/main/c/nla-digbench-scaling/hard2_unwindbound50.c
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/main/c/nla-digbench-scaling/hard2_unwindbound100.c
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/main/c/nla-digbench-scaling/hard2_unwindbound100.c
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/main/c/termination-restricted-15/b.05.c
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/main/c/termination-restricted-15/b.05.c

34 CHAPTER 4. APPLICATION

validation step. For other benchmark comparisons with data only available for the
rerun, these results are used, like in the following.

New transformation Old transformation

y-axis: CPU time (s) x-axis: n-th fastest result

Figure 4.9: CPU time comparison of new and old program transformation

New transformation Old transformation

y-axis: Memory consumption x-axis: n-th lowest consumption

Figure 4.10: Memory comparison of new and old program transformation

Compared to the old transformation regarding other performance criteria, the new
transformation has an observable negative offset in its graphs (see Figure 4.9 and
Figure 4.10). Selecting by result type, it is possible to narrow down the cause of
the problem (see Figure 4.11 and Figure 4.12). The results to be expected false
show a steep increase in CPU time, while the results to be expected true only differ
insignificantly between old and new. The option mentioned, to use the different
transformation versions based on the expected result can thereby be excluded. If the
violation witness problem is linked to the limitation on found waypoint types, it
is a trace, which should be followed in the future for improvements. Though some
analysis on the shortcomings of the results are required, the new transformation
version is usable for the purpose of the experiment and future work in general.

4.2. EXPERIMENTAL SETUP 35

New transformation Old transformation

y-axis: CPU time (s) x-axis: n-th fastest result

Figure 4.11: CPU time comparison filtered by the expected result: "true"

New transformation Old transformation

y-axis: CPU time (s) x-axis: n-th fastest result

Figure 4.12: CPU time comparison filtered by the expected result: "false"

total correct incorrect unknown correct true correct false incorrect true incorrect false
856 660 5 191 409 251 2 3

Table 4.3: Verification results of the (new) program transformations

selection total no content value is "1" relevant
by relevance 530 360 1 169

Table 4.4: Results of the transformed correctness witness verification by relevance

It is useful to further examine the results of the new transformation in detail (see
Table 4.3), because the number of correctness witnesses produced, differ from the
results given. While there are 411 verifications resulting in true, 530 correctness
witnesses were generated. To filter the relevant results, the correctness witnesses
were sorted by relevance, which is measured by data of the value key of the
content elements in the witnesses (see Table 4.4). Besides empty content sections
that do not provide a proof and are therefore not relevant, content elements, where
the value is "1" also yield diminished returns because an invariant is expected [1].

36 CHAPTER 4. APPLICATION

Due to the different verification results between old and new transformation, the
amount of total witnesses is also different between them. Therefore, a comparison
of relevance sorted witnesses is limited in significance. The relevance tables of
reachability witness processing are shown in Section 4.3. As no generated violation
witness has an empty content section, the measurement used for correctness
witnesses can not be applied to violation witnesses. Despite the sorting by relevance,
the whole witness set is used for transformation.

Witness Transformation

Witness Witness
Transformation (.py) Transformed Witness

Figure 4.13: Witness transformation step

The witnesses produced by CPAchecker are now transformed (see Figure 4.13). To
transform witnesses, the same repository and branch used for program transforma-
tion is needed.7 For the transformation to work in the current state, the program
files have to be named after the pattern <program file> and <transformed_<program
file>> (see Figure 4.14).

cd "<repository>"
python3 src/entrance/witness_transformation_main.py \
--witness_directory "<witness directory>" \
--original_program_directory "<original program directory>" \
--program_diectory "<program directory>" \
--output_directory "<output directory>" \

Figure 4.14: Witness transformation command

To get insights about the quality of the transformed witnesses, they must be vali-
dated.

Validation

Both, the "original" and the transformed witnesses are now validated (see Fig-
ure 4.15). When validating witnesses of transformed programs, it might be necessary
to delete their file_hash keys first. For now, this step is already included in the

7"transform_witness" from: https://gitlab.com/sosy-lab/software/specificat
ion-transformation.

https://gitlab.com/sosy-lab/software/ specification-transformation
https://gitlab.com/sosy-lab/software/ specification-transformation

4.2. EXPERIMENTAL SETUP 37

Witness

Validation
(CPAchecker)

Outcome

Transformed Witness

Validation
(CPAchecker)

Outcome

Figure 4.15: Validiation step

cd "<CPAchecker>"
./bin/cpachecker "<file to be validated>" \
--preprocess \
--option witness.checkProgramHash=false \
--heap 5000m \
--option cpa.predicate.memoryAllocationsAlwaysSucceed=true \
--timelimit 900s \
--witness "<witness>" \
--<validation property>

Validation property options:
No-overflow: <witness type>-witness-validation--overflow
Reachability: <witness type>-witness-validation

Figure 4.16: Single file validation command

witness transformation procedure. This might change in the future. As in the verifi-
cation step, the validation can be done on a single file or with benchmark grouping.
For comparable validation results, its again recommended to use benchexec or a
similar tool. Unfortunately, student accounts have no permission to execute valida-
tion benchmark runs on BenchCloud. Therefore, a local single validation of the files
was necessary (see Figure 4.16).

38 CHAPTER 4. APPLICATION

4.3 Results

Validation of reachability correctness witnesses of transformed programs

selection total no content value is "1" relevant
by relevance 548 327 10 211

Table 4.5: Results of the reachability correctness witness verification by relevance

run total true false unknown timeout
reachability correctness witness validation 548 477 0 35 36

Table 4.6: Results of the reachability correctness witness validation

true false unknown timeout total
no content 337 0 13 4 354

value is "1" 0 0 0 0 0
relevant 140 0 22 32 194

total 477 0 35 36 548

Table 4.7: Results of the reachability correctness witness validation by relevance

Validation of transformed no-overflow correctness witnesses

run total true false unknown timeout
transformed correctness witness validation 530 480 0 2 48

Table 4.8: Results of the transformed correctness witness validation

true false unknown timeout total
no content 357 0 1 9 367

value is "1" 1 0 0 0 1
relevant 122 0 1 39 162

total 480 0 2 48 530

Table 4.9: Results of the transformed correctness witness validation by relevance

4.4 Evaluation

The results (see Table 4.6, Table 4.7, Table 4.8 and Table 4.9) are now evaluated (see
Figure 4.17).

4.4. EVALUATION 39

Outcome OutcomeComparison

Result

Figure 4.17: Comparison step

Research Question 1

The numbers of both validation runs can affirm the first research question.

Reachability witness validation:
About 87% (477 of 548) of all reachability correctness wintess tasks were validated
as true. Ignoring the irrelevant items in Table 4.5, 66% (140 of 211) of all relevant
witnesses produced were correct. 72% of the relevant witnesses were validated as
correct.
Transformed no-overflow witness validation:
About 90% (480 of 530) of all no-overflow correctness witness tasks were validated as
true. Taking the erroneously generated or empty witnesses into account by opposing
the relevant witnesses, reveals a 72% success rate (122 of 169) regarding the verified
relevant correctness witnesses and a 75.3% rate (122 of 162) regarding the total
validated relevant correctness witnesses.

Research Question 2

Comparing the validations of the correctness witnesses, their difference is insignifi-
cant. The numbers of the validation of the reachability witnesses should be the upper
boundary for the transformed witness validation. As this does not seem to be the
case, the unknown results, for example, may be caused by the unreliable validation
process. But even if they should be validated as true, there is no remarkable gap
in between the numbers. This can be evaluated as a positive result regarding the
witness transformation algorithm and the second research question.

40 CHAPTER 5. CONCLUSION

5 Conclusion

5.1 Witness Transformation Algorithm

A witness transformation algorithm was provided that can transform both correct
and violation witnesses. Though the algorithm works, there are some aspects that
are still open for discussion and improvement. The important ones are listed here:
The matching of lines which consist of one single closing curved bracket could be
one off, if brackets were added with the transformation. A fix is easy to implement,
but has not been done yet, because the brackets are never a pointer target and thus
are not relevant.
The tabs inside the program are not consistent across its original and transformed
versions. This might be a problem when dealing with the column references, as they
differ, depending on whether there is one tab or four whitespaces, because the first
counts as one character while the latter counts as four. Therefore, when comparing
the witness of a standard overflow verification and a transformed witness, where
the tabs are substituted by four whitespaces, the column values can differ.
The absence of waypoint types in the violation witnesses leads to a lack of real
world test cases for handling these cases. If the absence is an unavoidable side effect
of reachability conversion, the handling becomes irrelevant. If not, tackling this issue
becomes a future task.
A clarification should succeed this thesis, whether the target waypoint location
points to an operation or a full expression or statement. Though this does not af-
fect the code writing, because the cases are covered, it will lead to wrong column
numbers in the witness, if the algorithm is not changed accordingly.
Integrating the algorithm in a bigger framework or refactoring it to raise the level of
abstraction and modularization is a conceptual change that is possible future work
(see Ovezova 2024 [11]).

5.2 Verification And Validation Results

Being currently restricted to the limited tool features, which can handle the new
YAML witness format, leads to open tasks regarding the validation of transformed
programs and witnesses, mainly validating correctness and violation witnesses with
reliable benchmark runs.
The limitations on waypoint types observed in the violation witnesses is a finding,
which has to be discussed in the aftermath of this thesis.

5.2. VERIFICATION AND VALIDATION RESULTS 41

The undesired aspects of the current program transformation build should be anal-
ysed and fixed, in order to identify, whether they are the cause of the incorrect
verification results.
Though there are bugs in the code that might affect the results as well as the men-
tioned shortcomings in execution, the outcome shows an overall working of both,
the program and the witness transformation. They also confirm that a reachability
analysis of overflow errors is possible. With these conclusions a contribution to the
approach of converting properties is given that can be build upon in future works.

42 BIBLIOGRAPHY

Bibliography

[1] P. Ayaziová, D. Beyer, M. Lingsch-Rosenfeld, M. Spiessl, and J. Strejček. Soft-
ware verification witnesses 2.0. In Proc. SPIN, LNCS . Springer, 2024.

[2] D. Beyer. Software verification and verifiable witnesses - (report on SV-COMP
2015). In C. Baier and C. Tinelli, editors, Tools and Algorithms for the Construction
and Analysis of Systems - 21st International Conference, TACAS 2015, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015. Proceedings, volume 9035 of Lecture Notes in
Computer Science, pages 401–416. Springer, 2015.

[3] D. Beyer. State of the art in software verification and witness validation: SV-
COMP 2024. In B. Finkbeiner and L. Kovács, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 30th International Conference, TACAS 2024,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024, Proceedings, Part
III, volume 14572 of Lecture Notes in Computer Science, pages 299–329. Springer,
2024.

[4] D. Beyer. Sv-comp 2024: Call for participation — procedure. https://sv-c
omp.sosy-lab.org/2024/rules.php, 2024. Accessed: 2024-07-16.

[5] D. Beyer, M. Dangl, D. Dietsch, and M. Heizmann. Correctness witnesses:
exchanging verification results between verifiers. In T. Zimmermann, J. Cleland-
Huang, and Z. Su, editors, Proceedings of the 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA,
November 13-18, 2016, pages 326–337. ACM, 2016.

[6] D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig.
Verification witnesses. ACM Trans. Softw. Eng. Methodol., 31(4), sep 2022.

[7] D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer. Witness
validation and stepwise testification across software verifiers. In E. D. Nitto,
M. Harman, and P. Heymans, editors, Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30
- September 4, 2015, pages 721–733. ACM, 2015.

[8] D. Beyer and M. E. Keremoglu. Cpachecker: A tool for configurable software
verification. In G. Gopalakrishnan and S. Qadeer, editors, Computer Aided
Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July
14-20, 2011. Proceedings, volume 6806 of Lecture Notes in Computer Science, pages
184–190. Springer, 2011.

https://gitlab.com/sosy-lab/benchmarking/sv-witnesses/
https://gitlab.com/sosy-lab/benchmarking/sv-witnesses/
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-031-57256-2_15
https://sv-comp.sosy-lab.org/2024/rules.php
https://sv-comp.sosy-lab.org/2024/rules.php
https://sv-comp.sosy-lab.org/2024/rules.php
https://sv-comp.sosy-lab.org/2024/rules.php
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/3477579
https://doi.org/10.1145/3477579
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16

BIBLIOGRAPHY 43

[9] D. Beyer, S. Löwe, and P. Wendler. Reliable benchmarking: requirements and
solutions. Int. J. Softw. Tools Technol. Transf., 21(1):1–29, 2019.

[10] E. M. Clarke, E. A. Emerson, and J. Sifakis. Model checking: algorithmic
verification and debugging. Commun. ACM, 52(11):74–84, 2009.

[11] A. Ovezova. Witness modifications for program transformations: A case study
on side-effect removal. Bachelor’s thesis, Ludwig-Maximilians-Universität
München, Software Systems Lab, 2024.

[12] N. Piterman and A. Pnueli. Temporal logic and fair discrete systems. In E. M.
Clarke, T. A. Henzinger, H. Veith, and R. Bloem, editors, Handbook of Model
Checking, pages 27–73. Springer, 2018.

[13] X. Zheng. O2r: Reduction of no-overflow property of c programs to unreach-
call property. Bachelor’s thesis, Ludwig-Maximilians-Universität München,
Software Systems Lab, 2024. Unpublished.

https://doi.org/10.1007/S10009-017-0469-Y
https://doi.org/10.1007/S10009-017-0469-Y
https://doi.org/10.1145/1592761.1592781
https://doi.org/10.1145/1592761.1592781
https://www.sosy-lab.org/research/bsc/2024.Ovezova.Witness_Modifications_for_Program_Transformations_A_Case_study_on_Side-Effect_Removal.pdf
https://www.sosy-lab.org/research/bsc/2024.Ovezova.Witness_Modifications_for_Program_Transformations_A_Case_study_on_Side-Effect_Removal.pdf
https://www.sosy-lab.org/research/bsc/2024.Ovezova.Witness_Modifications_for_Program_Transformations_A_Case_study_on_Side-Effect_Removal.pdf
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Overall Approach
	1.3 Example
	1.4 Contributions
	1.5 Related Work

	2 Background
	2.1 CPAchecker
	2.2 Formal verification and Model checking
	2.3 Properties
	2.4 Program Transformation
	2.5 Witnesses

	3 Witness Transformation Algorithm
	3.1 Preparation
	3.2 Line Matching
	Summary
	Details

	3.3 Realignment
	3.4 Replacement
	Replacement Algorithm For Correctness Witnesses
	Replacement Algorithm For Violation Witnesses

	4 Application
	4.1 Research Questions
	4.2 Experimental Setup
	Program Transformation
	Verification
	Witness Transformation
	Validation

	4.3 Results
	Validation of reachability correctness witnesses of transformed programs
	Validation of transformed no-overflow correctness witnesses

	4.4 Evaluation
	Research Question 1
	Research Question 2

	5 Conclusion
	5.1 Witness Transformation Algorithm
	5.2 Verification And Validation Results

	Bibliography

