
Ludwig-Maximilians-Universität München

Institut für Informatik

Bachelor’s Thesis

Evaluation of JVM

Garbage Collectors

for CPAchecker

Tobias Maget

August 29, 2024

Supervisor: Prof. Dr. Dirk Beyer

Mentor: Dr. Philipp Wendler

Abstract

Garbage collection is an essential component of the Java Virtual Machine’s au-
tomatic memory management, as it frees up memory occupied by objects that
are no longer in use. Given that various garbage collectors can influence the
performance of a Java application in different ways, understanding them is im-
portant. Additionally, each garbage collector can be individually tuned. In this
thesis, we evaluate the impact of selecting and tuning different garbage collectors
on the performance of the software verification tool CPAchecker. To do so, we
benchmarked CPU time, wall time, and peak memory consumption across var-
ious sets of verification tasks as well as individual analyses of CPAchecker. In
total, we benchmarked 96 different garbage collection configurations in 762 355
verification runs, which accounted for approximately 2 063 days of CPU time.
Our evaluation is driven by two main use cases that highlight different aspects
of CPAchecker’s performance requirements: One use case focuses on evaluating
results in a scientific environment, where the main priority is to reduce CPU
time. For this use case, we recommend the Serial Garbage Collector, not only
for its good CPU time but also for its ability to prevent ”out of memory” er-
rors. Our other use case aims to achieve fast wall time and while preserving a
low peak memory consumption. Here, we recommend using the Parallel Garbage
Collector tuned with -XX:MinHeapFreeRatio=80, as it provides competitive
CPU time and is still faster than the Serial Garbage Collector and the Garbage
First Garbage Collector. At the same time, peak memory usage can be reduced
compared to the current default. Overall, we found that GC performance was
stable, with CPAchecker showing little variability in performance across different
configurations. However, the quantitative effects of different configurations may
vary across different analyses of CPAchecker.

2

Acknowledgments

First of all, I would like to thank my supervisor, Prof. Dr Dirk Beyer, for provid-
ing me the opportunity to write this thesis at the Software and Computational
Systems Lab. I would also like to deeply thank my mentor, Dr. Philipp Wendler,
for his support, for taking the time for meetings, and for sharing his valuable
experience, which I am sure will benefit me in my future journey. Last but not
least, I want to thank the Statistical Consulting Unit StaBLab, Department of
Statistics, Ludwig-Maximilians-Universität München, Munich, Germany for their
valuable statistical consulting and the highly professional and pleasant collabo-
ration.

3

Contents

1 Introduction 8
1.1 Related Work . 9
1.2 Structure . 9

2 Background 10
2.1 Stop-the-world Garbage Collectors 10
2.2 Concurrent Garbage Collectors 11
2.3 Generational Garbage Collection 11
2.4 Overview of JVM Garbage Collectors 12
2.5 CPAchecker . 13
2.6 Evaluation Measures . 13

3 Theoretical Considerations for Selecting Garbage Collectors 15
3.1 CPU time . 15
3.2 Wall time . 16
3.3 Peak Memory Consumption . 17
3.4 Variability . 17

4 Theoretical Considerations for Tuning Garbage Collection 19
4.1 Total and Initial Heap Size . 19
4.2 Generation Size . 21
4.3 Number of Parallel Threads . 23
4.4 Number of Concurrent Threads 23
4.5 Throughput Goal . 24
4.6 Maximum Pause Time Goal . 25

5 Experimental Evaluation 27
5.1 Experiment Setup . 27

5.1.1 Software . 28
5.1.2 Verification Tasks . 28
5.1.3 Hardware . 29
5.1.4 Reproduction of Results 30

5.2 Experiment Results . 30
5.2.1 Selecting Garbage Collectors 30

4

5.2.2 Overview of Tuning Parameters and their Default Values
for CPAchecker . 34

5.2.3 Total and Initial Heap Size 34
5.2.4 Generation Size . 41
5.2.5 Number of Parallel and Concurrent Threads 46
5.2.6 Throughput and Maximum Pause Time Goals 50
5.2.7 Other Configurations for G1GC 54
5.2.8 Statistical Analysis and Results for the Subset of SV-COMP24 55
5.2.9 SV-COMP24 . 60
5.2.10 Other Analyses . 61
5.2.11 Use-case specific recommendations 64

6 Conclusion 65

7 Future Work 67

5

List of Figures

1 Quantile plots of correct tasks for CPU time, wall time and memory
footprint across all garbage collectors in default configuration . . . 33

2 Line plots of performance measures for ParallelGC across various
MinHeapFreeRatio settings for the commonly solved subset 40

3 Distribution of surviving object bytes by age of all tasks from the
subset using SerialGC . 41

4 Bar plots of performance results for the commonly solved subset
using ParallelGC with 4 and 8 virtual cores, each with varying
numbers of parallel threads. 48

5 Bar plots of performance results for the commonly solved subset
using ParallelGC with 4 and 8 virtual cores, each with varying
numbers of parallel (Par) and concurrent (Conc) threads. 49

6 Quantile plots of correct tasks for CPU time, wall time and memory
footprint for ParallelGC after tuning throughput and maximum
pause time goals . 52

7 Quantile plots of correct tasks for CPU time, wall time and memory
footprint for G1GC after tuning throughput and maximum pause
time goals . 53

8 Box plot of correct tasks, with benchmarks executed five times for
each GC configuration . 59

6

List of Tables

1 Overview of Garbage Collectors in the JVM 13
2 Results for each garbage collector in default configuration 32
3 Number of garbage collections and concurrent marking cycles of

live objects for all tasks of the subset for each generational garbage
collector . 32

4 Overview of tuning parameters for SerialGC, ParallelGC and G1GC
and their default values for CPAchecker 34

5 Comparison of garbage collection cycles for SerialGC, ParallelGC,
and G1GC across the entire subset of tasks before and after setting
the initial and maximum heap sizes equal 37

6 Results for each garbage collector after tuning the heap size . . . 38
7 Performance results of the commonly solved subset for each garbage

collector after tuning the heap size 39
8 Results for each garbage collector after tuning the generations . . 43
9 Performance results of the commonly solved subset for each garbage

collector after tuning the generations 45
10 Results for ParallelGC after tuning parallel threads and for G1GC

after tuning parallel and concurrent threads 47
11 Results for ParallelGC and G1GC after tuning throughput and

maximum pause time goals . 54
12 Results from categorical regression analysis of CPAchecker’s per-

formance under the influence of different GC configurations for the
commonly solved subset . 57

13 Results for the whole set of verification tasks from SV-COMP24
for all promising GC configurations 60

14 Performance results of the commonly solved subset of 18909 correct
tasks for the whole set of verification tasks from SV-COMP24 for
all promising GC configurations 61

15 Results for value analysis, predicate analysis, and k-induction for
all promising GC configurations 62

16 Performance results of the commonly solved subset for value anal-
ysis, predicate analysis, and k-induction for all promising GC con-
figurations . 63

7

1 Introduction

In Java, the Java Virtual Machine (JVM) manages memory automatically. This
brings considerable benefits [10]: It eliminates issues like dangling pointers and
memory leaks, which enhances the safety of applications. Developers can focus
less on the complexities of memory management. This leads to faster development
cycles and reduced costs. Java’s platform independence ensures that applications
can run on any system without modification, providing great flexibility in deploy-
ment. However, there is a inherent risk: Garbage Collection (GC) is an essential
component of the JVM’s memory management, as it frees up memory occupied
by objects that are no longer in use. The JVM provides multiple GC algorithms,
each with its own individual tuning options. Given that GC significantly influ-
ences the performance of a Java application [15], understanding the differences
between these algorithms and their respective tuning options is crucial. The de-
fault settings might not always be the best for specific applications, implying that
even with automated memory management, developers need to be familiar with
the underlying GC processes to optimize performance effectively.

In this work, we benchmark and optimize GC configurations for executing
the software verification framework CPAchecker [3]. Our primary goal is to en-
hance performance measures such as CPU time, wall time and memory footprint,
while also striving for consistency in results. Instead of delving into the technical
specifics of the GC algorithms, our approach centers on effective configurations
for each garbage collector, with a particular emphasis on their tuning options.

Our evaluation is driven by two main use cases that highlight different aspects
of CPAchecker’s performance requirements: One use case focuses on achieving
results from CPAchecker expeditiously and with minimal memory usage. This
scenario prioritizes rapid and economical outcomes, optimizing for wall time and
reduced memory footprint. The other use case focuses on evaluating results in
a scientific environment. In this context, CPU time is of primary concern. It is
commonly used in competitions like SVComp24 [1] and in research papers that
assess state-of-the-art tools or algorithms for software verification. This work can
serve as a guide for other developers to better understand GC and to effectively
tune its parameters.

8

1.1 Related Work

Due to the advantages of automatic memory management, GC is extensively
studied. In his work, Jones [10] explains the architectural design of various GC
algorithms in detail. He focuses more on the technical insights and less on choos-
ing or adjusting a specific garbage collector. The Oracle Tuning Guide [17] ex-
plicitly concentrates on tuning GC, primarily addressing throughput and latency
measures, which do not necessarily coincide with our main measures of CPU
time and wall time. However, there is a match in the memory footprint mea-
sure. Nonetheless, the guide does not provide quantitative statements about the
specific effects of tuning options on performance. Cai [5] examines the costs of
GC, also with regard to our measures of CPU time and wall time. Yet, his study
explicitly excludes tuning. Oaks [15], on the other hand, theoretically addresses
the tuning of GC, particularly in relation to the measures of CPU time and wall
time. However, his research is limited to selected tuning options and does not
make quantitative statements about the impacts of specific parameters.

1.2 Structure

The structure of this thesis is organized as follows: Section 2 provides the nec-
essary background on GC. We explain the different types of garbage collectors
and define our performance measures of interest: CPU time, wall time, and peak
memory consumption. Before we delve specifically into the impact of GC on
CPAchecker, we address the selection and tuning of garbage collectors in Sec-
tion 3 and Section 4 in general. The focus here is on how different configurations
could affect our performance measures. This provides a solid foundation for
evaluating the behavior of GC for CPAchecker. In Section 5, we evaluate our
benchmark results for CPAchecker. We examine whether our theoretical consid-
erations match the results for CPAchecker and assess which garbage collector or
tuning options might be most suitable for our use cases. Finally, in Section 7, we
present ideas for future work.

9

2 Background

In Java, the process of GC is essential for managing dynamic memory in the
heap [10, 15, 17]. At runtime, the JVM typically allocates objects dynamically in
the heap, as the heap is a flexible data structure that can store objects of varying
sizes and allows random access. The primary function of GC algorithms is to
automatically reclaim space from the heap. This process can be broken down
into three steps:

1. Identifying Live and Dead Objects

The first step in the GC process is to distinguish between ”live” objects,
which the program will potentially access in the future, and ”dead” objects,
which are unreachable and whose memory can be safely reclaimed.

2. Reclaiming Memory

Once dead objects are identified, the garbage collector frees up their space.
This reclaimed space is then available for allocating new objects.

3. Compacting the Heap

At its most basic structure, the heap stores objects sequentially. Given
that, removing objects of various sizes can create gaps of various sizes,
which leads to fragmentation. To address this issue, GC must compact the
heap, reorganizing the memory to minimize wasted space.

Especially when it comes to tuning GC, it is necessary to understand when
different garbage collectors execute specific GC steps. The GC algorithms can
generally be categorized into two main types: ”stop-the-world” and ”concurrent”.
Additionally, it is important to differentiate between mutator threads that execute
application code and collector threads that perform GC tasks [6].

2.1 Stop-the-world Garbage Collectors

Stop-the-world garbage collectors pause the application during the GC process [10,
15, 17]. This mechanism ensures that all mutator threads are suspended, which

10

allows the collector threads to proceed without any interference from ongoing op-
erations. The application can only be continued once the entire collection cycle
has been completed.

The JVM Serial Garbage Collector (SerialGC) represents the most basic type
of stop-the-world garbage collector: Originally, it was designed for simpler com-
puting environments with only one CPU. Therefore, even in multi-processor en-
vironments, SerialGC uses only one single thread for collection work.

With the Parallel Garbage Collector (ParallelGC), the JVM offers another
GC that implements the stop-the-world approach. Unlike SerialGC, it employs
multiple threads to manage GC, which makes it more suitable for multi-processor
environments.

2.2 Concurrent Garbage Collectors

Concurrent garbage collectors perform at least some of the collection work concur-
rently, without stopping the mutator threads [10, 15, 17]. However, the extent
of concurrency varies among different collectors. In the JVM, there are three
concurrent garbage collectors available:

Garbage-First Garbage Collector (G1GC) operates as a mostly concurrent
collector. It performs parts of identifying live objects concurrently. Nevertheless,
operations such as freeing up memory and compacting the heap still require stop-
the-world pauses, which interrupts the application.

In contrast, the Z Garbage Collector (ZGC) and Shenandoah are described
as fully concurrent collectors. They are designed to perform almost all GC tasks
simultaneously with the execution of application logic. Despite their classifica-
tion, it is important to note that both ZGC and Shenandoah do incorporate brief
stop-the-world pauses, though these pauses do not significantly impact overall
application performance [7, 12].

2.3 Generational Garbage Collection

Generational garbage collectors operate based on the weak generational hypoth-
esis, which states that most objects are short-lived [17].

In general, the generational design divides the heap into two distinct seg-
ments: The young and the old generation [15]. The young generation is further
subdivided into eden and survivor spaces. New objects are initially allocated in
the eden space within the young generation. When the eden space becomes full,
a minor or young GC event occurs: Dead objects are discarded, and those that
survive are promoted to one of the survivor spaces within the young generation
or eventually to the old generation after surviving multiple young GC cycles. As
the old generation reaches capacity, a major or full GC is required to collect the
entire heap.

This structure has several advantages [10, 15]: Due to the short lifespan of

11

most objects, they are typically discarded during minor collections. Consequently,
the old generation fills up more slowly, which leads to less frequent full collections.
Since the young generation is just a part of the heap, young GC is more efficient
than full GC, which requires processing the whole heap. In addition, when a
young GC occurs, all objects from the eden space are either discarded or moved
to another space, which effectively compacts that portion of the heap. Another
major performance advantage is that long-lived objects that are moved to the
old generation are only processed during full collections, which happen less often.
Even though these major collections are rare, they use a lot of resources because
they involve processing and compacting the entire heap.

The implementation of generations varies across different garbage collectors [15,
17]: SerialGC and ParallelGC divide the heap’s memory areas into generations
sequentially [17]. Both collectors compact the old generation completely dur-
ing a full GC, which requires a stop-the-world pause. G1GC divides the heap
by default into approximately 2.048 distinct regions while still using the same
generational approach. G1GC’s concurrent part only includes the marking of
live objects in the old generation. The collector is termed ”Garbage First” be-
cause it prioritizes old regions that are mostly garbage. Instead of initiating a
full GC, G1GC clears these regions during regular young collections, which is
called a mixed GC. It manages objects in the old generation by moving them
from one region to another or discarding them, which also helps to compact the
heap. Consequently, G1GC generally avoids expensive full GCs, although if the
old generation becomes overloaded, a full GC becomes unavoidable.

ZGC is generational since JDK 21 [11], Shenandoah is not a generational
garbage collector [8].

2.4 Overview of JVM Garbage Collectors

Table 1 provides an overview of the GC algorithms considered in this thesis.
The JVM also offers another garbage collector: Epsilon Garbage Collector (Ep-
silonGC) [19]. However, it performs no memory reclamation, which means it
is impractical for our use cases. Additionally, using EpsilonGC incurs certain
costs [5], which makes it unsuitable as a basis for determining the costs of other
garbage collectors. Consequently, EpsilonGC will not be further considered in
the following discussion. The Concurrent Mark Sweep (CMS) Garbage Collector
was deprecated in JDK 9 to prioritize the development of other garbage collec-
tors [14]. It was subsequently removed in JDK 14 [18]. As CMS is no longer
supported, it will not be considered in this thesis.

12

Table 1: Overview of Garbage Collectors in the JVM

Garbage Collector
Operating
Principle

Multiple
Collection
Threads

Generational

SerialGC Stop-the-world No Yes
ParallelGC Stop-the-world Yes Yes
G1GC Mostly concurrent Yes Yes
ZGC Fully concurrent Yes Since JDK 21
Shenandoah Fully concurrent Yes No

2.5 CPAchecker

CPAchecker1 is a framework for Configurable Software Verification [2, 3, 20]. It
is available as an open-source tool under the Apache 2.0 license. The frame-
work uses the Eclipse CDT Parser to interpret C programs. Being developed in
Java, CPAchecker operates within the JVM. The tool was designed to easily inte-
grate verification components of different abstract verification domains. Each of
these components must implement the interface of Configurable Program Analy-
sis (CPA).

When a program is submitted to CPAchecker for analysis, it is parsed to
construct a set of control flow automata that represent the program. The CPA
algorithm within CPAchecker then conducts a reachability analysis based on a
CPA. This CPA is provided as an additional input in the form of a configuration
and represents the abstract domain that is used for the analysis. As it can be
composed of multiple CPAs, this allows for the analysis to be highly flexible. The
outcome of this analysis is a set of reachable abstract states, as determined by
the CPA algorithm.

2.6 Evaluation Measures

For our use cases, GC is optimized in terms of CPU time, wall time and memory
footprint, while also striving for consistency in results.

To benchmark CPAchecker, we use BenchExec2, an open-source framework for
reliable benchmarking under the Apache 2.0 license. Accordingly, our evaluation
follows the measurement definitions set by BenchExec [4]. In particular, the use
of control groups of the Linux kernel allows us to accurately measure resource
consumption. CPU time is measured as the total CPU time of the entire process,
including all child processes. Wall time is defined as the elapsed time between

1https://github.com/sosy-lab/cpachecker
2https://github.com/sosy-lab/benchexec

13

https://github.com/sosy-lab/cpachecker
https://github.com/sosy-lab/benchexec

start and end of a tool execution. We focus on the peak memory consumption
of a process, which refers to the minimum amount of resources needed to run
the tool and achieve the same results. It reflects the overall memory provided
by the operating system. CPAchecker may use various SMT and SAT solvers,
some of which execute as native code, separate from the JVM’s management.
The memory usage of these native libraries is also measured. Therefore, the
peak memory consumption accounts for CPAchecker, the JVM, and any native
libraries involved.

Not every application execution is identical. Due to various factors, the behav-
ior of GC can be somewhat unpredictable. For instance, small timing differences
or varying memory allocations can significantly impact whether an expensive
full GC is triggered or not. This introduces a certain level of variability in the
performance of the garbage collector. However, it is possible that different GC
algorithms vary in how much they are affected by such random influences. A
GC algorithm that is less susceptible to these influences would be desirable, as it
would likely offer more consistent performance.

In the literature, the measures of throughput, latency, and memory footprint
are commonly discussed, while CPU time and wall time receive less attention.
Throughput and latency can be defined as follows [21]: Throughput measures
the amount of work an application completes within a specific period of time.
Latency refers to the application’s response time to a request for data. Whether
these measures overlap with those used in this thesis is considered in more detail
in Section 4.5 and Section 4.6.

14

3 Theoretical Considerations for
Selecting Garbage Collectors

Before considering tuning options, we must first discuss the characteristics that
GC algorithms offer in their default configurations. These considerations provide
the foundation for effective tuning. Even when using the default settings, it may
be worth choosing a different garbage collector depending on our measures CPU
time, wall time, peak memory consumption and performance variability.

3.1 CPU time

In terms of CPU cycles consumed, the architecture of stop-the-world collectors
may be beneficial. Pausing all mutator threads provides a consistent snapshot of
the heap [10]. This simplifies the task for collector threads, as they can identify
live objects without the complication of objects being moved or modified during
the collection process. Furthermore, there is no need for synchronization with
allocator threads that seek to allocate space.

We hypothesize that the generational design is also advantageous. Processing
less old objects consumes fewer CPU cycles [15]. The ability to avoid expensive
full GC, as described in section 2.3, should also reduce CPU usage. However, it is
important to consider whether more frequent collections of young objects might
end up using more CPU cycles. More details on this trade-off are provided in
section 4.2.

According to the Oracle Tuning Guide [17], SerialGC is recommended only for
single-core environments due to its lack of parallelization. In terms of CPU usage,
though, this is its advantage, because parallelization comes with costs [10]. The
communication between several collector threads causes CPU overhead. Since
SerialGC uses only one collection thread, it can avoid this overhead. Hence, it is
likely that SerialGC also performs well in terms of CPU time in multi-processor
environments. Cai [5] confirmed this with his study, which examined the CPU
usage of all garbage collectors. He found that, across 16 benchmarks and various
heap sizes, SerialGC consistently used the fewest CPU cycles on average. On the
other hand, there were a few benchmarks in which ParallelGC and one benchmark
in which ZGC individually achieved better CPU performance.

15

Although they use expensive parallelization of work, both ParallelGC and the
G1GC retain the advantages of stop-the-world and generational designs. Addi-
tionally, G1GC has another benefit: It can avoid costly full GCs by using mixed
collections [15]. Although this comes with a trade-off: It requires CPU cycles
for multiple background threads to process the old generation and determine the
region with the most dead objects.

Shenandoah and ZGC are concurrent garbage collectors. Concurrency re-
quires synchronization not only between multiple collector threads, but also be-
tween multiple mutators and collectors operating in parallel [10]. This complex
coordination increases CPU cycles [10]. Furthermore, both are not generational,
though ZGC started supporting generational collection since JDK 21.

In summary, SerialGC is likely the most efficient in terms of CPU time due
to its lack of parallelization overhead. Its efficiency is further enhanced by the
stop-the-world approach and its generational design.

3.2 Wall time

SerialGC uses only one thread for GC. In a unicore environment, this can be
advantageous compared to ParallelGC, which employs multiple collection
threads [15]. The reason is that parallelization can introduce time overheads [10].
For instance, to maintain data integrity, exclusive access to shared data structures
is required, which means that only one thread can access them at any given time,
while the others must wait. The more threads involved, the higher this overhead
becomes. Nonetheless, the effect of distributing the workload across multiple
threads outweighs the overhead [15], which results in SerialGC usually taking
significantly longer wall time than ParallelGC in multi-processor systems. The
presence of time overhead implies that wall time improvement does not scale
linearly with increasing number of collection threads.

Whether ParallelGC or G1GC performs better in terms of wall time may
depend on the specific application and the available heap memory. Full GC
pauses are usually very long and have a significant impact on wall time [15]. Here,
G1GC can shine with its ability to avoid these pauses, especially in scenarios with
frequent full collections [15]. In Cai’s [5] study, ParallelGC was the fastest GC on
average across 16 benchmarks, except for the smallest heap size. A small heap
size likely requires more frequent full collections due to limited memory available
for the old generation, which can lead to G1GC outperforming ParallelGC.

Unlike ParallelGC, G1GC aims to achieve latency goals, which can require
more frequent but shorter young collections that may take longer overall com-
pared to the less frequent young collections of ParallelGC. Especially, If the old
generation is highly occupied, G1GC tries to avoid full GCs at all costs [15].
It responds with more frequent young collections to free memory, which may
result in longer wall times compared to ParallelGC that performs a longer full
collection but fewer young collections. At the same time, as the old generation

16

is almost completely full, the concurrent collection threads must process many
objects [15]. This can cause the mutator threads to be throttled due to limited
CPU availability [15], which may extend the program’s execution time as well.

This effect is even more noticeable with the fully concurrent collectors Shenan-
doah and ZGC, where mutator and collection threads perform all their tasks in
parallel. Mutator threads can also experience throttling if the collectors release
memory more slowly than it is being allocated [5]. In addition, the necessary
synchronization between all threads, not just the collection threads, also results
in additional time overhead [10].

In summary, to achieve the best wall time in multi-processor environments,
the decision will likely come down to choosing between ParallelGC and G1GC.
The decisive factor will be the number of full GCs.

3.3 Peak Memory Consumption

By default, the initial heap size is not set to the same value as the maximum
reserved heap size. This approach could benefit peak memory consumption, as
the GC initially tries to operate with less memory and only increases the heap size
when necessary. The specifics of this behavior depend on the heuristics employed
by the selected garbage collector [17]. The specifics of how these heuristics can
be modified are matters of tuning, which will be discussed in detail in section 4.

General statements about the peak memory consumption of different GC al-
gorithms can only be made based on their design. The parallelization of tasks
usually requires more memory [10]. For instance, thread-local data structures
are established to enable threads to function more independently. This overhead
becomes even more significant in concurrent garbage collectors. They require,
among other components, additional structures to track and manage live objects
during collection phases without stopping the application [10]. In contrast, Seri-
alGC with its simple single-thread implementation may have the lowest memory
overhead.

3.4 Variability

To a certain extent, the random performance influences, such as small timing
differences, are beyond our control. However, the different GC algorithms im-
plement specific heuristics to adapt their behavior at runtime [17]. We expect
the behavior of these heuristics to be likely deterministic, meaning that the GCs
algorithms should react similarly in identical situations. Nevertheless, these ad-
justments are made on the basis of previously gathered experience [15], which
includes these random influences. We hypothesize that a GC algorithm that im-
plements fewer heuristics and is thus less sensitive to program execution will be
less impacted by random influences on performance.

SerialGC, ParallelGC and G1GC all adjust the size of the generations [17].

17

While SerialGC only applies the generational design, ParallelGC and G1GC use
more advanced strategies: ParallelGC focuses on maximizing throughput by de-
fault, whereas G1GC aims to achieve a maximum pause time of 200 ms. To meet
these goals, both collectors dynamically shrink and extend the generations during
the application’s execution [15]. G1GC also adaptively decides the best time to
begin concurrent processing and its extent. The implementation of Shenandoah
and ZGC are even more complex to achieve extremely short pause times [7, 12].
Since SerialGC implements the fewest and simplest heuristics, we assume that it
should deliver the most consistent performance.

18

4 Theoretical Considerations for
Tuning Garbage Collection

Having gathered insights into the default behaviors of each garbage collector,
we will now delve into various tuning strategies in detail. The primary focus
will again be on our evaluation measures CPU time, wall time, peak memory
consumption, and performance variability.

4.1 Total and Initial Heap Size

The performance of Garbage Collection is significantly influenced by the total
size of the heap [5, 10, 15, 17]. This maximum heap size can be adjusted using
the -Xmx flag [17]. By default, a quarter of the physical memory is reserved for
the heap.

Managing the heap size effectively involves a balance [10, 15]: Too small a heap
leads to frequent GC as memory fills up more quickly. Consequently, a larger heap
size reduces the frequency of these collections. This has the additional advantage
that objects remain in memory for longer, which can boost performance if the
program accesses them frequently, as they do not need to be reallocated each
time. However, increasing the heap size is not without its challenges. Larger
heaps mean that when GC occurs, it involves longer pauses because there are
more objects to process, though these pauses happen less frequently. The Oracle
Tuning Guide [17] suggests that a larger heap size is generally advantageous.
Cai’s [5] results also clearly show that a larger total heap leads to reduced CPU
cycles and wall time.

It is important to be aware of two risks associated with setting the heap size
too high. It is crucial that the entire heap is located in physical memory rather
than virtual memory that uses disk storage [15]. Using disk storage for the heap
can drastically reduce performance because accessing disk storage is far slower
than accessing physical memory. This is particularly important during a full GC
cycle, when the entire heap is accessed. Secondly, compressed ordinary object
pointers reduce the memory usage of object references, but only for heaps up to
about 32 GB [15, 16]. If this limit is exceeded, the JVM switches from 32-bit to
64-bit object pointers, which requires additional memory and can neutralize the

19

benefits of setting a larger heap.
The initial heap size is specified via the -Xms parameter[17]. By default, it

is set to 1/64th of the physical memory. Every GC algorithm dynamically ad-
justs the size of this initial heap based on its built-in heuristics, as detailed in
Section 3.4. We already discussed that this dynamic adjustment may be advanta-
geous in terms of peak memory consumption, as the initial heap is only expanded
when necessary and within the limits by the GC process.

Correspondingly, setting the initial heap size equal to the maximum heap
size may consume more memory because the entire heap space is allocated at
JVM startup. Though, this could be particularly advantageous in terms of CPU
time and wall time and is acceptable if the heap memory is available anyway.
Since the entire reserved heap can be allocated first, GCs occur less frequent.
However, this leads to the same trade-off as increasing the heap size: GC events
will be longer and more costly, as a larger heap must be processed [10, 15]. The
consistency of performance may be improved because the adaptive sizing decisions
are deactivated when initial heap and total heap are set equal. This could, in
turn, negatively impact performance, as these heuristics might have a positive
effect on our measures. More details are provided in Section 4.5 and Section 4.6

If the initial heap size and the maximum heap size are not set to the same
size, there is another tuning option. It is possible to specify how the heap should
be adjusted after each GC event by setting the -XX:MinHeapFreeRatio and
-XX:MaxHeapFreeRatio flags[17].

MinHeapFreeRatio has a default value of 40 percent. If the percentage of free
space in a generation drops below 40 percent, the JVM automatically increases
the size of that generation until the free space reaches 40 percent, provided it
does not exceed the generation’s maximum capacity.

MaxHeapFreeRatio has a default value of 70 percent. If the percentage of free
space in a generation exceeds 70 percent, the JVM automatically decreases the
size of that generation to ensure that the free space does not surpass 70 percent.
The minimum size of that generation cannot be undercut.

One might wonder why it is advantageous to increase the total size of the heap
in cases the entire heap is not needed to be allocated with memory, especially
since all garbage collectors have the same initial heap size. The answer is that
dynamic resizing depends on the total size of the heap [17]. A larger maximum
heap size allows the JVM to provide more free space in the generations.

20

4.2 Generation Size

Sizing the generations involves determining the ratio between the young genera-
tion and the old generation, as well as the ratio between the eden space and the
survivor spaces within the young generation[17].

The size ratio of the young generation to the old generation can be controlled
using the -XX:NewRatio flag[15, 17]. The size of the young generation is cal-
culated as

1

1 + NewRatio

and correspondingly the size of the old generation is

1− 1

1 + NewRatio
.

For instance, with a default NewRatio of 2, one third of the heap is dedicated to
the young generation, and two thirds to the old generation.

The larger the young generation, the less frequent, but more expensive and
longer the young collections are, as more objects need to be processed [10, 15]. At
the same time, fewer objects are transferred to the old generation because more
objects no longer reach the necessary age for the old generation and are discarded
beforehand. The risk here is that the old generation is relatively small due to the
large young generation, so that it fills up quickly and leads to potentially more
full GCs [15]. Generation sizing is therefore strongly dependent on the lifespan
of the objects.

The size ratio between the eden space and the two survivor spaces within the
young generation is controlled by the -XX:SurvivorRatio flag[15, 17]. The
size of a survivor space is

1

2 + SurvivorRatio

and since there are two survivor spaces, the size of the eden space is calculated
as

1− 2× 1

2 + SurvivorRatio
.

With a default value of 8, each survivor space occupies 10 percent of the young
generation, with eden taking up the remaining 80 percent.

The aim of the survivor spaces is to prevent objects from being promoted to
the old generation after just one young collection [15]. If the survivor spaces are
too small, they fill up quickly [15]. If the survivor spaces are full, the JVM pro-
motes objects directly from eden space to the old generation, which can increase
full GC events, consuming more CPU cycles and wall time. Consequently, larger
survivor spaces can reduce the number of objects promoted to the old generation,
which reduces full GC events and can reduce CPU cycles and wall time. How-
ever, if they are too large, these spaces may be poorly utilized, which results in

21

less memory available for eden space and the need to perform smaller collections
more frequently [15], which could in turn increase CPU load and wall time. In
addition, the efficiency of survivor spaces decreases if many objects are long-lived
and thus end up in the old generation in any case [15].

G1 offers additional parameters to fine-tune the size of the young generation:
-XX:G1NewSizePercent and -XX:G1MaxNewSizePercent, with default
values of 5 and 60 [17]. These parameters define the minimum and maximum
percentage of the heap that can be allocated to the young generation.

Overall, generation tuning is very much dependent on the application itself.
It is advisable to collect information about the age distribution of objects in ad-
vance using the -Xlog:gc+age=trace flag [17]. The age of an object indicates
how many GC events it has already survived in the young generation. The age
distribution of objects is measured in bytes, as the size of an object is typically
represented in bytes.

The size of the generations is generally adjusted adaptively by the GC at
runtime. This is done to achieve its internal heuristics, for instance the through-
put target [17]. To do so, the GC uses the experience gained so far [15]. The
set ratios NewRatio and SurvivorRatio are however not without effect, as they
specify the upper limit of the size of the generations within which adaptive ad-
justments can operate. These limits are also maintained in proportion when the
heap expands [15].

The advantage of adaptive sizing includes achieving the GC’s heuristic goals,
which could have a positive effect on our measures. This is explained in more
detail in section 4.5 and section 4.6. Yet, deactivating this feature could be
advantageous for our measures. The performance could be more predictable
as the size of the heap and generations must be determined in advance. In
addition, the calculations required for adaptive sizing introduce overhead [15].
Another disadvantage is that when the program goes through different phases,
previously gained experience may become irrelevant and decisions may be made
incorrectly [15].

Adaptive sizing can be disabled via the -XX:-UseAdaptiveSizePolicy
flag. Though, this setting only takes effect if the initial heap size is set to match
the total heap size.

22

4.3 Number of Parallel Threads

The number of parallel threads dedicated to GC can be managed using the
-XX:ParallelGCThreads flag [17]. This flag specifies the number of threads
used by ParallelGC and G1GC for collection work during the stop-the-world
pauses. It is important to differentiate these from the concurrent threads used by
fully concurrent collectors and those used by G1GC to mark live objects of the
old generation.

The JVM dynamically determines the number of parallel threads based on the
number of cores available at the time of JVM startup [17]. It refers to physical
cores if hyperthreading is not enabled, and virtual cores if hyper-threading is
enabled. On machines with eight or fewer cores, the JVM assigns one GC thread
per core. On machines with more than eight hardware threads, 5/8 of the physical
cores are dedicated as GC threads. The result is rounded down to the nearest
integer [15].

According to Cai [5], the performance of GC is usually only evaluated on
the basis of wall time. To minimize this time, a high level of parallelization is
achieved by a high number of parallel threads. This means that the same work
can be completed in a shorter time and therefore, a decent wall time is guaranteed
by default. However, CPU usage is neglected in this approach. During the stop-
the-world pauses, the JVM tries to dedicate all possible CPU resources to the
parallel threads [15]. If a smaller number of threads is used and these cannot
utilize all the CPU resources, we may expect that CPU cycles are effectively
saved. In addition, high parallelization causes further CPU overhead, as described
in section 3.1. In conclusion, using many parallel threads reduces wall time. To
decrease the consumed CPU cycles, however, we assume it is advisable to reduce
the number of threads.

For each additional thread, thread-local data structures must be created [10].
In addition, each thread reserves a portion of the old generation for promotions
during young collections [17]. As a result, the old generation is divided into
several segments based on the number of threads, which can potentially lead to
fragmentation. Therefore, we assume that memory overhead increases with each
additional thread.

Although the number of parallel threads is ergonomically determined based
on available system resources–if not explicitly set–the logic remains consistent.
This means that the same number of parallel threads will be used under simi-
lar conditions, without runtime adjustments. Therefore, a chosen configuration
should yield consistent results.

4.4 Number of Concurrent Threads

The flag -XX:ConcGCThreads determines the number of concurrent threads [17].
It is important to distinguish how much work these threads perform depending

23

on the garbage collector in use. G1GC’s concurrent threads primarily handle the
marking of live objects in the old generation. In contrast, the concurrent threads
of ZGC and Shenandoah perform most of the GC work.

In the case of G1 and Shenandoah, the JVM also dynamically determines the
number of concurrent threads based on the number of (virtual) cores available
at JVM startup [9, 17]. By default, G1GC uses a quarter of the number of
parallel threads as concurrent threads. Shenandoah uses a quarter of the available
(virtual) cores as concurrent threads. Both results are rounded down to the
nearest integer. In contrast, ZGC employs heuristics to automatically select the
number of concurrent threads, which can be overridden by setting the flag [17].

With regard to wall time, it could be that the rule applies again: More threads
can do the same work in less time. However, as outlined in section 3.2, too many
concurrent threads may throttle mutator threads due to limited CPU availability.
Conversely, too few threads can cause the memory to be requested faster by the
application than it can be provided by the GC, which leads to another form of
mutator thread throttling [5, 15]. In both scenarios, wall time could potentially
increase.

Coordination between all concurrent threads consumes significant CPU re-
sources [10]. It could be that a higher number of concurrent threads increases
this effort and thus also the CPU usage, while a lower number might result in
reduced CPU consumption.

In the case of G1, there is a particular risk that too few concurrent threads
will lead to more frequent full collections [15], which could be costly for both wall
time and CPU time. This occurs when the old generation fills up faster than the
concurrent threads identify the regions with the most dead objects. The JVM
then aborts the concurrent marking activity and performs a full collection. As a
result, the strong ability of G1GC to avoid full collections is lost.

Except for ZGC, the performance should be consistent because the number
of threads is determined once at startup and then maintained throughout the
execution.

4.5 Throughput Goal

The throughput goal is adjusted by the -XX:GCTimeRatio flag and applicable
to ParallelGC and G1GC [17]. It is defined as the fraction of time that is not
consumed by GC relative to the total execution time of the program [15]. It is
calculated as follows:

Throughout Goal = 1− 1

1 + GCTimeRatio

Here, the subtracted term represents the proportion of time that the GC is active.
For instance, the default GCTimeRatio for ParallelGC is 99, meaning that the GC
consumes 1/100, or 1 percent, of the program’s execution time. Consequently,

24

the actual program code runs for 99 percent of the time. In contrast, G1GC
has a default GCTimeRatio of 12, which implies a GC time of about 1/13, or
approximately 8 percent of the total execution time.

The higher the total GC time, the lower the throughput. One could conclude
that lower throughput leads to a longer wall time as well, as GC takes more time.
For ParallelGC, this could be true since collector threads are only active during
pauses, and long GC pauses directly extend wall time. In the case of G1GC or
other fully concurrent collectors, special care must be taken. Concurrent collector
activities can lead to the mutator threads being throttled [5, 15]. If only GC pause
times are considered in the calculation of throughput, concurrent collectors may
appear to achieve high throughput even though the wall time might actually be
longer due to reduced mutator work.

Internally, the JVM prioritizes achieving the throughput goal at the expense of
increased memory usage [15]. If the throughput goal is not met, the JVM enlarges
the heap size, which implies that a higher throughput could lead to higher peak
memory consumption. At the same time, the larger heap could improve wall time
and CPU usage, as explained in section 4.1. A high throughput can therefore be
beneficial for this measures.

The adaptive resizing of the heap and generations aligns with the set through-
put goal, meaning that the specific level of the throughput goal should not change
the variability of performance. More consistent performance should only be
achieved if the pause time goal is disabled. Setting the total heap size equal
to the initial heap size effectively deactivates the throughput goal.

4.6 Maximum Pause Time Goal

The maximum pause time goal is set using the -XX:MaxGCPauseMillis flag
and applicable for ParallelGC and G1GC [17]. This parameter sets the maximum
allowable duration, in milliseconds, that any GC pause can last[15]. It is irrelevant
whether it is a young or a full collection. The idea behind this parameter is to
ensure short pause times, which typically lead to lower latency and better response
times.

For G1GC, the default maximum pause time is set at 200 milliseconds [17].
ParallelGC does not have this parameter set by default [17]. This indicates its
focus on high throughput rather than latency constraints. In contrast, G1GC
tries to balance both throughput and latency goals. The prioritization of goals
for both collectors is as follows: Pause time goal takes precedence over throughput
goal and then over memory footprint [17].

To achieve the maximum pause time goal, the JVM decreases the size of the
heap, which allows collections to occur more quickly since fewer objects need to
be processed [15]. G1GC can further activate its concurrent threads earlier and
adjust how many regions of the old generation are processed during each GC
cycle [15].

25

In the case of ParallelGC, shorter pauses could contribute to reduced overall
wall time. However, reducing the size of the heap results in significantly more
frequent collections. It is possible that the shorter pauses will add up to a longer
total wall time [15] and CPU time as well. In the case of G1GC, increased
concurrent activity may again throttle mutator threads [5, 15], which could to a
longer wall time as well.

As the pause time goal is achieved by reducing the heap size, memory usage
could decrease significantly. The variability of performance should remain. More
consistent performance can only be achieved if the pause time goal is disabled.
This is possible by setting the total heap size equal to the initial heap size.

26

5 Experimental Evaluation

In this section, we evaluate the performance of CPAchecker under various GC
configurations based on the theoretical considerations in Section 3 and Section 4,
applying the performance measures described in Section 2.6. The goal of this
evaluation is to identify the most suitable GC configuration for each of our two
use cases, which ensures that CPAchecker meets the specific performance re-
quirements of both scenarios. As explained in Section 1, the first use case aims
to achieve results from CPAchecker expeditiously with minimal memory usage.
Here, wall time and the peak memory consumption are of primary concern. The
second use case focuses on evaluating results in a scientific setting, where the
main priority is to reduce CPU time. We first benchmarked all five JVM garbage
collectors out-of-the-box, without any tuning. Subsequently, the garbage col-
lectors were individually tuned and benchmarked. This approach allows for a
comparison of the performance between the default configurations and the tuned
versions. Currently, CPAchecker uses G1GC as the default garbage collector. Due
to limited resources for benchmarking, only configurations that are beneficial for
the use cases will be further pursued. Furthermore, each tuning parameter re-
quires ongoing maintenance because they may become outdated with newer JDK
versions. Therefore, our goal is to identify tuning options that deliver a clearly
positive impact. Parameters that offer only minimal effects will not be considered
further.

5.1 Experiment Setup

In total, we benchmarked 96 different garbage collection configurations in 762 355
verification runs, which accounted for approximately 2 063 days of CPU time.
Time and peak memory consumption results were rounded to three significant
digits.

27

5.1.1 Software

We conducted the experiments using CPAchecker in revision 46761 from the
project repository3. For benchmarking, we used BenchExec4 in version 3.21 and
executed the benchmarks through BenchCloud5. We used Ubuntu 22.04.4 (64-
bit) as operating system and CPAchecker was executed with OpenJDK 17.0.11
as JVM. The experiments follow the SV-COMP24 [1] setup, as this competition
corresponds to the scientific environment of the second use case. Consequently,
the resource limits were set to match those of SVCOMP24: 15 min of CPU time,
a hard limit of 16 min, 15 GB of memory, and 4 CPU processing units. However,
in Section 5.2.5 we also experimented with 8 CPU processing units to allow for a
broader variation in the number of GC threads.

As mentioned in Section 2.6, some analyses delegate verification tasks to native
libraries that operate outside the JVM. Since these native libraries also consume
memory, the available 15 GB memory must be divided to ensure both the JVM
and native libraries have enough memory to avoid crashes [20]. To achieve this,
the JVM’s total heap size must be set smaller than the available memory, as it
is fully reserved at JVM startup. Thus, we set the heap size to 10 GB.

We configured CPAchecker according to SV-COMP24 using the options
-svcomp24 and -benchmark. Since our focus is on performance data for
CPAchecker, we disabled the output of witness files.

5.1.2 Verification Tasks

We used the set of verification tasks from SV-COMP24 [1], which is available in
the project repository6 under the tag svcomp24-final.

Due to limited resources, we narrowed down the task set to a subset of tasks.
The idea was to first focus on tasks where GC performance is relevant, so we could
see the effects of tuning more clearly. At the same time, reducing the number of
tasks allowed us to efficiently utilize the available resources to benchmark a vari-
ety of GC configurations. To achieve this, the entire set was initially benchmarked
with a doubled CPU time limit of 30 min. We used G1GC, as it has been the
default up until now. For all tasks we removed the default CPU limit of 15 min
in the properties. In addition, for tasks where the property is reachability safety,
we set the option -setprop limits.time.cpu::required=1800s. The
CPU limit for individual components of the tasks remained unchanged, which
ensures that the algorithm of each component within a task continues to execute.
Only the algorithm of the last component benefited from more CPU time. For the
subset, we further considered only the tasks that did not time out within the CPU

3https://svn.sosy-lab.org/software/cpachecker/trunk
4https://github.com/sosy-lab/benchexec
5https://vcloud.sosy-lab.org/cpachecker/webclient/master/info
6https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks

28

https://svn.sosy-lab.org/software/cpachecker/trunk
https://github.com/sosy-lab/benchexec
https://vcloud.sosy-lab.org/cpachecker/webclient/master/info
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks

limit of 30 min. The advantage of this approach is that if a GC configuration
improves CPAchecker’s performance in terms of CPU time, a task that previ-
ously required between 15 and 30 min of CPU time might now complete within
15 min. Consequently, tasks that exceed 30 min of CPU time are not further
considered as it is unlikely that they are processed within 15 min. In addition,
these tasks require a significant amount of benchmarking resources. Tasks with
statuses such as ERROR, OUT OF MEMORY, ASSERTION, EXCEPTION,
or UNKNOWN were explicitly included in the evaluation. This is due to the
possibility that a different GC configuration could also improve CPAchecker’s
performance with respect to these tasks, for instance, by detecting an error more
quickly. As a second criterion, we excluded tasks where GC time accounted for
more than 2 percent of the wall time. CPAchecker provides statistics on GC via
MXBeans7, which are output through the BenchExec logs. The method long
getCollectionTime() returns the approximate accumulated GC time in mil-
liseconds. This output helps identify tasks that are notably affected by GC. To
achieve this, we compared the reported GC time to wall time, since both refer
to elapsed time, and selected tasks where GC time accounted for more than 2
percent of the wall time. This restriction allows us to efficiently narrow down the
set to tasks where GC performance is relevant. In total, this resulted in a subset
of 2 822 verification tasks. This subset still includes tasks from all the original
properties, such as reachability safety, no data race, memory cleanup, memory
safety, no overflow, and termination.

5.1.3 Hardware

For the experiments, two different sets of machines were used to maximize bench-
marking resources. It was ensured that only GC configurations executed on the
same machine were compared during the evaluation. In addition, the assignment
of benchmarks to each machine was clearly documented.

The first set of machines used for the experiments was equipped with an
Intel Core i7-10700 processor running at 2.9 GHz and 67 GB of RAM. This
processor has 8 physical cores and supports hyperthreading, which provides a
total of 16 virtual cores. Turbo Boost was disabled, as it can influence the results
by automatically adjusting the CPU frequency [20]. This machine was used
to determine the subset of SV-COMP24 verification tasks and to evaluate the
performance of GC with these subset tasks.

The second set of machines featured an Intel Xeon E3-1230v5 processor with a
frequency of 3.4 GHz and 33 GB of RAM. This CPU has 4 physical cores and also
supports hyperthreading, which results in 8 virtual cores. Turbo Boost was dis-
abled on this machine as well. It was used to benchmark the entire SV-COMP24

7https://docs.oracle.com/en/java/javase/11/docs/api/java.
management/javax/management/MXBean.html

29

https://docs.oracle.com/en/java/javase/11/docs/api/java.management/javax/management/MXBean.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/javax/management/MXBean.html

verification task set, along with the additional set of tasks for k-induction, pred-
icate analysis, and value analysis.

Both sets of machines ran on the Linux kernel version 5.15. The number of
CPU units specified by the resource limit matches the number of virtual cores.
All benchmarks were executed in parallel. For instance, when using 4 CPU units
on a machine with an Intel Core i7-10700 processor, which has 16 virtual cores, 4
parallel executions were possible, with sufficient RAM available for each execution
(15 GB per run). On a machine with an Intel Xeon E3-1230v5 processor, only
two parallel executions were possible due to its 8 virtual cores, but there was
still enough RAM for each execution (15 GB per run). When using 8 CPU
units, the number of parallel executions was halved accordingly. These parallel
executions can lead to nondeterministic interference affecting performance [20].
However, this approach was taken to better utilize available resources, similar to
the practice in SV-COMP24. Additionally, parallel execution is common when
CPAchecker is used for evaluating algorithms rather than performance.

5.1.4 Reproduction of Results

All necessary resources for reproducing the results are provided [13]. This includ-
ing benchmark definitions for BenchExec to rerun the experiments. Additionally,
tables with the complete results are available, along with the raw measurement
data in BenchExec format.

5.2 Experiment Results

In this section, we evaluate the benchmark results. The average CPU time for the
entire set of tasks is calculated based on all tasks that did not result in an ”out
of memory” error. It is important to exclude these errors, as they could occur
with a low CPU time. Conversely, a more memory-efficient GC might prevent
such errors but require more CPU time for the same task. Timeouts were taken
into account with a CPU time value of 900 seconds.

5.2.1 Selecting Garbage Collectors

First, we analyzed all five GC algorithms in their default configurations, without
applying any tuning parameters. Table 2 provides a summary of the results and
Figure 1 presents quantile plots with results for CPU time, wall time, and memory
footprint for correct tasks. Table 3 lists the number of different GC cycles for
each generational garbage collector for all tasks of the subset.

In terms of CPU time, we observe that running CPAchecker with SerialGC,
ParallelGC, and G1GC consumes, on average, fewer CPU cycles than with Shenan-
doah and ZGC. This results in fewer correct tasks and more timeouts for ZGC
and Shenandoah. ParallelGC and G1GC perform quite similarly, and SerialGC

30

requires noticeably less CPU time for the same set of verification tasks. When
comparing wall time, ParallelGC is the fastest, closely followed by G1GC. ZGC
and Shenandoah have slower wall times, while SerialGC is noticeably the slowest.
The performance differences between these GC configurations become more pro-
nounced with increasingly difficult tasks, as confirmed by Figure 1. Regarding
peak memory consumption, running CPAchecker with Shenandoah and partic-
ularly ZGC requires a substantial amount of memory, significantly higher than
the other garbage collectors. While the available memory is generally sufficient,
there is a slightly increased number of ”out of memory” errors. G1GC and Paral-
lelGC show similar peak memory consumption, though G1GC tends to use more
memory. SerialGC, in contrast, requires the lowest amount of memory.

We observe that SerialGC and ParallelGC perform a significantly higher num-
ber of full GCs compared to G1GC, with SerialGC executing slightly more full
GCs than ParallelGC. SerialGC also leads with the number of young GCs. G1GC
performs more young GCs than ParallelGC but still substantially fewer than Se-
rialGC. Additionally, G1GC performs 6 997 concurrent marking cycles.

Our experimental results confirm that, in terms of CPU time, SerialGC is com-
petitive and even outperforms other collectors in multi-processor environments.
Compared to ParallelGC, SerialGC performs more full GCs and significantly more
total GCs, yet it still consumes fewer CPU cycles. We conclude that the paral-
lelization overhead becomes evident here. Although ParallelGC performs fewer
GCs, they require more CPU resources because the heap is processed in paral-
lel, which necessitates additional synchronization between the collector threads.
At the same time, using multiple threads for GC significantly shortens the wall
time. We assume that ParallelGC achieves its lower number of GCs by earlier
expanding the heap size to meet its throughput goal, which results in a higher
peak memory consumption.

We may conclude that G1GC achieves similar CPU usage to ParallelGC due
to its fewer expensive full collections. This allows G1GC to compensate for its
more frequent collections needed to meet latency goals and the CPU usage of its
background threads. In terms of wall time, though, the more frequent collections
and the potential mutator throttling due to the CPU consumption of background
threads become more relevant factors, making ParallelGC significantly faster.
However, it is important to note that in the case of CPAchecker, the available 15
GB of memory is quite generous. If less memory is provided, G1GC’s ability to
avoid full collections could become more relevant, which could potentially make
it more efficient in terms of both CPU time and wall time.

Our results highlight that running CPAchecker with the concurrent collectors
Shenandoah and ZGC requires high CPU usage. This is due to the increased
parallelization overhead, as the work is done concurrently rather than during
stop-the-world pauses. Additionally, these collectors are not generational. De-
spite using multiple collector threads, they are still slower than G1GC and Paral-

31

lelGC, which could indicate that mutator threads are being throttled. The high
peak memory consumption is likely due to the additional resources required for
concurrency.

When considering untuned GC configurations, G1GC and ParallelGC are
promising options for our use case, where wall time and peak memory consump-
tion are the primary concerns. For the other use case, which aims to minimize
CPU time, SerialGC is preferable due to its strong CPU performance and mini-
mal memory requirements to operate efficiently. ZGC and Shenandoah demand
excessive CPU resources, which leads to a reduced number of correct tasks and in-
creased timeouts. While the memory available for benchmarking is sufficient, the
higher memory consumption of CPAchecker is not problematic in itself. However,
it increases the risk of “out of memory” errors. This risk is even more significant
becomes even more significant when using different native libraries that require
additional memory. Consequently, we will limit our further research and tuning
efforts to SerialGC, ParallelGC and G1GC.

Table 2: Results for each garbage collector in default configuration

Garbage
Collector

Correct
Tasks

Timeouts
Out of
memory

Avg.
CPU time (s)

SerialGC 2 197 148 0 176
ParallelGC 2 193 155 0 183
G1GC 2 198 146 1 184
Shenandoah 2 169 179 3 196
ZGC 2 138 214 4 200

Table 3: Number of garbage collections and concurrent marking cycles of live
objects for all tasks of the subset for each generational garbage collector

Garbage Collector Full GCs Young GCs
Concurrent

marking cycles

SerialGC 15 724 330 381 0
ParallelGC 12 189 72 202 0
G1GC 166 160 278 6 997

32

0 200 400 600 800 1 000 1 200 1 400 1 600 1 800 2 000 2 200 2 400
0

200

400

600

800

1 000

n-th fastest result

C
P
U

ti
m
e
(s
)

0 200 400 600 800 1 000 1 200 1 400 1 600 1 800 2 000 2 200 2 400
0

200

400

600

800

1 000

n-th fastest result

W
a
ll
ti
m
e
(s
)

0 200 400 600 800 1 000 1 200 1 400 1 600 1 800 2 000 2 200 2 400
0

.5

1

1.5
·104

n-th result ordered by memory footprint

M
em

or
y
F
o
ot
p
ri
n
t
(M

B
)

SerialGC ParallelGC
G1GC Shenandoah
ZGC

Figure 1: Quantile plots of correct tasks for CPU time, wall time and memory
footprint across all garbage collectors in default configuration

33

5.2.2 Overview of Tuning Parameters and their Default Values for
CPAchecker

Table 4 summarizes all tuning parameters for SerialGC, ParallelGC, and G1GC,
along with their default values specifically for CPAchecker and our experiments.
If a field is left blank, the parameter is not available for the respective garbage
collector. An exception to this is the MaxGCPauseMillis parameter for Paral-
lelGC, which, although available, is not set by default. The default values listed
have been sourced from the Oracle Tuning Guide [17] or derived from the JVM
logs generated during our experiments.

Table 4: Overview of tuning parameters for SerialGC, ParallelGC
and G1GC and their default values for CPAchecker

Parameter SerialGC ParallelGC G1GC

Xmx (MB) 10 000 10 000 10 000
Xms (MB) 224 224 224
MinHeapFreeRatio 40 40 40
MaxHeapFreeRatio 70 70 70
NewRatio 2 2 2
SurvivorRatio 8 8 8
G1NewSizePercent 5
G1MaxNewSizePercent 60
ParallelGCThreads 4 4
ConcGCThreads 1
GCTimeRatio 99 12
MaxGCPauseMillis 200

5.2.3 Total and Initial Heap Size

In the case of CPAchecker, the total heap size must be determined upfront, as
described in Section 5.1.1. Therefore, it is an obvious choice to set the initial
heap size equal to the total heap size. To do so, we set -Xms to match -Xmx at
a value of 10 GB. Due to limited benchmarking resources, we did not experiment
with varying the heap size itself. In a second step, we experimented with different
values for -XX:MinHeapFreeRatio and -XX:MaxHeapFreeRatio. Table 6
presents a summary of the results, where the average CPU time is calculated
based on all tasks that did not result in an ”out of memory” error. Table 7 shows
the average measures for the commonly solved subset of each tuned and untuned
GC variant and Table 5 lists the number of different GC cycles before and after
tuning the initial heap size. In Figure 2, line plots illustrate the performance

34

measures for ParallelGC across various -XX:MinHeapFreeRatio settings for
the commonly solved subset.

In the following paragraphs, we first discuss setting -Xms to match -Xmx.
We can see that this tuning reduces CPAchecker’s CPU usage for both SerialGC
and ParallelGC. However, with ParallelGC, this results in fewer correct tasks
and more timeouts. Using G1GC, it leads to a higher CPU time and and also
to an increase in timeouts. Regarding wall time, only SerialGC shows an im-
provement when tuned, whereas ParallelGC and G1GC perform worse in their
tuned configurations. Additionally, the peak memory consumption increases sig-
nificantly for all three collectors, with SerialGC requiring more than twice the
amount of memory to run CPAchecker. In terms of GC cycles, tuning has led to
substantial reductions, with SerialGC and ParallelGC experiencing decreases of
approximately 90 percent and 55 percent, respectively. G1GC, while also seeing
a reduction, has a relatively smaller decrease of about 35 percent.

Due to the tuning option, the entire heap is now reserved upfront, meaning
that larger generations are allocated at the start. This allows CPAchecker to
allocate more objects before a GC is required, which results in higher peak mem-
ory consumption. At the same time, when memory is freed up, more space is
created than with smaller generations, allowing for more objects to be allocated
before the next GC is triggered. This leads to less frequent collections. This
effect is particularly evident with SerialGC, where the number of collections has
decreased significantly, while there has been a substantial increase in the peak
memory footprint.

However, we may conclude that less frequent collections do not necessarily
improve CPAchecker’s performance across all measures. While fewer collections
might seem beneficial, they can be more costly because they involve processing a
larger portion of the heap and, consequently, a larger number of objects [10, 15].
For instance, in the case of ParallelGC and G1GC, the wall time increases, and
although G1GC experiences fewer concurrent cycles, these background cycles will
likely consume more CPU cycles as more objects must be processed. We assume
this effect is even more pronounced because, for ParallelGC, the throughput goal
is deactivated, and for G1GC, the latency goal is turned off. This allows Paral-
lelGC to expand the heap more quickly, as it is not constrained by the overall
pause time. Similarly, with the latency goal turned off, G1GC does not prioritize
maintaining a smaller heap size.

The reason for the increased number of timeouts with tuned ParallelGC re-
mains unclear. It is possible that the higher initial heap size may have interfered
with CPAchecker’s analysis itself.

Regarding our use cases, setting xms=xmx alone is not effective. While it
does improve CPU time for ParallelGC and SerialGC, the benefits are limited.
For SerialGC, this setting results in only one fewer timeout, and for ParallelGC,
there is a noticeably reduction in the number of correct tasks. For G1GC, there

35

are no positive effects observed. Additionally, with adaptive sizing turned off,
maintaining the configuration becomes more challenging, as the generation size
must be predetermined.

Now we consider tuning the heap sizing via -XX:MinHeapFreeRatio and
-XX:MaxHeapFreeRatio. For G1GC, there are no major changes when devi-
ating from the default settings of -XX:MinHeapFreeRatio=40 and
-XX:MaxHeapFreeRatio=70. However, with SerialGC and ParallelGC, low-
ering the MinHeapFreeRatio leads to higher average CPU times and more
timeouts. For SerialGC, it worsens average wall time, while for ParallelGC, it
results in a slight improvement. CPAchecker’s peak memory consumption is re-
duced with SerialGC and even more noticeably with ParallelGC. We observe that
increasing the MinHeapFreeRatio has the exact opposite effects, except that
CPAchecker continues to need less memory with ParallelGC than with its de-
fault configuration. Notably, this remains true even when the flag is set to match
the default value. For MaxHeapFreeRatio, we observe that changes do not
affect G1GC. Setting it lower than the default 70 results in higher CPU usage for
both SerialGC and ParallelGC, while wall time and peak memory usage are only
improved for ParallelGC.

The MinHeapFreeRatio determines the minimum percentage of free space
in a generation after a GC event has occurred [16]. Thus, we may conclude that
lowering this value results in less expansion of the generations and, consequently,
the overall heap, which reduces peak memory consumption. However, this typ-
ically comes at the cost of increased CPU usage, as the smaller amount of free
memory triggers more frequent GC events. Conversely, a higher value leads to
more higher peak memory usage but reduces the frequency of GCs, which poten-
tially reduces CPU usage.

The MaxHeapFreeRatio determines the maximal percentage of free space
in a generation after a GC event has occurred [16]. We assume that a lower value
ensures that GC events occur earlier and therefore less memory is used. However,
this also implies more frequent GC events at the expense of CPU time. We expect
that a higher value could lead to the exact opposite effect.

We hypothesize that the lower peak memory consumption with ParallelGC
when the MinHeapFreeRatio flag is set, regardless of the specific value, is due
to a change in the priority of ParallelGC’s heuristics. Normally, throughput is
prioritized over memory efficiency [17], but with the flag set, this is no longer the
case. This could be why the default behavior of ParallelGC differs from when the
flag is set, even if the same value is used. We also assume that this explains the
difference between ParallelGC compared to SerialGC and G1GC, as SerialGC
does not implement internal goals, while G1GC employs much more complex
ones.

The difference in higher CPU usage with a lower MaxHeapFreeRatio compared
to a lower MinHeapFreeRatio, both of which constrain the generations and

36

therefore the heap, is due to the fact that freeing the heap is more expensive than
expanding it.

For our use cases, setting MinHeapFreeRatio=80 seems promising, as it
results in the fewest timeouts–5 fewer compared to other values. At the same time,
it noticeably improves CPU time for ParallelGC, which makes it competitive
with SerialGC, while also retaining much better wall time, even compared to
G1GC. Additionally, peak memory consumption is decreased by approximately
31 percent, which means that CPAchecker requires less memory to run, which is
particularly beneficial in scenarios where memory is limited.

Table 5: Comparison of garbage collection cycles for SerialGC, ParallelGC,
and G1GC across the entire subset of tasks before and after setting the initial
and maximum heap sizes equal

Configuration Full GCs Young GCs
Concurrent marking

cycles

SerialGC
Default 15 724 330 381 0
Xms=Xmx 4 143 28 761 0

ParallelGC
Default 12 189 72 202 0
Xms=Xmx 3 926 33 955 0

G1GC
Default 166 160 278 6 997
Xms=Xmx 124 102 737 5 076

37

Table 6: Results for each garbage collector after tuning the heap size

Configuration
Correct
Tasks

Timeout
Out of
memory

Avg.
CPU
time
(s)

SerialGC
Default 2 197 148 0 176
Xms=Xmx 2 197 147 0 174
MinHeapFreeRatio=20 2 194 150 1 180
MinHeapFreeRatio=70 2 198 147 0 175
MaxHeapFreeRatio=50 2 197 148 0 177

ParallelGC
Default 2 193 155 0 183
Xms=Xmx 2 179 167 0 182
MinHeapFreeRatio=20 2 189 158 1 188
MinHeapFreeRatio=40 2 191 156 0 184
MinHeapFreeRatio=70 2 195 151 0 177
MinHeapFreeRatio=80 2 197 150 0 176
MinHeapFreeRatio=90 2 194 151 0 175
MaxHeapFreeRatio=10 2 137 219 1 220
MaxHeapFreeRatio=50 2 186 161 1 189

G1GC
Default 2 198 146 1 184
Xms=Xmx 2 192 152 1 186
MinHeapFreeRatio=20 2 193 151 1 184
MinHeapFreeRatio=70 2 195 150 0 183
MaxHeapFreeRatio=50 2 196 148 1 184

38

Table 7: Performance results of the commonly solved subset for each garbage
collector after tuning the heap size

Configuration
Common
Correct
Tasks

Avg.
CPU
time
(s)

Avg.
Wall
time
(s)

Avg.
Peak
mem-
ory

(MB)

SerialGC 2 191
Default 141 116 1 730
Xms=Xmx 138 113 3 770
MinHeapFreeRatio=20 145 120 1 590
MinHeapFreeRatio=70 139 114 1 980
MaxHeapFreeRatio=50 141 116 1 730

ParallelGC 2 123
Default 136 93.6 2 730
Xms=Xmx 134 96.4 3 690
MinHeapFreeRatio=20 140 91.8 1 420
MinHeapFreeRatio=40 137 91.8 1 470
MinHeapFreeRatio=70 132 92.5 1 700
MinHeapFreeRatio=80 131 92.6 1 870
MinHeapFreeRatio=90 130 93.5 1 920
MaxHeapFreeRatio=10 164 91.6 1 210
MaxHeapFreeRatio=50 140 91.8 1 410

G1GC 2 181
Default 146 102 3 000
Xms=Xmx 147 103 3 420
MinHeapFreeRatio=20 146 102 2 980
MinHeapFreeRatio=70 146 102 3 080
MaxHeapFreeRatio=50 146 102 2 910

39

10 20 30 40 50 60 70 80 90 100

97.5
100

110

120

130

140

150

MinHeapFreeRatio

T
im

e
(s
)

10 20 30 40 50 60 70 80 90 100
1 500

1 700

1 900

2 100

2 300

2 500

2 700

2 900

MinHeapFreeRatio

A
v
g.

P
ea
k
M
em

or
y
(M

B
)

CPU time Wall time Peak Memory

Figure 2: Line plots of performance measures for ParallelGC across various
MinHeapFreeRatio settings for the commonly solved subset

40

5.2.4 Generation Size

Before adjusting the generations, we first analyzed the age distribution of objects
when executing CPAchecker. As explained in Section 4.2, the age of an object
indicates how many GC events it has already survived in the young generation,
and the age distribution of objects is measured in bytes. For this analysis, we
used SerialGC, as it performs the most frequent young collections, which provides
a more accurate dataset than the other GC algorithms. Figure 3 shows the dis-
tribution of surviving object bytes by age. Next, we experimented with different
sizes of the new and old generations, as well as the survivor spaces, both with
and without adaptive resizing of the generations. Table 8 presents a summary
of the results and Table 9 shows the average measures for the commonly solved
subset of each tuned variant and the default.

Figure 3: Distribution of surviving object bytes by age of all tasks from the subset
using SerialGC

0 2 4 6 8 10 12 14 16
Age

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f b
yt

es
 su

rv
iv

in
g

It is important to note that age logging begins at age 1, so Figure 3 only
provides information on objects that have survived at least one GC event. We
observe that of the objects that reach age 1, less than half make it to age 2.
Similarly, of those that reach age 2, only about a quarter survive to age 3. Overall,
less than 5 percent of objects reach an age of 5 or more. Regarding the tuning
of generations, we can see that the different configurations did not lead to any

41

noticeably improvement in CPAchecker’s performance or the number of correct
tasks. In some cases, performance even worsened, particularly when adaptive
heap sizing was disabled.

We cannot draw conclusions about the overall lifetime distribution of objects
based on age plotting alone, as we do not know how many bytes are freed during
the first GC event. However, the data does indicate how old the objects get
that have survived at least one GC event. In our case, objects tend to have a
very short lifespan, with only 5 percent of objects that survive one GC event
going on to survive five GC events. One might assume that a larger young
generation via NewRatio=1 could be beneficial, given the large number of short-
lived objects. However, this effect cannot be observed, particularly with SerialGC
and ParallelGC, where no improvements in CPU time or wall time are achieved,
and the number of correct tasks was lower. As described in Section 4.2, a larger
young generation may result in less frequent, but more expensive and longer young
collections, as more objects need to be processed. In the case of CPAchecker, this
trade-off seems to favor a smaller young generation. We may conclude that the
default young generation size as well as the adaptive size management are well-
suited to this balance, as the age distribution of CPAchecker’s objects corresponds
with the weak generational hypothesis, which is consistent with the way GC
algorithms are implemented [17]. Therefore, this could also explain why changing
the generation size has a greater impact when adaptive sizing is disabled.

Overall, we did not find any generation tuning that improved results for our
use cases compared to the default settings. Additionally, tuning generations can
be challenging to maintain, as the age distribution of objects may vary with
different tasks and analyses.

42

Table 8: Results for each garbage collector after tuning the generations

Configuration
Correct
Tasks

Timeout
Out of
memory

Avg.
CPU
time
(s)

SerialGC
Default 2 197 148 0 176
NewRatio=1 2 190 156 0 178
NewRatio=3 2 198 147 1 177
SurvivorRatio=6 2 196 150 0 177
SurvivorRatio=10 2 197 147 1 176
Xms=Xmx 2 197 147 0 174
Xms=Xmx &
NewRatio=1

2 190 156 0 175

Xms=Xmx &
NewRatio=3

2 192 150 1 176

Xms=Xmx &
SurvivorRatio=6

2 199 146 0 174

Xms=Xmx &
SurvivorRatio=10

2 184 161 0 177

ParallelGC
Default 2 193 155 0 183
NewRatio=1 2 187 163 0 184
NewRatio=3 2 193 155 0 186
SurvivorRatio=6 2 193 153 0 181
SurvivorRatio=10 2 190 156 0 183
Xms=Xmx 2 179 167 0 182
Xms=Xmx &
NewRatio=1

2 166 182 0 184

Xms=Xmx &
NewRatio=3

2 188 157 0 180

Xms=Xmx &
SurvivorRatio=6

2 178 168 0 183

Xms=Xmx &
SurvivorRatio=10

2 185 161 0 180

G1GC
Default 2 198 146 1 184
NewRatio=1 2 198 147 1 182
NewRatio=3 2 198 147 0 184

Continued on next page

43

Table 8: (continued)

Configuration
Correct
Tasks

Timeout
OUT OF
MEMORY

Avg.
CPU
time
(s)

SurvivorRatio=6 2 201 142 1 182
SurvivorRatio=10 2 199 146 0 185
Xms=Xmx 2 192 152 1 186
Xms=Xmx &
NewRatio=1

2 203 142 1 183

Xms=Xmx &
NewRatio=3

2 203 143 0 183

Xms=Xmx &
SurvivorRatio=6

2 196 149 1 182

Xms=Xmx &
SurvivorRatio=10

2 181 164 0 187

G1NewSizePercent=10 2 200 143 1 184
G1NewSizePercent=20 2 201 144 0 183
G1NewSizePercent=30 2 196 149 0 183
G1MaxNewSizePercent=40 2 199 145 0 184
G1MaxNewSizePercent=80 2 196 148 0 185

44

Table 9: Performance results of the commonly solved subset for each garbage
collector after tuning the generations

Configuration
Common
Correct
Tasks

Avg.
CPU
time
(s)

Avg.
Wall
time
(s)

Avg.
Peak
mem-
ory

(MB)

SerialGC 2 170
Default 138 113 1 690
NewRatio=1 138 114 2 010
NewRatio=3 138 113 1 570
SurvivorRatio=6 138 113 1 670
SurvivorRatio=10 137 113 1 710
Xms=Xmx 134 110 3 740
Xms=Xmx &
NewRatio=1

136 112 4 620

Xms=Xmx &
NewRatio=3

136 111 3 230

Xms=Xmx &
SurvivorRatio=6

136 111 3 620

Xms=Xmx &
SurvivorRatio=10

135 111 3 800

ParallelGC 2 150
Default 141 96.5 2 810
NewRatio=1 141 96.7 3 170
NewRatio=3 143 96.9 2 550
SurvivorRatio=6 139 96.2 2 860
SurvivorRatio=10 139 96.7 2 870
Xms=Xmx 136 97.7 3 740
Xms=Xmx &
NewRatio=1

137 98.9 4 590

Xms=Xmx &
NewRatio=3

136 97.3 3 250

Xms=Xmx &
SurvivorRatio=6

136 97.7 3 740

Xms=Xmx &
SurvivorRatio=10

135 98.9 3 910

G1GC 2 170
Default 143 99.6 2 970

Continued on next page

45

Table 9: (continued)

Configuration
Common
Correct
Tasks

Avg.
CPU
time
(s)

Avg.
Wall
time
(s)

Avg.
Peak
mem-
ory

(MB)

NewRatio=1 143 99.1 2 640
NewRatio=3 143 99.6 2 990
SurvivorRatio=6 143 98.9 3 180
SurvivorRatio=10 144 101 2 840
Xms=Xmx 145 101 3 400
Xms=Xmx &
NewRatio=1

144 102 5 420

Xms=Xmx &
NewRatio=3

144 100 3 790

Xms=Xmx &
SurvivorRatio=6

144 98.9 3 370

Xms=Xmx &
SurvivorRatio=10

145 102 3 430

G1NewSizePercent=10 143 99.7 2 840
G1NewSizePercent=20 144 99.2 2 720
G1NewSizePercent=30 143 99.1 2 670
G1MaxNewSizePercent=40 144 101 3 060
G1MaxNewSizePercent=80 144 100 2 950

5.2.5 Number of Parallel and Concurrent Threads

For the evaluation of different numbers of parallel and concurrent threads, we
also experimented with configurations using 8 virtual cores. With 8 virtual cores,
more variations in the number of threads were possible compared to using 4 vir-
tual cores. However, when evaluating the number of threads, we only compare
results with the same number of virtual cores. Table 10 shows the results of
these experiments. Figure 4 displays the performance results when changing the
number of parallel threads for ParallelGC, while Figure 5 presents the perfor-
mance results when changing the number of parallel and concurrent threads for
G1GC. In both figures, the default values are highlighted in bold. SerialGC is
not considered, as it only uses a single thread for GC.

We can observe that for ParallelGC, reducing the number of parallel threads
decreases CPU usage, which leads to more correct tasks. However, this comes
at the expense of increased wall time and peak memory usage. For G1GC, a

46

similar trend is noticeable when comparing configurations with the same number
of concurrent threads, although the improvement in CPU time is less pronounced
than with ParallelGC. When increasing or decreasing the number of concurrent
threads compared to the default, there is no improvement in the number of correct
tasks or performance measures. Instead, CPU time and wall time increase slightly.

Table 10: Results for ParallelGC after tuning parallel threads and for G1GC after
tuning parallel and concurrent threads

Configuration
Correct
Tasks

Timeout
Out of
memory

Avg.
CPU
time
(s)

ParallelGC (8 Cores)
ParallelGCThreads=8 2 191 155 0 180
ParallelGCThreads=4 2 197 148 0 175
ParallelGCThreads=2 2 200 145 0 174

ParallelGC (4 Cores)
ParallelGCThreads=4 2 193 155 0 183
ParallelGCThreads=2 2 197 148 0 179

G1GC (8 Cores)
8 Parallel Threads

ConcGCThreads=4 2 198 148 0 179
ConcGCThreads=2 2 200 143 0 177
ConcGCThreads=1 2 201 142 0 178

4 Parallel Threads
ConcGCThreads=2 2 200 143 0 176
ConcGCThreads=1 2 208 135 0 175

2 Parallel Threads
ConcGCThreads=1 2 204 140 0 176

G1GC (4 Cores)
4 Parallel Threads

ConcGCThreads=2 2 192 155 0 185
ConcGCThreads=1 2 198 146 1 184

2 Parallel Threads
ConcGCThreads=1 2 199 144 1 182

47

4Cores-4Threads 4Cores-2Threads

0

1,000

2,000

3,000

146 141100 106

2,860 2,950

Configuration

V
a
lu
es

8Cores-8Threads 8Cores-4Threads 8Cores-2Threads

0

1,000

2,000

3,000

143 137 13692.9 97.2 104

2,790
2,910 3,000

Configuration

V
al
u
es

Avg. CPU time (s) Avg. Wall time (s) Avg. Peak memory usage (MB)

Figure 4: Bar plots of performance results for the commonly solved subset using
ParallelGC with 4 and 8 virtual cores, each with varying numbers of parallel
threads.

48

4Par-2Conc 4Par-1Conc 2Par-1Conc

0

1,000

2,000

3,000

4,000

148 147 146102 103 106

3,010 3,010

3,750

Configuration

V
a
lu
es

8C
or
es
-8
Pa
r-
4C
on
c

8C
or
es
-8
P
ar
-2
C
on
c

8C
or
es
-8
Pa
r-
1C
on
c

8C
or
es
-4
Pa
r-
2C
on
c

8C
or
es
-4
Pa
r-
1C
on
c

8C
or
es
-2
Pa
r-
1C
on
c

0

1,000

2,000

3,000

4,000

143 140 141 139 139 13995.1 94.5 95.9 98.3 98.2 102

2,500 2,550 2,570
2,720 2,730

3,780

Configuration

V
al
u
es

Avg. CPU time (s) Avg. Wall time (s) Avg. Peak memory usage (MB)

Figure 5: Bar plots of performance results for the commonly solved subset using
ParallelGC with 4 and 8 virtual cores, each with varying numbers of parallel
(Par) and concurrent (Conc) threads.

Our experiments with CPAchecker confirm the observation by Cai [5], as
explained in Section 4.3, that the high level of parallelization in GC by default
leads to good wall time at the expense of CPU usage. We may conclude that
reducing the number of threads can improve CPU time.

49

Our considerations in Section 4.3, that fewer threads might result in a lower
peak memory consumption due to fewer data structures and reduced fragmen-
tation, are not supported by the results. Instead, we observed a higher peak
memory consumption. We assume that fewer threads take longer to complete
the same work. Therefore, ParallelGC increases the heap size to shorten pause
times and meet its throughput goal, as explained in Section 4.5. The larger heap
could also contribute to the improved CPU time. However, following this logic,
G1GC should behave in the opposite way to meet its latency constraints and
shrink the heap, as discussed in Section 4.6. This would typically reduce peak
memory consumption, which was not observed in our results. Nevertheless, the
more frequent collections due to the smaller heap might explain why the CPU
time improves less with G1GC compared to ParallelGC. These considerations are
subject to further research.

Since increasing and decreasing the number of concurrent threads does not
improve the results, we may conclude that the default value effectively balances
the trade-offs discussed in Section 4.4: More threads could reduce wall time by
completing tasks faster, but they also risk throttling mutator threads due to lim-
ited CPU resources, while fewer threads might increase wall time by slowing down
allocation rate. In terms of CPU time, concurrent threads consume noticeable
CPU resources, but too few can lead to more frequent, expensive full collections.

For our use cases, we expect that reducing the number of parallel threads
for ParallelGC could be a good way to achieve better CPU time. For G1GC,
changing the number of parallel and concurrent threads does not result in major
performance differences.

5.2.6 Throughput and Maximum Pause Time Goals

We experimented with relaxing the throughput goal for ParallelGC and the max-
imum pause time limit for G1GC, as these are already set ambitiously by default.
Additionally, we benchmarked ParallelGC with a pause time limit, which is not
set by default, and G1GC with a higher throughput goal than default.Table 11
shows the results for both garbage collectors. Quantile plots with results for CPU
time, wall time, and peak memory consumption for correct tasks are presented
in Figure 6 for ParallelGC and in Figure 7 for G1GC.

We can see that for both garbage collectors, differences in CPU time and wall
time only become apparent with more difficult tasks. For ParallelGC, relaxing
the throughput goal leads to slightly worse average CPU time and fewer correct
tasks. However, performance is noticeably worse when the maximum pause time
goal is set, resulting in 106 fewer correct tasks. For G1GC, we observe that
there are only minor differences, with a tendency for the higher throughput goal
to result in slightly higher CPU time and wall time, while the lower maximum
pause time goal tends to improve these measures slightly. Peak memory usage is
lower for ParallelGC when the throughput goal is relaxed and the pause time goal

50

is set. However, for the most difficult tasks, setting the maximum pause time goal
requires more memory than the default. For G1GC, setting a higher throughput
goal than default results in CPAchecker significantly using more memory, while
relaxing the maximum pause time goal reduces peak memory usage.

As lowering the throughput goal worsens wall time and CPU time for Paral-
lelGC, this might confirm our assumptions in Section 4.5. When ParallelGC is
not required to keep pauses short to achieve the throughput goal, and as it only
performs GC during these pauses, the longer pauses result in an overall longer
wall time. At the same time, as explained in Section 4.5, the JVM does not need
to expand the heap as much, which leads to lower peak memory consumption.
However, because the smaller heap needs to be processed more frequently, CPU
usage may increase.

For G1GC, allowing a higher maximum pause time improves CPU time and
wall time, which supports our reasoning in Section 4.6. With longer pauses
allowed, the JVM does not need to restrict the heap size as much to meet pause
time goals, which increases peak memory usage. However, this also results in
fewer GC events, which appears to be crucial for shorter CPU time and wall time
in the case of CPAchecker.

It is plausible that larger impacts on CPU usage and wall time occur for more
difficult tasks because the more challenging the task, the more the heuristics may
need to intervene to meet the goals, which makes the configuration of these goals
even more critical.

We may conclude that the maximum pause time goal has a significant impact
on ParallelGC because it is not designed with latency constraints like G1GC. For
example, ParallelGC lacks the ability to avoid full collections, which could be
particularly important with a smaller heap.

For ParallelGC, the reason for higher peak memory consumption in a few
cases when the pause time goal is set remains unclear. For less difficult tasks, the
results generally seem to confirm the expected lower peak memory consumption
due to a smaller heap.

For our use cases, lowering the throughput goal for ParallelGC and setting
a maximum pause time goal are no options, as they result in worse CPU time
and wall time. In addition, the maximum pause time goal reduces the number of
correct tasks. However, lowering the maximum pause time goal for G1GC is an
option, as it improves all performance measures and is relatively easy to maintain.

51

0 200 400 600 800 1 000 1 200 1 400 1 600 1 800 2 000 2 200 2 400
0

200

400

600

800

1 000

n-th fastest result

C
P
U

ti
m
e
(s
)

0 200 400 600 800 1 000 1 200 1 400 1 600 1 800 2 000 2 200 2 400
0

200

400

600

800

1 000

n-th fastest result

W
a
ll
ti
m
e
(s
)

0 200 400 600 800 1 000 1 200 1 400 1 600 1 800 2 000 2 200 2 400
0

.5

1

1.5
·104

n-th result ordered by peak memory consumption

P
ea
k
m
em

or
y
co
n
su
m
p
ti
o
n
(M

B
)

Default GCTimeRatio=19
MaxGCPauseMillis=200

Figure 6: Quantile plots of correct tasks for CPU time, wall time and memory
footprint for ParallelGC after tuning throughput and maximum pause time goals

52

0 200 400 600 800 1 000 1 200 1 400 1 600 1 800 2 000 2 200 2 400
0

200

400

600

800

1 000

n-th fastest result

C
P
U

ti
m
e
(s
)

0 200 400 600 800 1 000 1 200 1 400 1 600 1 800 2 000 2 200 2 400
0

200

400

600

800

1 000

n-th fastest result

W
a
ll
ti
m
e
(s
)

0 200 400 600 800 1 000 1 200 1 400 1 600 1 800 2 000 2 200 2 400
0

.5

1

1.5
·104

n-th result ordered by peak memory consumption

P
ea
k
m
em

or
y
co
n
su
m
p
ti
o
n
(M

B
)

Default GCTimeRatio=99
MaxGCPauseMillis=10000

Figure 7: Quantile plots of correct tasks for CPU time, wall time and memory
footprint for G1GC after tuning throughput and maximum pause time goals

53

Table 11: Results for ParallelGC and G1GC after tuning throughput and maxi-
mum pause time goals

Configuration
Correct
Tasks

Timeout
Out of
memory

Avg.
CPU
time
(s)

ParallelGC
Default 2 193 155 0 183
GCTimeRatio=19 2 187 160 1 188
MaxGCPauseMillis=200 2 087 284 0 212

G1GC
Default 2 198 146 1 184
GCTimeRatio=99 2 189 153 3 184
MaxGCPauseMillis=10000 2 199 144 1 182

5.2.7 Other Configurations for G1GC

We benchmarked additional configurations for G1GC, none of which led to a
significant improvement in CPAchecker’s performance. These configurations in-
clude:

• -XX:-G1EagerReclaimHumongousObjects

• -XX:+AlwaysPreTouch

• -XX:G1HeapRegionSize=16M

• -XX:G1HeapWastePercent=10

• -XX:G1MixedGCCountTarget=4

• -XX:G1MixedGCCountTarget=12

• -XX:ReferencesPerThread=0

• -XX:ReferencesPerThread=5000

• -XX:G1RSetUpdatingPauseTimePercent=60

• -XX:+UseLargePages

• -XX:+UseStringDeduplication

54

• -XX:-G1UseAdaptiveConcRefinement
& -XX:G1ConcRefinementGreenZone=2G
& -XX:G1ConcRefinementThreads=0

• -XX:-G1UseAdaptiveIHOP
& -XX:InitiatingHeapOccupancyPercent=45

• -XX:-ReduceInitialCardMarks

• -XX:-ParallelRefProcEnabled

• -XX:CompressedClassSpaceSize=500M

• -XX:G1PeriodicGCInterval=5000

• -XX:+UseNUMA

Details about all flags can be found in the Oracle Tuning Guide [16].

5.2.8 Statistical Analysis and Results for the Subset of SV-COMP24

We conducted a statistical analysis on the most interesting GC configura-
tions to validate our findings. This analysis included the three default
GC variants as well as three tuning configurations for ParallelGC. Setting
MinHeapFreeRatio=80 for ParallelGC improves CPU time, wall time, and
peak memory consumption. Additionally, reducing the number of parallel
threads with ParallelGCThreads=2 offers another option to further im-
prove CPU time, though this could come with trade-offs, as it may increase
wall time and peak memory usage. We also included the tuning of Paral-
lelGC with MinHeapFreeRatio=40, as explicitly setting this flag–even with
the same value as the default–significantly changes the behavior of ParallelGC.
Further, we analyzed a tuning configuration for G1GC to assess whether tuning
G1GC indeed has a minimal effect. We configured G1GC with the parameters
ParallelGCThreads=2, ConcGCThreads=1, MaxGCPauseMillis=2000,
and G1NewSizePercent=20. We refer to this configuration as ”G1GC tuned”
throughout the subsequent discussion.

For the analysis, we used a categorical regression model, where the category
represents the configuration of a garbage collector. The analysis was performed
separately for the three measures CPU time, wall time, and memory peak con-
sumption. We employed the Ordinary Least Squares method to examine the
relationship between the dependent variable (each performance measure) and the
independent variables (GC configuration). We benchmarked the subset for each
configuration five times and calculated the average of the commonly solved subset
for each benchmark run. Thus, for each dependent variable CPU time, wall time,
and peak memory consumption, we obtained five averages for each configuration.

55

The model fitting and coefficients can now be interpreted to understand how dif-
ferent GC configurations impact CPAchecker’s performance. The model can be
expressed as:

Measure =

Intercept + b2 · 1(config = config2) + · · ·+ b7 · 1(config = config7) + error term

Here, 1(config = x) is an indicator function that equals 1 when configuration
x is active and 0 otherwise. The R-squared value defines the proportion of the
total variance explained by the model, with a maximum value of 1 indicating a
perfect model without any error term. Table 12 shows the results of the statistical
analysis. The current default garbage collector of CPAchecker, G1GC, serves
as the intercept. The coefficients for the other GC configurations indicate how
each performance measure changes on average compared to the intercept. The
confidence interval at a 5 percent significance level covers the true parameter
value in 95 out of 100 cases. In Figure 8, the number of correct tasks for each
GC configuration across the five benchmark runs is presented.

56

Table 12: Results from categorical regression analysis of CPAchecker’s perfor-
mance under the influence of different GC configurations for the commonly solved
subset

Configuration Coef [0.025 0.975]

Avg. CPU time (R-squared = 0.998)
Intercept [G1GC] 146.8 146.6 147.0
G1GCtuned −0.5 −0.7 −0.2
ParallelGC

Default −0.7 −0.9 −0.4
ParallelGCMinHeapRatio40 −0.1 −0.4 0.1
ParallelGCMinHeapRatio80 −6.8 −7.1 −6.6
ParallelGCMinHeapRatio80 &
ParallelGCThreads=2

−9.4 −9.6 −9.2

SerialGC −5.4 −5.7 −5.2
Avg. Wall time (R-squared = 0.999)

Intercept [G1GC] 102.4 102.2 102.5
G1GCtuned 2.9 2.6 3.1
ParallelGC

Default −2.0 −2.3 −1.8
ParallelGCMinHeapRatio40 −3.8 −4.0 −3.6
ParallelGCMinHeapRatio80 −3.3 −3.5 −3.0
ParallelGCMinHeapRatio80 &
ParallelGCThreads=2

2.2 2.0 2.4

SerialGC 14.4 14.1 14.6
Avg. Peak Memory Consumption (R-squared = 1)

Intercept [G1GC] 2 994 2 990 2 998
G1GCtuned −19 −25 −14
ParallelGC

Default −140 −145 −134
ParallelGCMinHeapRatio40 −1 383 −1 388 −1 378
ParallelGCMinHeapRatio80 −978 −983 −972
ParallelGCMinHeapRatio80 &
ParallelGCThreads=2

−942 −948 −937

SerialGC −1 258 −1 263 −1 252

The R-squared value being close to one indicates that our model can explain
almost all the variation in the data. This suggests that it accurately reflects the
behavior of GC observed in the experiment.

We find that the results of the statistical analysis match with our previous
observations. In terms of CPU time, SerialGC in its default configuration gener-

57

ally performs the best compared to the default variants of ParallelGC and G1GC,
with a difference of approximately 3.5 percent on average compared to G1GC.
Tuning G1GC results in only minor improvements. However, when tuning Par-
allelGC with MinHeapRatio=80, a slightly better average CPU time can be
achieved than with SerialGC. Reducing the number of parallel threads further
improves CPU time by up to approximately 6.5 percent compared to G1GC.
On the other hand, setting ParallelGCMinHeapFreeRatio=40 leads to an
increase in CPU cycles compared to the default variant of ParallelGC.

When considering wall time, ParallelGC emerges as the fastest, outper-
forming G1GC, while SerialGC is the slowest by a large margin. Tuning
G1GC does not lead to any improvement in wall time. However, tuning Par-
allelGC with MinHeapFreeRatio improves wall time on average, though
higher MinHeapFreeRatio values slightly increases wall time. ParallelGC
with MinHeapFreeRatio=40 performs the best on average, with a de-
crease of approximately 3.5 percent in wall time compared to G1GC, while
MinHeapFreeRatio=80 is still approximately 3 percent faster. The trade-
off between performance factors becomes evident here: Reducing the number of
parallel threads increases wall time compared to the default ParallelGC, though
this effect may be somewhat mitigated by using MinHeapFreeRatio=80.

In terms of peak memory consumption, while ParallelGC offers slight
improvements over G1GC, SerialGC provides a more substantial reduction.
Using SerialGC instead of G1GC, CPAchecker can be executed with ap-
proximately 42 percent less memory on average. Tuning G1GC results in
only minor reductions in peak memory consumption, whereas tuning Paral-
lelGC with MinHeapFreeRatio leads to higher reductions. Notably, setting
MinHeapFreeRatio=40 results in a substantial reduction of approximately 46
percent, while MinHeapFreeRatio=80 still achieves a reduction of approxi-
mately 32 percent. Additionally, lowering the number of parallel GC threads
when using MinHeapFreeRatio=80 does not significantly increase peak mem-
ory consumption compared to using MinHeapFreeRatio=80 alone, while still
maintaining a large difference from G1GC.

We can directly derive the variability of CPAchecker’s performance from the
range of the confidence intervals, as the standard error is directly involved in their
calculation. A larger range indicates higher variance in the estimated values.
As the largest span is under 7 per mille of the coefficient, the performance of
the GC appears to be quite robust against nondeterministic influences, such as
small timing differences. This contradicts our initial assumption that the more
heuristics are applied, the more variable the performance would be. As small
differences in performance are significant, we rounded the results of the statistical
analysis to four significant digits.

Regarding the number of correct tasks, we do observe some differences. G1GC
achieves the highest number of correct tasks, but the count varies more compared

58

to other GC configurations. Specifically, SerialGC and the three tuned versions
of ParallelGC come close to G1GC in terms of the number of correct tasks, while
also showing less variation in the task counts.

Se
ria

lG
C

Pa
ra

lle
lG

C
Pa

ra
lle

lG
CM

inH
ea

pR
at

io4
0

Pa
ra

lle
lG

CM
inH

ea
pR

at
io8

0
Pa

ra
lle

lG
CM

inH
ea

pR
at

io8
0

Pa
ra

lle
lG

CT
hr

ea
ds

2 G1
GC

G1
GC

tu
ne

d

GC config

2190

2192

2194

2196

2198

2200

2202

2204

2206

Co
rre

ct
 Ta

sk
s

Figure 8: Box plot of correct tasks, with benchmarks executed five times for each
GC configuration

For our use cases, tuning G1GC is neither competitive in CPU time
nor in wall time or peak memory consumption. Using ParallelGC with
MinHeapFreeRatio=40 is a good option to improve wall time and reducing
the peak memory consumption. However, MinHeapFreeRatio=80 is prefer-
able, as it provides better CPU time while still maintaining good wall time and

59

low peak memory consumption. In the following, we will therefore no longer con-
sider tuning ParallelGC with MinHeapFreeRatio=40 or the tuning of G1GC.

5.2.9 SV-COMP24

Now we want to examine whether the the results can also scale to the entire set
of verification tasks from SV-COMP24. For this purpose, each of the configura-
tions identified in Section 5.2.8 was benchmarked once on the entire number of
tasks. The results are presented in Table 13 and the performance results for the
commonly solved subset are detailed in Table 14.

Table 13: Results for the whole set of verification tasks from SV-COMP24 for all
promising GC configurations

Configuration
Correct
Tasks

Timeout
Out of
memory

Avg.
CPU
time
(s)

SerialGC 18 950 5 938 352 219
ParallelGC

Default 18 946 5 903 391 219
MinHeapFreeRatio=80 18 955 5 913 371 218
MinHeapFreeRatio=80 &
ParallelGCThreads=2

18 962 5 888 387 217

G1GC 18 961 5 802 476 218

60

Table 14: Performance results of the commonly solved subset of 18909 correct
tasks for the whole set of verification tasks from SV-COMP24 for all promising
GC configurations

Configuration
Avg.
CPU

time (s)

Avg.
Wall

time (s)

Avg.
Peak

memory
(MB)

SerialGC 66.0 54.3 524
ParallelGC

Default 66.7 51.8 807
MinHeapFreeRatio=80 65.7 51.4 585
MinHeapFreeRatio=80 &
ParallelGCThreads=2

65.2 52.2 589

G1GC 67.9 52.0 779

We can see that the effects of the different configurations are the same as
with the subset. CPAchecker consumes less CPU time with the tuned variants of
ParallelGC than with SerialGC, and with both less than with G1GC. Using Par-
allelGC with MinHeapFreeRatio=80 still achieves the best wall time. With
SerialGC, CPAchecker has the lowest peak memory consumption, followed closely
by the tuned ParallelGC variants. This leads to less ”out of memory” errors than
with G1GC. We assume that the higher number of ”out of memory” errors with
G1GC simultaneously reduces the number of timeouts, as the number of correct
tasks remains the same. Therefore, G1GC might seem to achieve better CPU
time, but this behavior is not desirable. However, quantitatively, the different
GC configurations have less impact on CPU time and wall time for the full set
than for the subset. We may conclude that this is because the subset was se-
lected based on cases where performance is most strongly influenced by the GC,
meaning that configuration changes have a more pronounced effect. This could
also be confirmed when considering the average CPU times and wall times. As
CPU time and wall time are significantly lower for the complete set of tasks than
for the subset, the subset might consist of more difficult tasks. This matches the
observation in Section 5.2.1 that the choice of GC configuration becomes more
crucial as the tasks become more difficult.

5.2.10 Other Analyses

Since SV-COMP24 includes a variety of different analyses, we also experi-
mented with executing CPAchecker specifically for individual analyses. We chose
k-induction, predicate analysis, and value analysis for this purpose, as they

61

are widely applied. We used another set of verification tasks where all tasks
where the property is reachability safety were selected, excluding the categories
ReachSafety-Recursive and ConcurrencySafety-Main. We only set a
CPU time limit of 15 min per task. Table 15 shows the results, and Table 16
presents the average measures for the commonly solved subset for each analysis.

Table 15: Results for value analysis, predicate analysis, and k-induction for all
promising GC configurations

Configuration
Correct
Tasks

Timeout
Out of
memory

Avg.
CPU
time
(s)

Value Analysis
SerialGC 3 225 4 066 227 294
ParallelGC
Default 3 192 4 156 227 297
MinHeapFreeRatio=80 3 251 4 093 228 294
MinHeapFreeRatio=80 &
ParallelGCThreads=2

3 255 4 087 228 293

G1GC 3 239 4 090 229 295
Predicate Analysis

SerialGC 4 202 4 035 8 287
ParallelGC
Default 4 203 4 033 8 287
MinHeapFreeRatio=80 4 194 4 038 8 287
MinHeapFreeRatio=80 &
ParallelGCThreads=2

4 199 4 032 8 287

G1GC 4 199 4 032 14 287
k-induction

SerialGC 7 398 4 604 312 352
ParallelGC
Default 7 395 4 422 496 346
MinHeapFreeRatio=80 7 403 4 443 458 346
MinHeapFreeRatio=80 &
ParallelGCThreads=2

7 407 4 430 464 345

G1GC 7 403 4 452 458 349

62

Table 16: Performance results of the commonly solved subset for value analysis,
predicate analysis, and k-induction for all promising GC configurations

Configuration
Common
Correct
Tasks

Avg.
CPU
time
(s)

Avg.
Wall
time
(s)

Avg.
Peak
mem-
ory

(MB)

Value Analysis 3 183
SerialGC 47.0 37.4 578
ParallelGC 47.6 30.8 963
Default 47.6 30.8 963
MinHeapFreeRatio=80 44.2 29.5 700
MinHeapFreeRatio=80 &
ParallelGCThreads=2

42.0 30.0 702

G1GC 47.3 30.9 1 140
Predicate Analysis 4 185

SerialGC 51.9 42.8 402
ParallelGC 52.2 42.4 517
Default 52.2 42.4 517
MinHeapFreeRatio=80 52.0 42.3 426
MinHeapFreeRatio=80 &
ParallelGCThreads=2

51.5 42.2 424

G1GC 53.5 42.6 456
K-induction 7 356

SerialGC 68.4 29.6 602
ParallelGC 69.4 28.8 1 130
Default 69.4 28.8 1 130
MinHeapFreeRatio=80 68.8 28.6 650
MinHeapFreeRatio=80 &
ParallelGCThreads=2

68.0 28.6 650

G1GC 72.0 29.4 1 060

We observe the same effects of the GC configurations as before, with
a few exceptions. G1GC consumes less CPU cycles than ParallelGC for
value analysis, and SerialGC leads to less CPU usage than ParallelGC with
MinHeapFreeRatio=80 for predicate analysis and k-induction. The number of
timeouts and ”out of memory” errors with G1GC, unlike in Section 5.2.9, resem-
bled those of the other GC configurations. Interestingly, the quantitative effects
of the different configurations vary depending on the analysis. These differences
are largest in value analysis, followed by k-induction, and smallest in predicate

63

analysis. We assume that is because the analyses differ in how much work they
offload to native libraries, which operate outside the JVM’s heap. The more work
an analysis performs outside the JVM, the less influential the GC configuration
is for CPAchecker’s performance.

5.2.11 Use-case specific recommendations

In our specific use case, which aims to improve CPU time in a sci-
entific environment, ParallelGC tuned with MinHeapFreeRatio=80 and
ParallelGCThreads=2 would be the obvious choice, as it provided the best
CPU time on average. However, we recommend using SerialGC, as it delivers
similarly good CPU time. In addition, for SerialGC, no tuning is required, which
makes it easier to maintain across future JDK versions and different analyses
of CPAchecker. Another reason for choosing SerialGC is that SerialGC has the
added advantage of lower peak memory consumption, which can reduce the num-
ber of ”out of memory” errors.

In our other use case, where the focus is on fast results with minimal memory
usage, we recommend using ParallelGC with MinHeapFreeRatio=80. This
configuration provides competitive CPU time and is still faster than SerialGC
and G1GC. Moreover, less memory is needed to execute CPAchecker when using
the tuned version of ParallelGC instead of the current default garbage collector
G1GC. If further improvement in CPU time is desired, the number of parallel
threads can be reduced.

These recommendations for CPAchecker are made with the understanding
that while the quantitative effects of different configurations may vary across
different analyses, an impact of each configuration is consistently present.

64

6 Conclusion

We benchmarked CPAchecker’s performance across a variety of GC configurations
and used different sets of verification tasks as well as individual analyses within
CPAchecker. Our goal was to optimize CPAchecker’s performance for our specific
use cases: One that prioritizes rapid results while retaining a small peak memory
consumption, and another that aims to achieve low CPU time in a scientific
environment.

First, we examined the performance of garbage collectors in their default
configurations, without any tuning. We found that with SerialGC, CPAchecker
required the least memory to execute and the fewest CPU cycles. The best
wall time was achieved with ParallelGC. CPAchecker’s current default garbage
collector, G1GC, could not compete with regard to those measures.

It became clear early on that our performance measures—CPU time, wall
time, and peak memory consumption—are connected. For instance, as explained
in Section 3.1, ParallelGC achieves its good wall time through a high level of
parallelization, which comes at the cost of increased CPU time and peak memory
consumption. This connection between measures was further confirmed during
the tuning of GC. For instance, reducing the number of parallel threads in Sec-
tion 5.2.5 led to worse wall time and higher peak memory consumption, but
improved CPU time. Not every tuning option has the same effect across all
garbage collectors; for instance, setting the initial heap size equal to the total
heap size in Section 5.2.3 improved CPU time for SerialGC and ParallelGC but
worsened it for G1GC.

There are few tuning parameters that can enhance CPAchecker’s performance
across all measures. This is achievable when ParallelGC and G1GC deviate from
their internal throughput and pause time goals. For instance, configuring Paral-
lelGC with MinHeapFreeRatio prioritizes memory consumption over throughput
and leads to an significant increase of CPAchecker’s performance in all measures,
as detailed in Section 5.2.3. However, lowering the throughput goal itself nega-
tively impacts CPU time and wall time. Lowering the maximum pause time goal
improves all three measures for G1GC. Both is explained in Section 5.2.6.

We found that for generation sizing, the default configuration of GC matches
well for CPAchecker, as does the number of concurrent threads for G1GC.

Tuning SerialGC and G1GC did not lead to significant better performance

65

of CPAchecker. For our use cases, no universal GC recommendation can be
made. In our specific use case, which aims to optimize CPU time in a scientific
environment, we recommend using SerialGC, as it delivers good CPU time, is
easy to maintain, and its low peak memory consumption helps prevent ”out of
memory” errors. For our other use case, we recommend ParallelGC tuned with
MinHeapFreeRatio=80, as it provides competitive CPU time and is still faster
than SerialGC and G1GC, while also having lower peak memory consumption
than the current default, G1GC.

We also found that GC performance was generally robust, with CPAchecker’s
performance showing minimal variability across different GC configurations.
However, the quantitative effects of different configurations may vary across dif-
ferent analyses of CPAchecker.

66

7 Future Work

It is a widely accepted view in the literature that tuning GC is highly application-
specific [10, 15, 17]. This is indeed true, as factors like the age distribution of
objects are crucial for generational tuning. However, we assume that there may be
tuning parameters that are largely independent of the application itself and could
therefore be applied to other applications as well. Examples include the number
of parallel and concurrent threads. Additionally, the throughput and maximum
pause time goals may depend less on the application and more on the size of
the heap. General assumptions about the effects of these parameters are also
mentioned in the literature, though no quantitative studies have been conducted.
Therefore, extending these experiments to other applications and different heap
sizes could be interesting.

GC depends on the JDK version. As garbage collectors can significantly influ-
ence the performance of an application [15], they are constantly being improved.
The experiments could be applied to a newer JDK version, with the generational
design of ZGC starting from JDK 21 being particularly noteworthy.

In our case, benchmarking CPAchecker with just one virtual core was not
practical because it is not intended to run CPAchecker multiple times on a single
physical core. When assigning a single virtual core to the benchmarks, one virtual
core is utilized, while the second virtual core of the same physical core remains
idle. However, it is quite possible that SerialGC would perform even better on a
single virtual core, as it was not originally designed for hyperthreading.

In Section 5.2.5 and Section 5.2.6 we have seen that the maximum pause
time goal can lead to higher peak memory consumption, especially with more
difficult tasks. This contradicts the expected behavior, as we would assume that
the heap would be reduced so that fewer objects need to be processed by the
garbage collector, which results in shorter pause times. We would like to further
investigate the reasons for this behavior.

67

References

[1] D. Beyer. “State of the Art in Software Verification and Witness Valida-
tion: SV-COMP 2024”. In: Tools and Algorithms for the Construction and
Analysis of Systems - 30th International Conference, TACAS 2024, Held
as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024, Pro-
ceedings, Part III. Ed. by B. Finkbeiner and L. Kovács. Vol. 14572. Lecture
Notes in Computer Science. Springer, 2024, pp. 299–329. doi: 10.1007/
978-3-031-57256-2_15. url: https://doi.org/10.1007/
978-3-031-57256-2%5C_15.

[2] D. Beyer, T. A. Henzinger, and G. Théoduloz. “Configurable Software Ver-
ification: Concretizing the Convergence of Model Checking and Program
Analysis”. In: Computer Aided Verification, 19th International Conference,
CAV 2007, Berlin, Germany, July 3-7, 2007, Proceedings. Ed. by W. Damm
and H. Hermanns. Vol. 4590. Lecture Notes in Computer Science. Springer,
2007, pp. 504–518. doi: 10.1007/978-3-540-73368-3_51. url:
https://doi.org/10.1007/978-3-540-73368-3%5C_51.

[3] D. Beyer and M. E. Keremoglu. “CPAchecker: A Tool for Configurable Soft-
ware Verification”. In: Computer Aided Verification - 23rd International
Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceed-
ings. Ed. by G. Gopalakrishnan and S. Qadeer. Vol. 6806. Lecture Notes
in Computer Science. Springer, 2011, pp. 184–190. doi: 10.1007/978-
3-642-22110-1_16. url: https://doi.org/10.1007/978-3-
642-22110-1%5C_16.

[4] D. Beyer, S. Löwe, and P. Wendler. “Reliable benchmarking: requirements
and solutions”. In: Int. J. Softw. Tools Technol. Transf. 21.1 (2019), pp. 1–
29. doi: 10.1007/S10009-017-0469-Y. url: https://doi.org/
10.1007/s10009-017-0469-y.

[5] Z. Cai et al. “Distilling the Real Cost of Production Garbage Collectors”. In:
International IEEE Symposium on Performance Analysis of Systems and
Software, ISPASS 2022, Singapore, May 22-24, 2022. IEEE, 2022, pp. 46–
57. doi: 10.1109/ISPASS55109.2022.00005. url: https://doi.
org/10.1109/ISPASS55109.2022.00005.

[6] E. W. Dijkstra et al. “On-the-fly garbage collection: an exercise in co-
operation”. In: Language Hierarchies and Interfaces, International Sum-
mer School, Marktoberdorf, Germany, July 23 - August 2, 1975. Ed. by
F. L. Bauer and K. Samelson. Vol. 46. Lecture Notes in Computer Sci-
ence. Springer, 1975, pp. 43–56. doi: 10.1007/3-540-07994-7_48.

68

https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-031-57256-2%5C_15
https://doi.org/10.1007/978-3-031-57256-2%5C_15
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3%5C_51
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1%5C_16
https://doi.org/10.1007/978-3-642-22110-1%5C_16
https://doi.org/10.1007/S10009-017-0469-Y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1109/ISPASS55109.2022.00005
https://doi.org/10.1109/ISPASS55109.2022.00005
https://doi.org/10.1109/ISPASS55109.2022.00005
https://doi.org/10.1007/3-540-07994-7_48

url: https://link.springer.com/chapter/10.1007/3-540-
07994-7_48.

[7] C. Flood and R. Kennke. JEP 189: Shenandoah: A Low-Pause-Time
Garbage Collector. Retrieved 2024-07-26. 2014. url: https://openjdk.
org/jeps/189.

[8] C. H. Flood et al. “Shenandoah: An open-source concurrent compacting
garbage collector for OpenJDK”. In: Proceedings of the 13th International
Conference on Principles and Practices of Programming on the Java Plat-
form: Virtual Machines, Languages, and Tools, Lugano, Switzerland, Au-
gust 29 - September 2, 2016. Ed. by W. Binder and P. Tuma. ACM, 2016,
13:1–13:9. doi: 10.1145/2972206.2972210. url: https://doi.
org/10.1145/2972206.2972210.

[9] R. H. Inc. shenandoahArguments.cpp. Retrieved 2024-07-26. url: https:
//github.com/openjdk/jdk/blob/master/src/hotspot/
share/gc/shenandoah/shenandoahArguments.cpp.

[10] R. E. Jones, A. L. Hosking, and J. E. B. Moss. The Garbage Collection
Handbook: The art of automatic memory management. Chapman and Hall
/ CRC Applied Algorithms and Data Structures Series. CRC Press, 2011.
isbn: 978-1-4200-8279-1. url: http://gchandbook.org/.

[11] S. Karlsson. JEP 439: Generational ZGC. Retrieved 2024-07-26. 2021. url:
https://openjdk.org/jeps/439.

[12] P. Lidén and S. Karlsson. JEP 333: ZGC: A Scalable Low-Latency Garbage
Collector. Retrieved 2024-07-26. 2018. url: https://openjdk.org/
jeps/333.

[13] T. Maget. Reproduction Package for Bachelor’s Thesis ’Evaluation of JVM
Garbage Collectors for CPAchecker’. Retrieved 2024-08-29. 2024. url:
https://zenodo.org/doi/10.5281/zenodo.13468616.

[14] J. Masamitsu. JEP 291: Deprecate the Concurrent Mark Sweep (CMS)
Garbage Collector. Retrieved 2024-07-26. 2015. url: https://openjdk.
org/jeps/291.

[15] S. Oaks. Java Performance, 2nd Edition. O’Reilly, 2020. isbn: 978-1-4920-
5611-9. url: https://www.oreilly.com/library/view/java-
performance-2nd/9781492056102.

[16] Oracle. Java HotSpot™ Virtual Machine Performance Enhancements. Re-
trieved 2024-07-26. url: https://docs.oracle.com/javase/8/
docs/technotes/guides/vm/performance- enhancements-
7.html.

69

https://link.springer.com/chapter/10.1007/3-540-07994-7_48
https://link.springer.com/chapter/10.1007/3-540-07994-7_48
https://openjdk.org/jeps/189
https://openjdk.org/jeps/189
https://doi.org/10.1145/2972206.2972210
https://doi.org/10.1145/2972206.2972210
https://doi.org/10.1145/2972206.2972210
https://github.com/openjdk/jdk/blob/master/src/hotspot/share/gc/shenandoah/shenandoahArguments.cpp
https://github.com/openjdk/jdk/blob/master/src/hotspot/share/gc/shenandoah/shenandoahArguments.cpp
https://github.com/openjdk/jdk/blob/master/src/hotspot/share/gc/shenandoah/shenandoahArguments.cpp
http://gchandbook.org/
https://openjdk.org/jeps/439
https://openjdk.org/jeps/333
https://openjdk.org/jeps/333
https://zenodo.org/doi/10.5281/zenodo.13468616
https://openjdk.org/jeps/291
https://openjdk.org/jeps/291
https://www.oreilly.com/library/view/java-performance-2nd/9781492056102
https://www.oreilly.com/library/view/java-performance-2nd/9781492056102
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/performance-enhancements-7.html
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/performance-enhancements-7.html
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/performance-enhancements-7.html

[17] Oracle. Java Platform, Standard Edition HotSpot Virtual Machine Garbage
Collection Tuning Guide, Release 11. Retrieved 2024-07-26. 2024. url:
https://docs.oracle.com/en/java/javase/11/gctuning/
hotspot - virtual - %20machine - garbage - collection -
tuning-guide.pdf.

[18] T. Schatzl. JEP 363: Remove the Concurrent Mark Sweep (CMS) Garbage
Collector. Retrieved 2024-07-26. 2019. url: https://openjdk.org/
jeps/363.

[19] A. Shipilev. JEP 318: Epsilon: A No-Op Garbage Collector. Retrieved 2024-
07-26. 2014. url: https://openjdk.org/jeps/318.

[20] P. Wendler. “Towards Practical Predicate Analysis”. PhD thesis. University
of Passau, Germany, 2017. url: https://opus4.kobv.de/opus4-
uni-passau/frontdoor/index/index/docId/509.

[21] M. Williams. Java Garbage Collection Basics. Retrieved 2024-07-26. url:
https : / / www . oracle . com / webfolder / technetwork /
Tutorials/obe/java/gc01/index.html.

70

https://docs.oracle.com/en/java/javase/11/gctuning/hotspot-virtual-%20machine-garbage-collection-tuning-guide.pdf
https://docs.oracle.com/en/java/javase/11/gctuning/hotspot-virtual-%20machine-garbage-collection-tuning-guide.pdf
https://docs.oracle.com/en/java/javase/11/gctuning/hotspot-virtual-%20machine-garbage-collection-tuning-guide.pdf
https://openjdk.org/jeps/363
https://openjdk.org/jeps/363
https://openjdk.org/jeps/318
https://opus4.kobv.de/opus4-uni-passau/frontdoor/index/index/docId/509
https://opus4.kobv.de/opus4-uni-passau/frontdoor/index/index/docId/509
https://www.oracle.com/webfolder/technetwork/Tutorials/obe/java/gc01/index.html
https://www.oracle.com/webfolder/technetwork/Tutorials/obe/java/gc01/index.html

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig verfasst habe und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. Ich
habe ChatGPT und DeepL verwendet, um Formulierungen für einige Absätze zu
verbessern. Diese Formulierungen wurden sodann von mir überprüft und falls
nötig, angepasst.

München, den 29.08.2024

Tobias Maget

71

	Introduction
	Related Work
	Structure

	Background
	Stop-the-world Garbage Collectors
	Concurrent Garbage Collectors
	Generational Garbage Collection
	Overview of JVM Garbage Collectors
	CPAchecker
	Evaluation Measures

	Theoretical Considerations for Selecting Garbage Collectors
	CPU time
	Wall time
	Peak Memory Consumption
	Variability

	Theoretical Considerations for Tuning Garbage Collection
	Total and Initial Heap Size
	Generation Size
	Number of Parallel Threads
	Number of Concurrent Threads
	Throughput Goal
	Maximum Pause Time Goal

	Experimental Evaluation
	Experiment Setup
	Software
	Verification Tasks
	Hardware
	Reproduction of Results

	Experiment Results
	Selecting Garbage Collectors
	Overview of Tuning Parameters and their Default Values for CPAchecker
	Total and Initial Heap Size
	Generation Size
	Number of Parallel and Concurrent Threads
	Throughput and Maximum Pause Time Goals
	Other Configurations for G1GC
	Statistical Analysis and Results for the Subset of SV-COMP24
	SV-COMP24
	Other Analyses
	Use-case specific recommendations

	Conclusion
	Future Work

