
INSTITUT FÜR INFORMATIK
Ludwig-Maximilians-Universität München

WITNESS MODIFICATIONS FOR
PROGRAM TRANSFORMATIONS

A Case Study on Side-Effect Removal

Anna Ovezova

Bachelor Thesis

Supervisor Prof. Dr. Dirk Beyer
Mentor Marian Lingsch-Rosenfeld

Submission Date 18 Juni 2024

b

Statement of Originality

English:

Declaration of Authorship

I hereby confirm that I have written the accompanying thesis by myself, without
contributions from any sources other than those cited in the text and acknowledg-
ments. I used ChatGPT and Deepl to generate and improve wordings of single
sentences and small paragraphs, and to suggest small snippets of code for testing
and evaluation purposes.

Deutsch:

Eidesstattliche Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst habe
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.
Ich habe ChatGPT und Deepl verwendet, um Formulierungen für einzelne Sätze
und kleine Absätze zu erstellen und zu verbessern, und um kleine Codefragmente
für Tests und Auswertungen vorzuschlagen.

München, 18 Juni 2024 Anna Ovezova

Acknowledgments

First of all, I would like to thank Prof. Dr. Dirk Beyer for the opportunity to write
this thesis at the Software and Computational Systems Lab. I would especially like
to thank my mentor, Marian Lingsch-Rosenfeld, for his outstanding support, for
taking the time for meetings, and for always being available to answer my questions
via Zulip. Writing this thesis has given me a lot of new knowledge and skills. I really
appreciate the experience I have gained and will use it in my future life journey.

ii

Abstract

In the context of a rapidly evolving information technology world, soft-
ware verification is of great importance, since it secures that software meets its
intended purpose and performs reliably. The software verification process is
constantly improving. Program transformation is one of the techniques that
make verification better and faster and is very widely used. The most common
are removing side-effects, function inlining and loop abstractions. While pro-
gram transformations usually have a positive impact on verification, another
problem arises when replaying the obtained results. To provide independent
validation of the verification result, verification results are accompanied by
witnesses, which aid in the replay of the verification. However, program trans-
formation may affect witnesses, making independent validation of verification
results unreliable. In this thesis we describe an approach to the process of
tracking modifications after transformation and adapting them to the witness.

CONTENTS iii

Contents

Contents iii

List of Figures iv

List of Tables iv

1 Introduction 1

1.1 Motivation . 1
1.2 Overall Approach . 1

2 Related work 4

2.1 Program transformation tools . 4
2.2 CIL . 5

3 Background 6

3.1 Side effects in C programming . 6
3.2 Software Verification Witnesses Version 2.0 7
3.3 Coccinelle . 7

4 Implementation 11

4.1 Program transformations . 11
4.2 Differences detection . 14
4.3 Witness backtransformation . 19
4.4 Technical details . 21

5 Evaluation 23

5.1 Quantitative Analysis . 23
5.2 Qualitative Analysis . 25
5.3 Threats to Validity . 27

6 Future work 28

6.1 Improvement of existing state . 28
6.2 Adding new components . 28

7 Conclusion 29

Bibliography 30

LIST OF FIGURES iv

List of Figures

1.1 Schematic overview of the approach . 2

4.1 Workflow of witness backtransformation 11
4.2 Syntactic transformations - line adding inside the structure 15
4.3 Syntactic transformations - line adding above the structure 16
4.4 Witness backtransformation overflow . 20

5.1 Result set of evaluation experiments . 24

List of Tables

1.1 State before transformation . 3
1.2 State after transformation . 3

3.1 Structure of the content part . 7
3.2 Structure of the location part . 8

4.1 Side-effects scope . 12
4.2 Transformation strategy for pre- and postincrement within while loop . 13
4.3 Transformation strategy for in- and decrement within for loop 13
4.4 A transformation strategy for the addition of a new structure 13
4.5 A transformation strategy for the addition of a new variable 14

LIST OF TABLES v

Listings

1 C program before transformation . 3
2 Witness.yaml before transformation 3
3 C program after transformation . 3
4 Witness.yaml after transformation . 3
5 Coccinelle semantic patch for changing a variable type and assign-

ment an existing variable a new value 9
6 Coccinelle semantic patch for increment removing inside the for loop

condition . 9
7 Coccinelle semantic patch for saving of information about the variable 10
8 Example of transformation protocol after syntactic transformations . 17
9 Example of the contents of a program structure file 17
10 Example of transformation protocol after insertion of new variable . 18
11 Example of transformation protocol after insertion of new structure . 19
12 Example of original.c program . 26
13 Example of witness-back-transformed.yaml 26

CHAPTER 1. INTRODUCTION 1

1 Introduction

1.1 Motivation

The complexity of software being created is increasing day by day. The correctness
and efficience of software are very important parts of software development. Soft-
ware verification can be used to determine whether the software product under
construction is being built to match its specification [15]. After software verification,
to increase confidence the obtained results can be validated with reference to the
verified program. A witness-based validation is a process of re-establashing of ver-
ification results to the needed visual format using verification witnesses. Witness
is a set of verification results stored in a standardized exchange format [4]. It con-
tains information about the outcome of program analysis, such as state of variables,
invariants and error traces.
The process of software verification keeps improving every day by adding new
techniqes and verification criteria. One of them are program transformations. They
may involve changes such as adding new variables, loops or functions, which
can alter the program structure, which in turn can be reflected in the verification
results. Therefore, to ensure verification results stored in witness refer to the origi-
nal program, transformations should be considered before the validation process.
Verification witness should be adjusted according to the changes coused by trans-
formation process. We call this process as witness backtransformation, which is the
goal of this thesis.
To apply this thesis goal, it is neccessary to see what witness backtransformations
are required. Consequently, some program transformation should be performed
to create program modifications. As example of simple transformations we will
analyse side-effects removal program transformations, which showcase the required
witness backtransformations.

1.2 Overall Approach

Overview. Figure 1.1 shows a schematic overview of an approach. The first step is to
transform the C program and document the applied modifications. In this step we
will examine the side-effects in C programs and select those that are apropriate for
implementation (steps 1 and 2 of Figure 1.1). The program transformation will be
implemented using Coccinelle - a C program matching and transformation tool [12].
After it the witness will be generated for (step 3). A witness backtransformation

CHAPTER 1. INTRODUCTION 2

original.c

Program verification

transformed-
witness

Validation

transformed.coriginal.c

Program transformation

Modifications

Documentation of modifications

Witness backtransformation

transformed.c
Modifications

Transformed
-witness

Back-
transformed-

witness

Verification result
for

original.c

original.c
Back-

transformed-
witness

1

2

3 4

5

Figure 1.1: Schematic overview of the approach

is a goal of this thesis and is shown in step 4. The last part is the validation of the
verification results using the backtransformed witness and the original C program
(step 5), which is a part of thesis evaluation.

Example. To understand an approach better, let’s look at a simple example. Table 1.1
and Table 1.2 show a C program before and after the transformation. The relevant
parts of the witness generated by CPAchecker [6] shown next to the program code.
To verify each while loop of the program, the loop invariants are created and stored
in verification witness. As we can see, the start line of the second loop invariant
has changed due to the addition of lines during the transformation. Consequently,
the validation of this property will fail due to incorrect information about the
loop invariant of the original program. The witness backtransformation algorithm
mentioned above must verify and ensure that the data is correct for the original
program.

Scope. The thesis focuses primarily on witness backtransformation. Therefore, it
is more important to consider the different types of backtransformations that will
be needed, rather than the efficiency of the side-effect removal algorithm or the
amount of program transformations. In order to achieve the goal of this thesis,
it is also crucial to consider the possibility of reusing or expanding of witness
backtransformation.

CHAPTER 1. INTRODUCTION 3

1 void main() {
2 int x = 0;
3 int i = 0;
4 while (i++ < 10) {
5 x = x + 1;
6 }
7 while (i >= 10) {
8 i--;
9 }

10 }

Listing 1: C program before transfor-
mation

- invariant:
type: "loop_invariant"
location:

line: 7
column: 9
function: "main"

value: "(i == (10) ...)"
format: "c_expression"

- invariant:
type: "loop_invariant"
location:

line: 4
column: 9
function: "main"

value: "(i == (1) ...)"
format: "c_expression"

Listing 2: Witness.yaml before transformation

Table 1.1: State before transformation

1 void main() {
2 int x = 0;
3 int i = 0;
4 while (i < 10) {
5 i = i + 1;
6 x = x + 1;
7 }
8 while (i >= 10) {
9 i--;

10 }
11 }

Listing 3: C program after transforma-
tion

- invariant:
type: "loop_invariant"
location:

line: 8
column: 9
function: "main"

value: "(i == (10) ...)"
format: "c_expression"

- invariant:
type: "loop_invariant"
location:

line: 4
column: 9
function: "main"

value: "(i == (1) ...)"
format: "c_expression"

Listing 4: Witness.yaml after transformation

Table 1.2: State after transformation

Evaluation. The main purpose of the evaluation is to check the functionality of
the algorithm. To do this, we will analyse whether a witness after execution of the
backtransformation algorithm is valid for the validation process with the original C
program and contains correct information about it.

CHAPTER 2. RELATED WORK 4

2 Related work

After reviewing existing approaches, I was unable to find a tool that fully satisfies
the problem of witness backtransformation. The transformation of witnesses is a
specific task related to a specifically implemented verification witness structure.
Therefore, I considered other related tools that partially refer to my approach.
Despite the large number of refactoring and compiling tools for C programming,
only some of them are focused on program transformations, and even fewer on
removing side -effects.

2.1 Program transformation tools

One program transformation approach is "A Unifying Approach for Control-Flow-
Based Loop Abstraction", published by Dirk Beyer, Marian Lingsch Rosenfeld and
Martin Spiessl in 2022 [7]. The paper presents a framework that allows the implemen-
tation of various loop abstraction techniques in one common environment with the
ability to dynamically switch between them, selecting different abstractions using
them. Loop abstractions are a technique used to abstract the behaviour of a program
that contains a loop. This technique draws a parallel between the correctness of
the abstract program and the original program. As part of my approach I want to
achieve a similar relation to the original program by transforming it to one with-
out side-effects using various techniques depending on the program specification.
However, the adjusting framework does not meet the requirement of witness back-
transformation, which is a necessary aspect according to my thesis requirements.

Another related tool is "A Haskell Implementation of a Rule-Based Program Trans-
formation for C Programs" [20]. This algorithm translates Semantic Transformation
Meta-Language (SMPL) rules into Haskell language to perform C program transfor-
mation. It has a number of instruments that are similar to those that are required
in our approach. One of them is the SMPLanguage, that takes care of the syntactic
and semantic conditions required to apply a given transformation [21]. Additionally,
Haskell provides SYB (Scrap Your Boilerplate) libraries with powerful functions
such as ’everywhere’ and ’everything’, which allow users to operate with complex
data structures, such as abstract syntax trees or recursive data types. This approach
makes process of transformation more reliable than changing code by pattern match-
ing. However, the instrumentation of this tool does not satisfy the requirement of
witness backtransformation, which distinguishes it from the one implemented in
this thesis.

CHAPTER 2. RELATED WORK 5

The most similar approach is a "A Post-Placement Side-Effect Removal Algorithm"
[8], which introduces an algorithm for side-effect removal considering side-effects: a
pure expression and a state-changing. This program uses syntax-directed transforma-
tions and symbolic execution to modify programs. The suggested implementation
partially meets our requirements, which is the creation of a semantically equivalent
program free of side-effects. However, only assignments to variables that occur dur-
ing expression evaluation are considered. Additionally, semantic transformations
need to be considered for witness backtransformation and should be implemented
as a type of transformation. This related work does not consider them.

2.2 CIL

CIL (C Intermediate Language) is an infrastructure for the analysis and transfor-
mation of C programs [17], [16]. It has a set of tools that allow source-to-source
transformation of C programs. It compiles all valid C programs into simpler C
syntax with clean semantics. The main advantage of CIL is that it compiles all valid
C programs into a few core constructs with very clean semantics. CIL also has a
syntax-driven type system that makes it easy to analyse and manipulate C programs.
So if we look at the process of compiling C to CIL we can see a lot of simplifying
transformations, such as eliminating declarations of unused entities or relocation of
global variables declarations from local to global scopes. One of the most significant
features is sorting out of expressions, instructions and statements that contain side-
effects. Additionally, compilation to CIL includes other transformations, such as loop
transformations or removing unused declarations, variables, and inline functions.

CIL only performs analysis and transformation of C programs, which is similar
to the transformation part of this thesis. It could be used for the transformation
of C programs. However, while using the CIL side-effects removal algorithm, the
information required for witness backtransformation is not provided.

CHAPTER 3. BACKGROUND 6

3 Background

This chapter provides an overview of the theoretical aspects necessary for the
implementation of the thesis.

3.1 Side effects in C programming

In contrast to functional languages such as Haskell, imperative languages tradition-
ally used in high performance computing, such as C, can have side-effects [19]. The
presence of these effects can influence the execution of parallel tasks, as well as the
maintenance, understanding and debugging of programs. In order to detect them, it
is essential to understand the concept of side-effects in relation to C programs, since
we are only considering C programs in this thesis.
The official definition of side-effects is provided in the ’The GNU C Reference
Manual’ documentation [18]. Side-effects are essentially the externally-visible effects
of running a program. According to the aforementioned source, a side-effect can be
one of the following:

• accessing a volatile object
• modifying an object
• modifying a file
• a call to a function which performs any of the above side-effects

These are essentially the externally visible effects of running a program. They are
called side-effects because they are effects of expression evalation beyond the ex-
pression’s actual resulting value. In C, the order of computation is not fixed, which
means that the compiler can perform the operations of the program in an order
different to the order implied by the source of the program, provided that in the end
all the necessary side-effects actually take place [18]. For example, in a statement like
x = f() + g(), if f() or g() changes a variable on which the other depends,
then the value of x may depend on the order of evaluation [10]. The compiler is
also allowed to entirely omit some operations; for example, it is allowed to skip
evaluating part of an expression if the compiler can be sure that the value will not
be used and evaluating that part of the expression will not produce any necessary
side-effects.
An approach to removing side-effects is presented in the C Intermediate Lan-
guage [17], since this tool provides expressions without side-effects. The core idea of
side-effect removal is to break down complex expressions with side-effects into state-
ments without side-effects. For example, side-effects such as assignment, increment
or decrement are moved out of the expressions into separate statements [16].

CHAPTER 3. BACKGROUND 7

3.2 Software Verification Witnesses Version 2.0

In the context of program verification, a witness is an object explaining thr verdict
of the verification task. They can be independently analyzed by witness validators
to confirm or refute verification results [1]. The current witness format supports two
types of witnesses: violation and correctness witness. Violation witnesses represent
error paths that violate a specification. Correctness witnesses are witnesses for the
cases when a verifier decides that a given program satisfies a given specification [3].
In my bachelor thesis I focus on corrctness witnesses.
The existing format of verification witnesses based on GraphML [5] has been identi-
fied as having certain deficiencies, including readability in text form and length. In
response, a new format based on YAML [1] has been developed. This new format is
more concise and well-structured, making it easier to fully support it by validators.
Verification Witnesses Version 2.0 are represented by entries [1]. Each entry con-
tains three key-value pairs: entry-type, metadata and content. The value of
entry-type correspondents to the type of the witness: invariant_set for cor-
rectness witness and violation_sequence for violation witness. The key meta-
data describes the context of the witness, including the format version, creation
time, information about witness producer and producer task description. The key
content contains zero ore more invariant keys, which content is described in
Table 3.1. The order of invariants in content is not important.

Key Value Description

type location_in-
variant

The invariant type for arbitrary state-
ments

loop_invariant The invariant type for iteration statements
location mapping The location of the invariant. Explained in

Table 3.2
value scalar The actual invariant string, which is a side-

effect-free C expression over variables in
the scope where the invariant is placed

format c_expression Invariant is a c_expression

Table 3.1: Structure of the content part

The key location of the loop_invariant points to the first character of an
iteration statement. The location of the location_invariant points to the
first character of the statement or a declaration that is within a compound statement.

3.3 Coccinelle

Coccinelle is a program matching and transformation tool for C code. It will be
used to remove side-effects according to predefined pattern matchings written in
the semantic patch language [13].
This tool was first released in 2008 to facilitate the specification and automation in the
evolution of the Linux kernel code [11]. As a tool, designed for updating the Linux

CHAPTER 3. BACKGROUND 8

Key Value Description

file_name scalar The name of verificating file
file_hash scalar Hash value of the verificating file
line scalar Starting line of the invariant
column scalar Column number where invariant starts
function scalar Function in which invariant is located

Table 3.2: Structure of the location part

kernel device drivers, it supports a very large portion of the C language. Coccinelle
was built around the existing notation for describing changes, the patch [14]. A patch
is an extract of source code in which some lines are annotated with ’-’ or ’+’ symbols.
It indicates whether the line should be removed or added, respectively. Coccinelle
performs changes expressed as a semantic patch, an abstract form of patch that is not
tied to specific lines in source code but rather to all relevant locations in the entire
code base. Consequently, Coccinelle enables transformations to be expressed in
semantic patch syntax, utilising pattern-matching rules, which may include scripts
written in Python or OCaml, thus affording greater expressiveness.
Coccinelle provides a transformation language, SmPL (Semantic Patch Language),
and an engine for applying SmPL semantic patches to C code [11]. These allow large-
scale transformations to be performed, including changes to function, structure,
variable names, function arguments, types of variables, the addition and removal of
comments or other program structures, and many more.

Syntax of Coccinelle. Each SmPL semantic patch consists of a series of rules and
a code pattern to match or transform. The rule name, surrounded by @ symbols,
can be used for further use in other rules and is shown on the first line of Listing 6.
By default, each rule is independent of one another; however, this can be altered
by using the depends on keyword like shown in Listing 5. One rule can also contain
more matching options using disjunctions, written as (...|...) (Lines 7-11 of Listing 7).
After the rule name the metavariable declarations are listed. There are different
keywords to label metadata such as: identifier, expression, statement,
type, position, constant, binary operator. They represent different pro-
gram structures such as variable or function names, loop condition and loop body,
type of the variable or binary operators. The examples of such declaration are shown
in lines 2-4 of Listing 6. After metavariable declaration, separated with the @@
symbol begins the part with code pattern. Code patern part is shown in lines 7-9
of Listing 5. The part with transformations pattern consist of source language pat-
terns, which identify the source language constructions to be altered, insertions
and deletions(lines 10, 11, 22 of Listing 5), which mark the changes to be made [9].
The matching and transformation process is independent of any whitespace in the
semantic patch, so there is no need of the additional rule declaration to handle
unformatted cases in source code.

CHAPTER 3. BACKGROUND 9

1 @rule1@
2 identifier p, v;
3 constant C;
4 type t;
5 @@
6 func() {
7 <+...
8 v = C;
9 ...+>

10 - t p;
11 + int p;
12 ...
13 }
14
15 @rule2 depends on rule1@
16 identifier r;
17 constant rule1.C;
18 identifier func;
19 @@
20 func() {
21 ...
22 + r = C;
23 ...
24 }

Listing 5: Coccinelle semantic patch for changing a variable type and assignment an
existing variable a new value

1 @rule1@
2 identifier p;
3 identifier func;
4 expression E, X;
5 @@
6 func() {
7 <...
8 - for (E; X; p++)
9 + for (E; X;)

10 {
11 ...
12 + p = p + 1;
13 }
14 ...>
15 }

Listing 6: Coccinelle semantic patch for increment removing inside the for loop
condition

As previously stated, semantic patches may include Python or OCaml scripts to
enhance performance. Listing 7 shows an example for storing the variable name and
line to a dictionary. The python script starts in line 13 and uses identifiers imported
from the semantic patch as a variable.

CHAPTER 3. BACKGROUND 10

1 @rule1@
2 type T;
3 identifier i;
4 constant C;
5 position p;
6 @@
7 (
8 T i@p;
9 |

10 T i@p=C;
11)
12
13 @script:python@
14 p << rule1.p;
15 i << rule1.i;
16 t << rule1.T;
17 @@
18 import json
19 line = int(p[0].line)
20
21 result = {’type’:t,
22 ’line’:line}

Listing 7: Coccinelle semantic patch for saving of information about the variable

CHAPTER 4. IMPLEMENTATION 11

4 Implementation

Program
transformation

Transformation detection

 C program

Transformed
program

Coccinelle
script

List of
transformations

witness.yaml transformed
witness.yamlWitness back transformation

Program
verification with

CPAchecker

Figure 4.1: Workflow of witness backtransformation

Figure 4.1 illustrates a detailed overflow of verifying programs using witness back-
transformation. It shows the steps that should be implemented in this section. In
the first phase, program transformation, we detect side-effects in C programs and
remove them using Coccinelle. The second phase is difference detection: during the
transformation process, each modification is exported, including the type of the
transformation and the order in which they were applied. The transformed program
is then verified by CPAchecker, resulting in the creation of a witness version 2.0. The
last phase is witness backtransformation: the list of exported transformations and the
produced witness are used to handle differences, caused by program transforma-
tions in the first phase. The following sections will provide a detailed examination
of each step.

4.1 Program transformations

The first step in the process is the removal of side-effects, which serves to establish a
foundation for modification of a witness. We restrict ourselves to only certain but
frequently occurring kinds of side-effects. Basing on the information, mentioned in

CHAPTER 4. IMPLEMENTATION 12

Sect. 3.1, we define the scope of side-effects, that will be removed to demonstrate
the usefulness of the witness backtransformation algorithm. The overview of them
is shown in Table 4.1.

Side-effect Example

Increment operator

int main() {
int x = 0;
int i = 0;
while (i++ < 10) {

x = x + i;
}

}

Decrement operator

int main() {
int y = 0;
int x = 10;
while (x-- > 0) {

y = y + i;
}

}

The logical OR operator

int main() {
int x = 10;
int y = 15;
if (x == 10 || y == 15) {

x = x + 1;
y = y + 1;

}
}

Assignment operator

int main() {
int a = 5;
int b = 10;
int c = 0;
c = a + (b = 20);

}

Table 4.1: Side-effects scope

Increment, decrement or assignment operators modify the variable as a part of
evaluation, so they may ocure state changing. In the case of the logical OR operator,
the second operand will never be evaluated due to the short-circuit evaluation strategy,
which is supported by the C language. Short-circuit is an evaluation strategy for
the boolean operators, in which the second argument is evaluated only if the first
argument does not suffice to determine the value of the expression [2].
Let us examine the algorithm for removing each type of side-effect from the selected
scope. The choice of the scope of side-effects mentioned above is conditioned by
the need to demonstrate different types of information that will be used during
the witness backtransformation. This can lead to different approaches to witness
backtransformation.

Increment and decrement. The algorithm for removing increments and decrements
is dependent on the control flow constructs in which they occur, as well as their
location in relation to the variable. In the case of the while loop, the algorithm is
applied as shown in the Table 4.2, where v is the variable.

CHAPTER 4. IMPLEMENTATION 13

Before transformation After transformation

while (++v...) {
...

}

v = v + 1;
while (v...) {

v = v + 1;
...

}

while (v++...) {
...

}

while (v...) {
v = v + 1;
...

}

Table 4.2: Transformation strategy for pre- and postincrement within while loop

A comparable approach is used for the decrement in while loops.
In the case of the for loop, the location of the increment or decrement symbol in
relation to variable inside the loop condition, is of no consequence, as the condition
check occurs before the condition step. In contrast to while loop, in the for loop the
condition step is executed after the execution of the loop body [10]. Hence, the
algorithm for removal of increment and decrement in for loop is slightly different
from the one used in the while loop. It is presented in the Table 4.3, where E1, E2, I,
D are expressions with variable v, I is of the form v++ or ++v and D is of the form
v– or –v.

Before transformation After transformation

for (E1; E2; I) {
...

}

while (E1; E2;) {
...
v = v + 1;

}

for (E1; E2; D) {
...

}

while (E1; E2;) {
...
v = v - 1;

}

Table 4.3: Transformation strategy for in- and decrement within for loop

In all algorithms for increment and decrement removal, lines are added or deleted,
resulting in one transformations type. We call them syntactic transformations. A
further discussion of this topic will be presented in the following section.

Short-circuit evaluation. In the case of a logical OR operator, it is necessary to
modify the structure in such a way that the second expression is evaluated. The
algorithm was developed in the way illustrated in the Table 4.4, where E1, E2 are
expressions, and S is a statement.

Before transformation After transformation

if (E1 || E2) { S }
if (E1) { S }

else if (E2) { S }

Table 4.4: A transformation strategy for the addition of a new structure

CHAPTER 4. IMPLEMENTATION 14

In this case we observe the addition of a new program structure, indicating a
structurally relevant transformation.

Assignment. In order to keep the state of the program unchanged without modifying
the value of the variable, a new temporary variable is created and used at the
assignment position. The detailed algorithm for different program structures is
presented in the Table 4.5. In the abstract code v, v_temporary and w are variables
of numeric type T; C1, C2 and C3 are constants. structure() can be a function,
while or for loop. By creating a new variable v_temporary for local usage, the
value of the global variable remains untouched. The implemented algorithm is not
activated when the value of a local or loop variable is changed using the assignment
operator. In this case we observe the addition of a new variable, which also indicate
a structurally relevant transformation.

Before transformation After transformation

T v = C1;
T w = C2;
structure(...) {

w = w + (v = C3);
}

T v = C1;
T w = C2;
structure(...) {

T v_temporary = C3;
w = w + v_temporary;

}

Table 4.5: A transformation strategy for the addition of a new variable

4.2 Differences detection

To perform a proper transformation of the witness version 2.0, it is necessary to
obtain the following information: the sequence in which the transformations were
applied, the type of alterations made to the program, and specific details regarding
location and nature of the transformations. To accomplish this, after each use of the
transformation script, we check the modified program whether any changes have
been made. Subsequently, in accordance with the category of changes to which the
Coccinelle script belongs, the transformations are written out. All scripts are divided
into several categories:

• syntactic transformations which track the insertion of new lines;
• structurally relevant transformations which track the addition of new structures;
• structurally relevant transformations which track the addition of new variables.

All modifications are defined by the scope of the C program transformations. This
implies that each modification type requires its own method to export them. How-
ever, the difference detection methods sufficiently flexible to permit the number of
these algorithms to be expanded. This can be relevant when adding new transfor-
mation types and related necessity to export new modifications. There are different
approaches to the detecting of syntactic and structurally relevant changes. Both
approaches are based on the comparison of the original C program with the trans-
formed one, and storing needed attributes from them. A detailed explanation of the
algorithms for detecting differences is presented in the next subsections.

CHAPTER 4. IMPLEMENTATION 15

Despite the fact that each transformation uses a different detection method, all
exported modifications are saved in a single file in JSON format, which is an im-
portant artefact for further backtransformation algorithms. This file is called the
transformation protocol. Each protocol consists of the list of sequence numbers, repre-
senting the order of the transformation performance, and additional information
about the applied modifications. Currently, the transformation type can take one
of the following values: syntactic_transformations for adding new lines
without structural relevance, new_variable_transformations for adding new
variables and new_structure_transformations for adding new structures.

Syntactic transformations. In order to create an algorithm for detecting differences,
we consider the syntactic transformations from Table 4.2 and Table 4.3. As can be
observed, two distinct types of line addition are declared: the addition of a single
line above the existing structure and addition of the line within the structure itself.
As mentioned in Sect. 3.2, a starting line of the loop indicates a location of the loop
invariant in witness version 2.0. This makes the starting line of the loop that can be
shifted to the most significant data modified by this changes.
The identification of differences is performed with the Coccinelle script for syn-
tactic transformations. This is implemented in a way that the line numbers where
modification should occur are stored in an external document. This information is
used to maintain the correspondence between the lines that have been added to the
modified program and the lines that have been deleted from the original program.
To showcase the modification principle in details, a simple example of differences
after syntactic transformation of the C program was created with difflib library
in Python and shown in Fig. 4.2 and Fig. 4.3.

Line replacement
Line before Line after Difference Deletion Addition

3 3 int i = 0;

4 4

-5 ++5 5, 6 -> 5 - while (i++ < 10) { + while (i < 10) {

++6 + i = i + 1;

6 7 x = x + i;

7 8 }

8 9

9 10 int r = 0;

10 11 int t = 0;

11 12

-12 ++13 13, 14 -> 12 - while (r++ < 10) { + while (r < 10) {

++14 + r = r + 1;

13 15 t = t + r;

14 16 }

15 17 }

1

Figure 4.2: Syntactic transformations - line adding inside the structure

CHAPTER 4. IMPLEMENTATION 16

Line adding with invariant shifting
Line before Line after Difference Deleting Addition

2 2 int x = 0;

3 3 int i = 0;

4 4

-5 ++5 -> 5 - while (++i < 10) { + i = i + 1;

++6 6 -> 5 + while (i < 10) {

6 7 x = x + i;

++8 -> 8 + i = i + 1;

7 9 }

8 10

9 11 int r = 0;

10 12 int t = 0;

11 13

-12 ++14 -> 14 - while (++r < 10) { + r = r + 1;

++15 15 -> 12 + while (r < 10) {

13 16 t = t + r;

++17 -> 17 + r = r + 1;

14 18 }

15 19 }

1

Figure 4.3: Syntactic transformations - line adding above the structure

The locations where the loop invariants could be are highlighted in green, as these
are the loop start lines. In both cases, it is the process of counting down of new
lines, increasing or decreasing the line number depending on whether the line has
been added or replaced. The amount of new lines is also important information that
should be stored. When adding two lines the line that points to invariant location is
shifted.
The results are stored to the transformation protocol as
syntactic_transformations type. An example of transformation protocol for
syntactic transformations is shown in Listing 8. Next to the transformation type we
see the list of line changes stored as a dictionary. The key represents the line number
after the transformation, the value represents the line number before the transforma-
tion. In the example we can see that line 24 after the transformation corresponds to
line 24 before the transformation. Line 36 corresponds to line 0, which means that it
is a new line. This information is used in the witness backtransformation to check
the invariant place transformations.

CHAPTER 4. IMPLEMENTATION 17

{
"1": {
"type": "syntactic_transformations",
"info": {
"line_changes": {
"24": 24,
"36": 0,
"30": 29,
"35": 0

},
"shift": 1

}
}

}

Listing 8: Example of transformation protocol after syntactic transformations

Insertion of new variable. To create an algorithm for detecting differences, we
consider the transformations from the Table 4.5. As this is one of the structurally
relevant transformations, we need to keep track of changes, affecting the semantic
of the program. To achieve this we implement a format to store structurally relevant
information. It is represented as list of structures of the program, such as variables,
while loops, for loops, if statements which contain OR operator in the condtion, if
statements which contain AND operator in the condition, if statements with a simple
condition and if-else statements. These are stored in JSON format before and after
transformation. An example of such file is shown in Listing 9.

{
"file name": "file_name",
"constructs": {

"variables": [],
"while_loops": [],
"for_loops": [],
"if_else_statements": [],
"if_statements": {

"single": [],
"or": [],
"and": [] }

}
}

Listing 9: Example of the contents of a program structure file

The key variables is representade as a list of variables of a C program. For each
variable we export an additional information: type, value and declaration line. The
implemented script recognises the following cases of variable declarations:

• variables of types:
– integer
– character
– floating-point

CHAPTER 4. IMPLEMENTATION 18

• variables, declared with keywords:
– const
– volatile
– auto
– static
– extern
– unsigned
– register

Due to time constraints some cases remain unimplemented: variables of type struct,
arrays and pointers with initialisation.
To find a temporary variable created by new variable transformation, a list of variables
should be compared in the program before and after the transformation. Once
detected, information about the new variable is exported to the transformation
protocol. An example of transformation protocol after assertion of new variable is
shown in Listing 10.

{
"1": {

"type": "new_variable_transformations",
"info": [
{

"new_variable": "b_temporary",
"line": 24,
"shift": 1,
"new_value": "20",
"old_value": "10"

}
]

}
}

Listing 10: Example of transformation protocol after insertion of new variable

Insertion of new structure. Since inserting a new structure is one of the structurally
relevant transformations, the strategy for exporting changes is similar to that for
inserting a new variable. The structure of the C program is saved before and after
the transformation.
In order to find a new structure, created after the new structure transformation, we com-
pare the structures of the original program, which is subject to change - information
under the key or in the if_statements(Listing 9), and the structure of the trans-
formed program correspondingly - the value of if_else_statements(Listing 9).
As we know from the Chapter 3, invariant can be created when a loop is present.
So we save the starting lines of the loops, which occur inside the if statement
with or operator. In a similar way, the starting lines of loops inside the if_else_-
statements are saved as new structures. When inserting new structures, the
column number is also taken into account. An example of the transformation proto-
col after inserting a new structure is shown in Listing 11. As we can observe, the

CHAPTER 4. IMPLEMENTATION 19

loop with condition (r == 0) has an additional starting line after the program
transformation, which is the result of insertion of a new structure.

{
"1": {
"type": "new_structure_transformations",
"info": {
"before": {
"(r == 0)": {
"line": 24,
"column": 9

}
},
"after": [
{
"expression": "(r == 0)",
"lines": [

24,
33

]
}

],
"shift": {
"38": 9

}
}

}
}

Listing 11: Example of transformation protocol after insertion of new structure

Shift. After each transformation, lines are added to the program. If the modified
construct is followed by other invariant checks that have not been modified, the
line values at their locations will also not match those in the original program.
Therefore, after each change, we write an additional shift key to transform back
the locations of the unchanged invariants, as can be observed in Listing 8, Listing 10
and Listing 11. Despite careful testing of the algorithm’s correctness, we cannot
exclude that some edge cases were not considered. Also, due to the semantics of the
language, there are many options for placing structures in relation to each other. My
goal was not to cover all possible options, but those that are relevant to the scope of
the chosen transformations.

4.3 Witness backtransformation

After saving the modifications, we can proceed to the final stage - backtransformation
algorithm. In Fig. 4.4 we can see the detailed scheme of witness backtransformation.

CHAPTER 4. IMPLEMENTATION 20

P P1 P2 P3
T1 T2 T3

W3W2W1W BT3BT2BT1

Diff 1 Diff
2

Diff
3

Transformations
-protocol.json

Diff 1

Back-
transformation1

+

Diff
2

Back-
transformation2

+

Diff
3

Back-
transformation3

+

Figure 4.4: Witness backtransformation overflow

The process of backtransformation starts with parsing of invariants from the wit-
ness version 2.0. It is also necessary to parse the content of the transformation
protocol. By reading the transformations in reverse order, we need to match the all
invariants to each transformation. Each type of program modifications has its own
backtransformation script.
For syntactic type changes, the invariant lines are updated according to the informa-
tion in transformation protocol file.
In case of the insertion of the new structure, it may happen that, as a result of
addition, a new invariant will be added to the existing one. During the backtransfor-
mation process it will be verified whether the invariant lines correspond to those
stored in after(Listing 11) section of the transformation protocol. In the positive
case, which means that the invariant was evolved in the transformation process,
and the invariant lines will be changed to the lines stored in the before(Listing 11)
section of the transformation protocol. Otherwise, this means, that the invariant
was not involved in the exported transformation and only the shift value should be
handled. The expression of the loop serves as an indicator that the lines that change
belong to the same loop.
For modifications where a new variable is inserted, it should be taken into account
that it is not only the location of the invariant that is changed, but also the value of
the invariant. To avoid reassigning the value of variable x in the original program, a
new variable x’ was introduced during transformation. As a result, possible values
of x’ will appear in the value of the invariant. But the new variable x’ does not
exist in the original program, so it must be removed from the invariant. The value

CHAPTER 4. IMPLEMENTATION 21

of the invariant is then checked and the occurrence of the variable x’ is changed
to the value of the variable x from the original program. Also, since the original
variable x could have two values due to the reassignment, it should be handeled in
the transformed invariant value.
Lets consider the variable v=C was reassigned to v=C’. To avoid it, we create a
v_temporary=C’. So, inspecting the invariant value after transformation, the occu-
rance of (v_temporary==C’) will be modified to (v==C’). Also, each occurance
of (v==C) will be extended to (v==C || v==C’), as well as each (v==C’) to
(v==C’ || v==C).

4.4 Technical details

The project is avaliable as external zip folder that accompanies this thesis.
The algiorithm is implemented in Python programming language, version 3.9 with
usage of following libraries:

• standard libraries of Python subprocess and os for commmand line execu-
tions;

• json version 2.0.9 and ruamel.yaml version 0.18.6 for exchange
file parsing and changing;

• re version 2.2.1 for Regular Expressions;
• standard library of Python shutil for file management.

The transformations of C program is executed with Coccinelle 1.2 compiled with
OCaml version 5.1.0.
The project is structured in the manner illustrated above:

project_root/
evaluation/
c_trunk/
output/
temporary/
expected_c_trunk/
expected_witness/
src/

coccinelle_util/
coccinelle/
CoccinelleUtils.py
DifferencesUtils.py
TransformationsUtils.py
WitnessUtils.py

main.py
transform_program.py
witness_backtransformation.py
constants.py
...+

The scripts for program transformation are stored in the folder coccinelle. The
scripts for structure creation are stored in the folder coccinelle_util. The folder

CHAPTER 4. IMPLEMENTATION 22

c_trunk contains files, used for testing and evaluation purposes. output and
temporary are utility folder, needed for algorithm internal processes. The fold-
ers labelled expected_c_trunk and expected_witness contain files that are
pertinent to the evaluation process.
The witness backtransformation flow is comprised of the following steps:

1. Removal of side-effects in a C program. In order to achieve this, the transform_-
and_safe_modification() function from util module is used. The loca-
tion and name of the C program must be specified as arguments of a function.

2. After the execution of the transformation method, the transformed C file is
located in the output/ folder next to transformation_protocol.json.

3. It is necessary to verify the transformed C program with CPAchecker in order
to create a witness version 2.0. The witness should be placed in the output/
folder under the name witness-after.yaml .

4. The witness_back_transformation() method should be invoked with
the name of the witness as argument. The backtransformed witness will be
stored in the output/ folder under the witness-back-transformed.yaml
name.

Additional information about the project can be found in the project’s README
file.

CHAPTER 5. EVALUATION 23

5 Evaluation

In this section, we evaluate the implemented algorithm. We also evaluate the effi-
ciency with which the algorithm accomplishes its task and discuss any potential
weaknesses. To accomplishe the evaluation we will answer the following research
questions:

RQ1. Algorithm evaluation.

• Is it possible to verify and validate the program after side-effects removal?
• Is it possible to validate a witness after backtransformation with the original

program?
• Are validation results differ before and after witness transformation?

RQ2. Algorithm correctness.

• Does the information about invariants in the witness after transformation
correspond to the information about invariants in the witness before transfor-
mation?

5.1 Quantitative Analysis

To answer the research questions, we conducted a series of experiments to evaluate
the correctness and performance of the tool. The experiment sets were executed
on a MacOS(Ventura 13.6.4) with a 2,3 GHz Dual-Core Intel Core i5 and 8GB of
memory. To generate witnesses in YAML format during development process I will
use CPAchecker - a tool for the configurable software verification [6]. In addition,
we used the following tools:

• Java: Version 20.0.2 TM (GraalVM)
• CPAchecker Version 2.3.1
• Python Version 3.9.1
• Coccinelle 1.2 compiled with OCaml version 5.1.0

We run a bench of experiments with a set of programs, which contain side-effects
from the research scope: increment and decrement as part of the while and for
loop expression, assigning of the global variable and OR operator inside the if-
expression. The number of required side-effect removal transformations varies
considerably, from one to four. The programs are structured in a way that places
loops, expressions, and statements containing side-effects in different positions
according to each other. In this way, we try to cover more different edge cases. All
programs for the experimental set can be found in the c_trunk folder of the project
folder.

CHAPTER 5. EVALUATION 24

Examples of the results of experiments execution are demonstrated in the Fig. 5.1.

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6

Amount of
invariants

Amount of
transformations

Transformation
s type

Validation
before

transformation

Validation after
transformation

Validation after
back

transformation

1 1 NV TRUE TRUE TRUE

3 3 NV, S TRUE TRUE TRUE

2 1 NV TRUE TRUE TRUE

1 1 NV TRUE TRUE TRUE

1 1 NV TRUE TRUE TRUE

2 3 NS, S TRUE TRUE TRUE

2 2 NV, NS TRUE TRUE TRUE

3 4 NV, NS TRUE TRUE TRUE

1 0 - TRUE TRUE TRUE

2 2 NS, S TRUE TRUE TRUE

2 1 NS TRUE TRUE TRUE

2 1 NS TRUE TRUE TRUE

1 1 S UNKNOWN UNKNOWN UNKNOWN

2 2 S TRUE TRUE TRUE

2 1 S TRUE TRUE TRUE

5 2 S TRUE TRUE TRUE

1 1 S TRUE TRUE TRUE

3 3 S TRUE TRUE TRUE

2 2 S TRUE TRUE TRUE

2 2 S TRUE TRUE TRUE

3 1 S TRUE TRUE TRUE

2 1 S TRUE TRUE TRUE

2 2 S UNKNOWN UNKNOWN UNKNOWN

4 3 S TRUE TRUE TRUE

2 2 S TRUE TRUE TRUE

3 4 S, NS TRUE TRUE TRUE

3 4 S, NV TRUE TRUE TRUE

2 3 S, NS TRUE TRUE TRUE

3 1 S, NS TRUE TRUE TRUE

4 3 S, NS TRUE TRUE TRUE

6 4 S, NS TRUE TRUE TRUE

2 1 S TRUE TRUE TRUE

1

Figure 5.1: Result set of evaluation experiments

Column 1 of the Fig. 5.1 represent the amount of Invariants and Column 2 - amount
of transformations in each experiment case. Column 3 shows the type of transfor-
mation that were done during experiment. Here, NS - new structure transforma-

CHAPTER 5. EVALUATION 25

tion, NV - new variable transformation and S - syntactic transformation. We use
-valueAnalysis with -heap 10000M and -timelimit ’900 s’. The specifi-
cation file is config/properties/unreach-label.prp.
Each experiment consists of following steps:

1. Program original.c verification with CPAchecker, which ends with creation
of witness-original.yaml.

2. Validation of witness-original.yaml with original.c to proof a vali-
dation verdict. The result of this step is shown in Column 4 of Fig. 5.1.

3. Transformation of the C program program.c to remove side-effects, which
ends with creating of transformed.c.

4. Program transformed.c verification with CPAchecker, which ends with
creation of witness-transformed.yaml.

5. Validation of witness-transformed.yaml with transformed.c to proof
a validation verdict. The result of this step is shown in Column 5 of Fig. 5.1.

6. Transformation of witness-transformed.yaml into
witness-back-transformed.yaml using implemented algorithm.

7. Validation of witness-back-transformed.yaml with program.c. The
result of this step is shown in the Column 6 of the Fig. 5.1.

A comparison of the results of witness validation for programs at different stages of
the experiment reveals that the results of validation are consistent. This evidence
indicates that transformed witnesses can provide valid information about the orig-
inal program and can be used as valid witnesses for its validation. Basing on this
evidence, it can be concluded that the responses to RQ1 are positive.
However, the evaluation results do not show the explicit correctness of the witness
backtransformation algorithm. To increase the strength of evidence we provide an
additional checking, that transformation process yields the expected information
about each invariant of the original program.

5.2 Qualitative Analysis

To validate that the witness back algorithm correctly modifies invariants, we provide
a manual approvment of witnesses, generated during evaluation experiments execu-
tion. After each experiment the witness-back-transformed.yaml witnesses
were stored as separate files for further comparison. Subsequently, a manual com-
parison of the invariants information to the original.c program was conducted.
During the comparison process, the following information was verified:

• invariant location line and column in witness conform the start of the loop in
the program;

• invariant location function in witness conform the function name in the pro-
gram;

• invariant value in witness contain information about relevant variables in the
program.

The order of the placement of invariants in the witness can be arbitrary.
Let us examine an example of the original.c program on Listing 12 and an
example of the witness-back-transformed.yaml on Listing 13, which are part

CHAPTER 5. EVALUATION 26

of the experiment set from Sect. 5.1. During the manual comparison, the following
information was verified:

• invariant location line and column in witness-back-transformed.yaml
correspond to the for loop starting line on original.c;

• invariant location function in witness-back-transformed.yaml conforms
to the function name factorial on original.c;

• invariant value in witness-back-transformed.yaml contains C expres-
sion over variables in the scope where the invariant is placed [1].

20 ...
21 unsigned int factorial(unsigned int n) {
22 int result = 1, i;
23
24 for (i = 2; i <= n; i++) {
25 result *= i;
26 }
27
28 return result;
29 }
30 ...

Listing 12: Example of original.c program

- invariant:
type: "loop_invariant"
location:

file_name: "../output/original.c"
line: 24
column: 5
function: "factorial"

value: "(i == (3) && n == (5U) && result == (2))
|| (i == (5) && n == (5U) && result == (24))
|| (i == (6) && n == (5U) && result == (120))
|| (i == (4) && n == (5U) && result == (6))
|| (i == (2) && n == (5U) && result == (1))"

format: "c_expression"

Listing 13: Example of witness-back-transformed.yaml

It has been demonstrated that all transformed invariants are in alignment with the
data present in the original program. This provides further evidence that the data
produced by the algorithm is valid in the transformed witness, and that the witness
backtransformation algorithm functions correctly. Basing on this evidence, it can be
concluded that the RQ2 is answered in the positive.
All components of the experiments are available in the evaluation folder of the
project folder.

CHAPTER 5. EVALUATION 27

5.3 Threats to Validity

Threats to Internal Validity. One potential threat of validity can be an inappropriate
choice of techniques or incorrect experimental design. The experimental set of
programs was self-defined, and it is therefore possible that the programs may
have been formed incorrectly or may have contained some invalid cases. Another
potential threat to the validity of the evaluation is the possibility that errors may
have been made during the process of conducting, interpreting, or planning the
experiments. These threats can affect the validity of the findings and may result in
incomplete conclusions, making the obtained experimental results questionable.

Threats to External Validity. The experimental set is based on the research scope
and therefore cannot be considered a general approach for all transformation use
cases. The experiments conducted cannot be generalized. The selected experimental
set was created within the framework of this study. Conducting a similar experiment
with a number of programs from the real world may potentially show different
results or be biased towards the purpose of this thesis. This may be due to a limited
sample of side-effect examples, the choice of analysis for verification, or edge cases
that were not considered during the development process due to the time constraints.
Additionally, the physical limitations of the development environment influenced
the choice of experimental methods and general approaches to the creation of the
experimentation set.

CHAPTER 6. FUTURE WORK 28

6 Future work

This section is devoted to the evaluation of the potential development of the problem-
solving approach and the algorithm presented within this thesis.

6.1 Improvement of existing state

The developed algorithm can handle the required tasks. However, there are a number
of points that could be improved. For example, when adding new structures, we
read while and for loops that can be added as part of changes. The list of such loops
could be extended. It is also possible to optimise the process of replacing a variable
in the C program with a new one, as this process is now done with the help of two
scripts - Coccinelle and Python. It would also be useful to extend the examples of
possible occurance for already existing transformations. During the development of
the witness back algorithm, different criteria had to be taken into account, such as
where in the program the changes occur, how they behave within different semantic
structures, and how they affect other elements of the program. Extension of the list
of these criteria can make the algorithm more flexible and efficient.

6.2 Adding new components

An effective way to improve the functionality of the existing tool is to add more
components to it. The existing algorithm was implemented on the selected rescticted
scope of side-effects. This can be changing of global variable value, increment and
decrement operators as part of while and for loop expressions, OR operator inside the
if expressions. By increasing the number of different side-effects, the algorithm can
be applied to more different C programs, increasing its versatility and efficiency.

CHAPTER 7. CONCLUSION 29

7 Conclusion

In this thesis, we address the problem of backtransformation of Software Verification
Witnesses Version 2.0, which can occur when transforming the program to improve
the software verification process. We achieve this goal by using the case study of
removing side-effects in C programs to produce a subject for witness modifications.
In order to eliminate various side-effects during program modification, we de-
veloped different approaches to export transformations. During the development
process, we created a format for exporting different types of modifications: syntactic
and structurally relevant types of transformation. This allowed us to create a witness
backtransformation for each type of modification.
Our contribution plays an important role in the development of Software Verification
Witnesses Version 2.0, as it demonstrates that witness backtransformation is possible
and it is not an interference for transformation of the program for improving of
the software verification process. The algorithm can be used in its current form.
However, the approaches developed for detecting and handling differences provide
an opportunity to further extend the capabilities of the algorithm.

BIBLIOGRAPHY 30

Bibliography

[1] P. Ayaziová, D. Beyer, M. Lingsch-Rosenfeld, M. Spiessl, and J. Strejcek. Soft-
ware verification witnesses 2.0.

[2] J. A. Bergstra, A. Ponse, and D. J. C. Staudt. Non-commutative propositional
logic with short-circuit evaluation. Journal of Applied Non-Classical Logics, 31:234
– 278, 2021.

[3] D. Beyer, M. Dangl, D. Dietsch, and M. Heizmann. Correctness witnesses:
exchanging verification results between verifiers. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
FSE 2016, page 326–337, New York, NY, USA, 2016. Association for Computing
Machinery.

[4] D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig.
Verification witnesses. ACM Trans. Softw. Eng. Methodol., 31(4):57:1–57:69, 2022.

[5] D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer. Witness
validation and stepwise testification across software verifiers. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2015, page 721–733, New York, NY, USA, 2015. Association for Computing
Machinery.

[6] D. Beyer and M. E. Keremoglu. Cpachecker: A tool for configurable software
verification. In G. Gopalakrishnan and S. Qadeer, editors, Computer Aided
Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July
14-20, 2011. Proceedings, volume 6806 of Lecture Notes in Computer Science, pages
184–190. Springer, 2011.

[7] D. Beyer, M. L. Rosenfeld, and M. Spiessl. A unifying approach for control-
flow-based loop abstraction. In B. Schlingloff and M. Chai, editors, Software
Engineering and Formal Methods - 20th International Conference, SEFM 2022, Berlin,
Germany, September 26-30, 2022, Proceedings, volume 13550 of Lecture Notes in
Computer Science, pages 3–19. Springer, 2022.

[8] M. Harman, L. Hu, R. M. Hierons, M. Munro, X. Zhang, J. J. Dolado, M. C.
Otero, and J. Wegener. A post-placement side-effect removal algorithm. In
18th International Conference on Software Maintenance (ICSM 2002), Maintaining
Distributed Heterogeneous Systems, 3-6 October 2002, Montreal, Quebec, Canada,
pages 2–11. IEEE Computer Society, 2002.

[9] N. Jones and R. Hansen. The semantics of “semantic patches” in coccinelle:
Program transformation for the working programmer. volume 4807, pages
303–318, 11 2007.

https://api.semanticscholar.org/CorpusID:269458662
https://api.semanticscholar.org/CorpusID:269458662
https://api.semanticscholar.org/CorpusID:245372285
https://api.semanticscholar.org/CorpusID:245372285
https://api.semanticscholar.org/CorpusID:245372285
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/3477579
https://doi.org/10.1145/3477579
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-031-17108-6_1
https://doi.org/10.1007/978-3-031-17108-6_1
https://doi.org/10.1007/978-3-031-17108-6_1
https://doi.org/10.1007/978-3-031-17108-6_1
https://doi.org/10.1007/978-3-031-17108-6_1
https://doi.org/10.1109/ICSM.2002.1167742
https://doi.org/10.1109/ICSM.2002.1167742
https://doi.org/10.1109/ICSM.2002.1167742
https://doi.org/10.1109/ICSM.2002.1167742
https://doi.org/10.1109/ICSM.2002.1167742
https://doi.org/10.1007/978-3-540-76637-7_21
https://doi.org/10.1007/978-3-540-76637-7_21
https://doi.org/10.1007/978-3-540-76637-7_21

BIBLIOGRAPHY 31

[10] B. W. Kernighan and D. Ritchie. The C Programming Language, Second Edition.
Prentice-Hall, 1988.

[11] J. Lawall and G. Muller. Coccinelle: 10 years of automated evolution in the linux
kernel. In H. S. Gunawi and B. C. Reed, editors, 2018 USENIX Annual Technical
Conference, USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018, pages 601–614.
USENIX Association, 2018.

[12] J. Lawall and G. Muller. Automating program transformation with coccinelle.
In J. V. Deshmukh, K. Havelund, and I. Perez, editors, NASA Formal Methods -
14th International Symposium, NFM 2022, Pasadena, CA, USA, May 24-27, 2022,
Proceedings, volume 13260 of Lecture Notes in Computer Science, pages 71–87.
Springer, 2022.

[13] J. L. Lawall and G. Muller. Automating program transformation with coccinelle.
In NASA Formal Methods, 2022.

[14] D. MacKenzie, P. R. Eggert, and R. M. Stallman. Gnu diffutils reference manual.
2015.

[15] B. R. Maxim and M. Kessentini. Chapter 2 - an introduction to modern software
quality assurance. In I. Mistrik, R. Soley, N. Ali, J. Grundy, and B. Tekinerdogan,
editors, Software Quality Assurance, pages 19–46. Morgan Kaufmann, Boston,
2016.

[16] G. C. Necula, S. Mcpeak, M. Harren, W. Weimer, and B. Liblit. Cil: Infrastructure
for c program analysis and transformation. 2009.

[17] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. Cil: Intermediate lan-
guage and tools for analysis and transformation of c programs. In International
Conference on Compiler Construction, 2002.

[18] T. Rothwell and J. Youngman. The gnu c reference manual. Free Software
Foundation, Inc, page 86, 2007.

[19] T. Süß, L. Nagel, M.-A. Vef, A. Brinkmann, D. Feld, and T. Soddemann. Pure
functions in c: A small keyword for automatic parallelization. International
Journal of Parallel Programming, 49:1 – 24, 2020.

[20] S. Tamarit, G. Vigueras, M. Carro, and J. Mariño. A haskell implementation of a
rule-based program transformation for C programs. In E. Pontelli and T. C. Son,
editors, Practical Aspects of Declarative Languages - 17th International Symposium,
PADL 2015, Portland, OR, USA, June 18-19, 2015. Proceedings, volume 9131 of
Lecture Notes in Computer Science, pages 105–114. Springer, 2015.

[21] G. Vigueras, M. Carro, S. Tamarit, and J. Mariño. Towards automatic learn-
ing of heuristics for mechanical transformations of procedural code. CoRR,
abs/1603.03022, 2016.

https://en.wikipedia.org/wiki/The_C_Programming_Language
https://en.wikipedia.org/wiki/The_C_Programming_Language
https://www.usenix.org/conference/atc18/presentation/lawall
https://www.usenix.org/conference/atc18/presentation/lawall
https://www.usenix.org/conference/atc18/presentation/lawall
https://www.usenix.org/conference/atc18/presentation/lawall
https://doi.org/10.1007/978-3-031-06773-0_4
https://doi.org/10.1007/978-3-031-06773-0_4
https://doi.org/10.1007/978-3-031-06773-0_4
https://doi.org/10.1007/978-3-031-06773-0_4
https://doi.org/10.1007/978-3-031-06773-0_4
https://api.semanticscholar.org/CorpusID:248991327
https://api.semanticscholar.org/CorpusID:248991327
https://api.semanticscholar.org/CorpusID:64687381
https://api.semanticscholar.org/CorpusID:64687381
https://doi.org/https://doi.org/10.1016/B978-0-12-802301-3.00002-8
https://doi.org/https://doi.org/10.1016/B978-0-12-802301-3.00002-8
https://doi.org/https://doi.org/10.1016/B978-0-12-802301-3.00002-8
https://doi.org/https://doi.org/10.1016/B978-0-12-802301-3.00002-8
https://people.eecs.berkeley.edu/~necula/cil/CIL.pdf
https://people.eecs.berkeley.edu/~necula/cil/CIL.pdf
https://api.semanticscholar.org/CorpusID:11579427
https://api.semanticscholar.org/CorpusID:11579427
https://api.semanticscholar.org/CorpusID:11579427
https://phoenix.goucher.edu/~kelliher/s2014/cs311/gnu-c-manual.pdf
https://phoenix.goucher.edu/~kelliher/s2014/cs311/gnu-c-manual.pdf
https://api.semanticscholar.org/CorpusID:3430225
https://api.semanticscholar.org/CorpusID:3430225
https://api.semanticscholar.org/CorpusID:3430225
https://doi.org/10.1007/978-3-319-19686-2_8
https://doi.org/10.1007/978-3-319-19686-2_8
https://doi.org/10.1007/978-3-319-19686-2_8
https://doi.org/10.1007/978-3-319-19686-2_8
https://doi.org/10.1007/978-3-319-19686-2_8
http://arxiv.org/abs/1603.03022
http://arxiv.org/abs/1603.03022
http://arxiv.org/abs/1603.03022

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Overall Approach

	2 Related work
	2.1 Program transformation tools
	2.2 CIL

	3 Background
	3.1 Side effects in C programming
	3.2 Software Verification Witnesses Version 2.0
	3.3 Coccinelle

	4 Implementation
	4.1 Program transformations
	4.2 Differences detection
	4.3 Witness backtransformation
	4.4 Technical details

	5 Evaluation
	5.1 Quantitative Analysis
	5.2 Qualitative Analysis
	5.3 Threats to Validity

	6 Future work
	6.1 Improvement of existing state
	6.2 Adding new components

	7 Conclusion
	Bibliography

