
INSTITUT FÜR INFORMATIK
Ludwig-Maximilians-Universität München

A LIBRARY FOR UNIT VERIFICATION

Marko Ristic

Bachelor Thesis

Supervisor Prof. Dr. Dirk Beyer
Mentor Thomas Lemberger

Submission Date March 3, 2024

Statement of Originality

English:

Declaration of Authorship

I hereby confirm that I have written the accompanying thesis by myself, without
contributions from any sources other than those cited in the text and acknowledg-
ments.

Deutsch:

Eidesstattliche Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst habe
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, March 3, 2024 Marko Ristic

iii

Abstract

Motivated by the enduring popularity of C and the demand for a reliable veri-
fication framework, our approach aims to overcome challenges in readability,
scalability, and usability. This thesis addresses the critical challenge of enhanc-
ing the reliability and correctness of formal verification. Focused on projects
written in the C language and widely-used conventions of the International
Competition on Software Verification (SV-COMP), our goal is to develop a
dedicated C library that supports users writing unit-test-like verification tasks
and a powerful runner to execute them. The runner offers batch execution of
tasks and visualisation of the results performed by formal verifiers. By con-
ducting experiments on the coreutils project and applying verification tasks to
functions like cksum, cat, wc, and echo, we showcase the practical viability
of our methodology. The results signify a significant step forward in formal
verification, offering broad applicability and serving as a valuable guide for
developers and researchers in the field.

https://sv-comp.sosy-lab.org/2023/index.php
https://sv-comp.sosy-lab.org/2023/index.php
https://github.com/coreutils/coreutils

CONTENTS v

Contents

Contents v

List of Figures vii

1 Introduction 1
1.1 Thesis Goals . 1
1.2 Overall Approach . 1
1.3 Results . 4

Verification Tasks for cksum . 4
Invalid Input Verification Task 4

1.4 Conclusions . 4

2 Related Work 7

3 Background 9
3.1 Formal Verification . 9
3.2 Verifiers . 9
3.3 ANTLR . 10
3.4 CoVeriTeam . 11

4 Contribution 13
4.1 C Library for Software Verification . 13

Design . 13
Library Methods . 13
Distinguishing Features . 14

4.2 Unit Verification Tasks . 14
Function Being Tested: checkWheels 14
Example Unit Verification Task: invalidNumberOfWheels 15

4.3 Runner . 16

5 Evaluation 19
5.1 Experimental Setup . 19

Experimental Tools . 19
5.2 Experimental Results . 20

Quantitative Analysis . 20
Qualitative Analysis . 20

vi CONTENTS

Example: Verification of hextobin Function 20
Unknown Outcome for wc.c lines 21

5.3 Threats to Validity . 22
External Validity . 22
Internal Validity . 22

6 Future Work 23
6.1 Optimising Existing Components . 23
6.2 Adding New Components . 23

7 Conclusion 25

Bibliography 27

LIST OF FIGURES vii

List of Figures

1.1 Example for an overview of a unit verification pipeline 2

1

1 Introduction

This thesis centres around formal verification. Formal verification of a source code
provides an excellent way to increase the quality of a software project. It achieves
this by generating mathematical models of software that are then verified against
predefined properties. By proving that software stands by these properties, we can
ensure its correctness and reliability.
Specifically, our research formally verifies projects written in C language. To help
with it, we aim to develop a C library for software verification. It also involves
writing tasks akin to unit tests to verify specific components of a project. Additionally,
we will create a runner that would be powerful enough to understand, process and
execute these tasks.

1.1 Thesis Goals

Motivation. Despite the enduring popularity of the C language, there remains a
significant demand for a reliable verification framework. At the same time, formal
verification ensures software correctness, and challenges like readability, scalability,
and usability emerge, especially in the context of existing C tools.
Our research targets these challenges, focusing on enhancing usability. While var-
ious formal verification tools for C exist, many lack certain features. Frama-C’s
ACSL [13] provides similar functionalities but requires projects to be initiated with
annotations in mind, potentially restricting its use for projects not initially designed
for ACSL integration. Comparable approaches, such as the proprietary AWS li-
brary [7], often limit accessibility. By creating a dedicated C library for software
verification, formulating unit-test-like tasks, and developing a task execution runner,
we aim to overcome these challenges and make formal verification in C projects
more accessible.

1.2 Overall Approach

Library Methods. There are already conventions that indicate verifiers to do certain
things such as __VERIFIER_nondet_int(), instructs verifiers to utilise random
integers in the verification process or __VERIFIER_assume(x > 0) which as-
sumes that x is greater than 0. The library is built around these conventions. We
wanted to expand these basic conventions to make them easier to use and read.

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Example for an overview of a unit verification pipeline

Additionally, the library provides utility functions for defining conditions on com-
plex data structures. Furthermore, we are introducing new functions to facilitate the
definition of properties at the code level for verification.
To illustrate the practical benefits of our library, consider the example in Listing 1.
The vt_oneOfStrings method builds upon established conventions. Using __-
VERIFIER_nondet_int() allows the selection of a string from a provided array,
simplifying the process of generating diverse inputs for verification.
1 /* Returns a nondeterministic integer value. */
2 int vt_anyInt() { return __VERIFIER_nondet_int(); }
3
4 /* Selects one of the provided strings using a nondeterministic function.
5 The size parameter represents the size of the string array, and *strings[]
6 is a pointer to the array of strings. */
7 const char *vt_oneOfStrings(const char *strings[], size_t size) {
8 int index = vt_anyInt();
9 vt_assume(index >= 0 && index < size);

10 return strings[index];
11 }

Listing 1: Nondeterministic integer and string selection in C

Unit Verification Tasks. With the library methods in place, we get to verification
tasks. These tasks consist of verification harnesses that test the function of a project
under verification. We can choose any function of a project to verify (hence unit-
test-like) and write a harness using our library. This granularity allows for a more
accurate examination of each function’s behaviour, ensuring alignment with spec-
ified requirements and adherence to intended logic. Isolating specific functions
simplifies debugging and troubleshooting processes. Utilising verification proper-
ties, such as unreach_call(), unit verification tasks explicitly define and enforce
expected behaviour during function execution. These properties enhance the veri-
fication process by setting conditions that functions must meet, contributing to a
more robust and predictable system.

1.2. OVERALL APPROACH 3

1 #include <assert.h>
2 #include "convert.h"
3
4 int convert(int temperatureInCelsius) {
5 int inKelvin = temperatureInCelsius + 273;
6 if (inKelvin < 0) {
7 abort();
8 }
9 return inKelvin;

10 }
11
12 #include "convert.h"
13 #include "verlib.h"
14
15 void verifyConvert_invalidInput() {
16 vt_enable_unreach_call();
17 int temperatureInCelsius = vt_anyInt();
18 vt_assume(temperatureInCelsius < -273);
19
20 convert(temperatureInCelsius);
21
22 reach_error();
23 }

Listing 2: Example project "convert.c" with and unit-verification and library methods
in use

In Listing 2, we observe a verification harness for an example project convert.c.
We initiate the method with the prefix verify to enable our runner to identify the
verification task. In line 5, we activate the verification property unreach_call(),
instructing the verifiers to identify reach_error() and flag the task as failed
if it encounters this function. Considering the definition of the convert function
in the "convert" project, the occurrence of reach_error() on line 12 should be
prevented, as it should encounter the assertion on line 43 before reaching this point.

Runner. A significant component of our approach involves the implementation of a
runner dedicated to unit verification tasks. As mentioned earlier, this runner can
identify tasks within a specified directory. Moreover, it preprocesses these tasks
using a C compiler, following user-provided instructions for project compilation.
For the actual verification process, it uses CBMC [9] and CPAchecker [20] verifiers.
The verification backend relies on the CoveritTeam web service to execute the
verifications. The provided architecture facilitates the straightforward expansion
of both the number of verifiers and the backend service itself. After successful (or
failed) verification, the runner can output the result achieved by verification to the
user.

Overview. Figure 1.1 illustrates our approach. The process begins with the user
generating unit verification tasks using the methods available in our library. Sub-
sequently, the user activates the runner, which identifies tasks, preprocesses them,
and engages the verification backend to carry out the verification process. The
verification backend yields results, which the runner presents to the user for review.

4 CHAPTER 1. INTRODUCTION

1.3 Results

To assess the effectiveness of our formal verification approach, we carried out a series
of experiments on a real-world C project. Among the many open-source projects, we
chose coreutils [15] because it is well-tested and approachable. We functions such as
cksum, cat, wc and echo. The following subsection shows the verification task for
cksum.

Verification Tasks for cksum

We applied verification tasks to the cksum function within the coreutils project. The
verification tasks focused on assessing the correctness of the function under various
scenarios.

Invalid Input Verification Task

We designed a verification task, shown in Listing 3, to evaluate the behaviour of
cksum when provided with invalid input.

1 #include "cksum.h"
2 #include "verlib.h"
3
4 void verifyCksum_invalidInput() {
5 vt_enable_unreach_call();
6 FILE *emptyStream = fopen("empty.txt", "w");
7 uint_fast32_t *crc_out1 = vt_malloc(sizeof(unsigned int));
8 uintmax_t *length1 = vt_malloc(sizeof(uintmax_t));
9

10 int result1 = cksum_slice8(emptyStream, crc_out1, length1);
11
12 fclose(emptyStream);
13 free(crc_out1);
14 free(length1);
15
16 reach_error();
17 }

Listing 3: Invalid Input Verification Task for cksum

This verification task assesses how cksum handles invalid input scenarios. Specif-
ically, it attempts to compute the checksum for an empty file (empty.txt) and
ensures that the function reaches the error state (reach_error()) if any unex-
pected behaviour occurs.

1.4 Conclusions

While the findings and methodologies presented in this thesis may not revolution-
ize the entire software development landscape, they hold substantial promise as a
significant step forward in formal verification.
The results that we received from applying the proposed approach to the coreutils

project, explicitly targeting functions like cksum, cat, wc, and echo, demonstrate
the practical viability and potential impact of the developed framework for software

1.4. CONCLUSIONS 5

verification. The presented verification tasks, exemplified by the one focused on
cksum handling invalid input, showcase a robust and granular verification method-
ology.
The significance of this work extends to its ability to enhance the accessibility and
efficiency of formal verification tools in the C language. The challenges tackled in
this work, such as readability, scalability, and usability, are widespread in several
existing tools. Hence, the C library, unit verification tasks, and task execution runner
that were developed could serve as a model for future projects in this field.
Although the research may not have an immediate world-altering impact, it offers

a valuable guide for developers and researchers working on formal verification in C
projects. The results are broad and can be applied to various situations, providing
knowledge and techniques to make the formal verification process more manageable
and effective for multiple software projects.

This thesis is a guiding light demonstrating the proposed approach’s feasibility
and potential success. It is a testament to the ongoing efforts to improve software
reliability and correctness through practical and accessible formal verification meth-
ods. This marks a significant contribution to the broader software engineering and
verification landscape.

7

2 Related Work

Several research papers and technologies have tackled the topic in one way or
another. This section reviews some of the more relevant work in software verification,
bounded model-checking and property-based testing.

AWS Library. One notable contribution in this field is the proprietary work con-
ducted at Amazon Web Services (AWS) [7]. Their methodology involves code-level
model checking, utilising verification harnesses as unit-test-like tasks to verify spe-
cific functions within the source code. While sharing similarities with our approach,
which also employs verification harnesses, it is essential to note that the AWS work
is confined to projects within the AWS ecosystem and employs the CBMC tool [9].
This restriction prompts consideration of the generalisation and scalability of their
approach compared to ours.

ACSL. One alternative to our formal verification approach is found in Frama-C’s
ASCL (ANSI/ISO C Specification Langage) [13]. ACSL provides similar function-
alities but requires projects to be initiated with annotations in mind, potentially
restricting its use for projects not initially designed for ACSL integration. This intro-
duces a different set of considerations, emphasising the importance of integration
flexibility in verification tools.

Theft. Theft is a property-based testing library for C, designed to generate input for
stress-testing code and minimising failures to essential failing inputs [2]. While Theft
concentrates solely on property-based testing, our approach enables the utilisation
of various verification tools that adhere to SV-COMP [1] rules.

EvoSuite. EvoSuite [14] is another example of a framework that employs a similar
approach. It facilitates automatic test case generation for Java classes. The key
distinction is that EvoSuite is primarily designed for Java, whereas we operate in
the context of C programming.

KLEE. KLEE is a symbolic execution tool capable of automatically generating tests
achieving high coverage on complex programs [6]. The critical distinction between
our approach and KLEE is that while KLEE emphasises the automatic generation of
inputs to stress-test code, our approach involves writing verification harnesses and
testing them with verifiers.

9

3 Background

3.1 Formal Verification

Formal verification ensures that software systems meet their desired specifications
(properties) using rigorous mathematical reasoning. Formal verification can prove
the correctness of systems for various properties, such as safety, security, or perfor-
mance [11].

Model Checking. This work focuses on model checking as a formal verification
method. Model checking is a systematic procedure that explores a system’s possible
states and transitions and checks whether they satisfy a given property. Model check-
ing can handle complex systems with many components and interactions. [10]. For
this, we use system models that define representations of a system under verification.
For instance, consider a command to a model checker like CHECK(init(main()),
LTL(G ! call(reach_error()))). The first part of the command sets the ini-
tial state and tells the model checker that the system starts at the main function. The
second part is the property we want to check, which in this example says that the
model should never call the function reach_error(). Using these commands, we
can verify that our system never reaches an error state, even for complex systems
with many components and interactions.
In combination with the C programming language, the mentioned command de-
fines properties using Linear Temporal Logic (LTL) [23]. This approach allows us to
verify a range of properties, including but not limited to memory safety and buffer
overflow.

Model checking has been successfully applied in various domains, including hard-
ware design, protocol verification, and software verification. It has been used to
detect errors in real-world systems that would have been difficult to find through
traditional testing methods. [12]

3.2 Verifiers

We use tools called model-checkers or "verifiers" to perform model-checking on
software systems. The model checker systematically explores all possible states or
states reachable from an initial state, checking whether the specified properties hold
at each state.

10 CHAPTER 3. BACKGROUND

If certain states prove unreachable during this verification or counterexamples are
detected, it may indicate potential issues affecting the system’s adherence to the
specified properties. These verifiers often provide valuable insights through features
like witness graphs, illustrating the path that leads to a property violation, and
counterexamples, demonstrating specific scenarios where the system deviates from
the desired behaviour.
Many model checkers, including tools such as SPIN [18], NuSMV [8], BLAST [16]
and PRISM [17], are widely used in the industry.
In the context of this study, we focus on two verifiers, namely C Bounded Model
Checker (CBMC) [9] and CPAchecker. These verifiers have been chosen primarily
due to their suitability for C projects, as well as their comprehensive documentation
and robust performance. [20].

CPAchecker. CPAchecker is a software verification tool rooted in configurable pro-
gram analysis. This approach facilitates the integration of model checking and
program analysis within a single formalism. Upon execution, the CPAchecker con-
ducts a reachability analysis, specifically checking whether a particular state that
violates a specified criterion can potentially be reached. [5]

CBMC. CBMC, or the C Bounded Model Checker, is a tool for checking C and
C++ programs. It can prove that, for computations of bounded depth, a C program
exhibits no memory-safe errors (no buffer overflows, no invalid pointers, etc.), no
undefined behaviours, and no failures of assertions in the code. CBMC explores the
feasible paths of a program within the specified bounds, systematically analyzing
all possible execution paths to find potential issues. When a violation of a safety
property is found, CBMC can generate counterexamples, providing details about
the specific conditions under which the violation occurs. [19]

3.3 ANTLR

For the recognition of user-written tasks, a C parser is crucial. ANother Tool for
Language Recognition (ANTLR) [22] serves this purpose, generating parsers from
language grammars.
ANTLR takes a language grammar as input and generates source code files for a
parser in the target language. These grammars, exemplified in Listing 4 with a
definition of relational expressions in C, serve as the blueprint for the parser. They
provide a set of rules that define the syntax of a language.
In the Listing 4, we see a definition of relational expressions in C language. The rule
says that the relational expressions start with shiftExpression (which is another
definition in ANTLR), followed by zero or more groups (denoted by * sign). Each
group consists of relational operators and a shiftExpression.

1 relationalExpression
2 : shiftExpression ((’<’|’>’|’<=’|’>=’) shiftExpression)*
3 ;

Listing 4: Example of ANTLR grammar for C

3.4. COVERITEAM 11

In practical terms, when ANTLR processes a user-written source code, it produces
parse trees. A parse tree represents a structured data type where each node corre-
sponds to a syntactic construct in a parsed language. This parse tree, in turn, enables
structured text traversal and manipulation. [21].
ANTLR utilises a listener interface (or visitor) to conveniently define or add new
functionalities without altering the generated source code [21]. This feature is partic-
ularly useful when there is a requirement to enhance the capabilities of a parser to
address specific needs not covered by the original generated source code.

3.4 CoVeriTeam

A verification backend is essential for conducting verification using selected verifiers
to facilitate the verification process. We have opted for the CoVeriTeam Service [4],
which simplifies the verification procedure over a web service, eliminating concerns
about the installation of tools and verifiers.

For verification, the CoVeriTeam Service relies on CoveriTeam [3]. It considers
verification tools as verification actors and treats input and output as verification
artifacts. The behaviour of CoveriTeam is specified in a .cvt file. This file accepts
input from a YAML file representing our verifier and its options, as illustrated in
Listing 5. In this listing, CBMC is defined by actor name, and we have specified
options to generate witness graphs. In the archives section, we inform CoveriTeam
about the verifier version we wish to use.

1 actor_name: cbmc
2 toolinfo_module: "https://gitlab.com/sosy-lab/software/benchexec/
3 -/raw/main/benchexec/tools/cbmc.py"
4 options: [’--graphml-witness’, ’witness.graphml’]
5 archives:
6 - version: default
7 location: "https://gitlab.com/sosy-lab/sv-comp/archives-2023/
8 -/raw/main/2023/cbmc.zip"

Listing 5: An example verifier YAML file for CBMC

1 {
2 "coveriteam_inputs": {
3 "verifier_path": "cbmc.yml",
4 "program_path": "test02.c",
5 "specification_path": "unreach-call.prp",
6 "verifier_version": "default",
7 "data_model": "ILP32"
8 },
9 "cvt_program": "verifier.cvt",

10 "working_directory": "coveriteam/examples",
11 }

Listing 6: An example JSON request file for CBMC

CoVeriTeam Service. One of the most straightforward methods to utilise the CoVeriTeam
Service involves using HTTP and sending a POST request with a configurable JSON

12 CHAPTER 3. BACKGROUND

file. In Listing 6, we present an example JSON request. Within the coveriteam_-
inputs section, we have specified options for our verifier. Initially, we indicate the
verifier we want to use, followed by the program under verification, the type of
property (specification) employed, the verifier version, and the data model. Addi-
tionally, we provide a .cvt file that CoVeriTeam should interpret.
The CoVeriTeam Service receives input through an HTTP POST request, conducts
consistency checks on the provided input, constructs the command for CoVeriTeam,
downloads the requested verifier, executes the specified program on the server, and
returns the output artifacts. [4].

13

4 Contribution

As part of our contribution, we introduced three entities: a C library for software
verification, Unit Verification Tasks, and a runner. The following subsections provide
more detailed insights into each of these contributions. The entire library, along with
the runner and documentation, is available at GitLab Repository.

4.1 C Library for Software Verification

This section delves into the design and implementation of the C library developed
for software verification. The library serves as a foundational component of our
formal verification approach, providing essential functionalities that contribute to
the accessibility and integration flexibility of the overall solution.

Design

The C library is designed to be simple, versatile, and easily integrated into exist-
ing projects. It adheres to established SV-COMP [1] conventions and uses non-
deterministic value generation to facilitate incorporation into various software
verification tasks.

Library Methods

Nondeterministic Value Generation. The library provides functions such as vt_-
anyInt(), vt_anyChar(), and vt_anyLong() for generating non-deterministic
values for integers, characters, and long integers, respectively. This functionality
enhances the diversity of input scenarios during verification tasks.

String Selection with Non-deterministic Index. The vt_oneOfStrings function
enables the selection of one string from a provided array using a non-deterministic
index. This feature supports the creation of varied test cases, contributing to a more
comprehensive verification process.

Custom Memory Allocation with Error Handling. The vt_malloc function serves
as a custom memory allocation wrapper, ensuring successful memory allocation
and providing error handling. This feature enhances the robustness of verification
tasks by preventing memory-related issues.

Assumption and Assertion Functions. The library includes vt_assume and vt_-
assumeNotNull functions, which abort the process if specified conditions are not

https://gitlab.com/sosy-lab/software/unit-verification-library/-/commit/71ed5630831824d2d18845a4d6d49a2cc4bc6d2a

14 CHAPTER 4. CONTRIBUTION

met. Additionally, the vt_assert function terminates the process if an evaluation
is incorrect, aiding in enforcing verification properties.

Distinguishing Features

Integration Flexibility:. The C library is designed to integrate seamlessly into exist-
ing C projects, requiring minimal adaptations. Its functions align with established
conventions, allowing developers to incorporate formal verification tasks without
significantly modifying their codebase.

Usability in Unit Verification Tasks:. The library’s functionalities are tailored for
unit verification tasks, providing developers with a convenient means of testing
specific components of their projects. This granularity enhances the examination of
individual functions, aiding in identifying potential issues.

Verification Property Enablement:. The library includes functions, such as vt_-
enable_unreach_call, vt_enable_valid_memsafety, and vt_enable_no_-
overflow, allowing users to specify verification properties for the runner. This
feature provides flexibility in tailoring the verification process to project-specific
requirements.

In summary, the C library for software verification constitutes a practical contri-
bution that significantly enhances the accessibility and adaptability of our formal
verification approach. Its functionalities, designed with simplicity and integration
in mind, contribute to the effectiveness of unit verification tasks and promote the
seamless integration of formal verification into C projects.

4.2 Unit Verification Tasks

We designed unit verification tasks to ensure the correctness of specific functions
within our C library. These targeted tests check individual components of a project
and their behaviour under different scenarios. Here, we present an illustrative
example in the Listing 7 related to the checkWheels function. The car.h is defined
in the Listing 8

Function Being Tested: checkWheels

The checkWheels function verifies the integrity of a Car object’s wheels. The
function ensures that the number of wheels is precisely four and that each wheel
has the same diameter as the first wheel.
In this function, we verify that the Car object has exactly four wheels, and each
wheel has the same diameter as the first wheel. Any deviation from this expected
behaviour results in the abortion of the program, signalling a failure in the wheel-
checking logic.

1 #include <assert.h>
2 #include <stddef.h>
3 #include "car.h"

4.2. UNIT VERIFICATION TASKS 15

4
5 void checkWheels(Car *car) {
6 size_t numberOfWheels = sizeof(car->wheels) / sizeof(*car->wheels);
7
8 if (numberOfWheels != 4) {
9 abort();

10 }
11
12 int expectedDiameter = car->wheels[0].diameter;
13 for (int i = 1; i < numberOfWheels; i++) {
14 Wheel *wheel = &car->wheels[i];
15 if (wheel->diameter != expectedDiameter) {
16 abort();
17 }
18 }
19 }

Listing 7: Function checkWheels

1 #ifndef CAR_H
2 #define CAR_H
3
4 #include <stddef.h>
5
6 typedef struct {
7 int diameter;
8 } Wheel;
9

10 typedef struct {
11 char color[20];
12 Wheel* wheels;
13 } Car;
14
15 void checkWheels(Car *car);
16
17 #endif // CAR_H

Listing 8: Header File: car.h

Example Unit Verification Task: invalidNumberOfWheels

Consider the scenario where we want to validate the behaviour of the checkWheels
function in the context of a Car object. The task is designed to test the function’s
response when the number of wheels does not equal the expected value of four. This
scenario is captured in the following unit verification task:
1 #include "car.h"
2 #include "verlib.h"
3
4 int validDiameter() {
5 int diameter = vt_anyInt();
6 vt_assume(diameter >= 0);
7 return diameter;
8 };
9

10 Wheel* validWheels(int length, int diameter) {
11 Wheel* wheels = (Wheel*) malloc(length * sizeof(Wheel));
12 for (int i = 0; i < length; i++) {

16 CHAPTER 4. CONTRIBUTION

13 wheels[i].diameter = diameter;
14 }
15 return wheels;
16 }
17
18 char* validColor() {
19 const char *options[] = {"blue", "green"};
20 return vt_oneOfStrings(options, 2);
21 }
22
23 void verifyCheckWheels_invalidNumberOfWheels() {
24 vt_enable_unreach_call();
25 int wheelLength = vt_anyInt();
26 vt_assume(wheelLength > 0 && wheelLength != 4 && wheelLength < 10);
27 int wheelDiameter = validDiameter();
28 Wheel *wheels = validWheels(wheelLength, wheelDiameter);
29 Car car = { .wheels = wheels, .color = validColor() };
30
31 checkWheels(&car);
32
33 // code should not reach this but run into an assertion during
34 // the method call
35 reach_error();
36 }

Listing 9: Unit Verification Task for checkWheels

In this example, we create a Car object with a dynamically allocated array of wheels.
The verification task sets up a scenario where the number of wheels is not equal to
four and calls the checkWheels function. The expectation is that an assertion will
be triggered during the function call, indicating a violation of the expected number
of wheels.
This example illustrates how unit verification tasks are constructed to systematically
test specific functionalities within the C library for software verification.

4.3 Runner

We created a runner to perform these tasks. The design is intended to facilitate
further development and expansion with ease. In the following sections, we’ll
explain the architecture and optimisations.

Parser. The runner employs an ANTLR-based parser for C code to identify tasks effi-
ciently. The parser scans the code for predefined function names within the specified
directory, effectively pinpointing tasks. To do this, we enhance the ANTLR-generated
parser by extending the listener interface and overriding the enterFunctionDefinition
method of the ANTLR interface. This approach enables us to traverse the parsed
tree and capture all the function names in the C file.

Preprocessing. Preprocessing is a pivotal component in the runner’s functionality,
essential for generating a single preprocessed file conducive to efficient verification.
Verifiers like CBMC and CPAchecker perform best when dealing with a consolidated
file rather than multiple ones.

4.3. RUNNER 17

The preprocessing step employs popular C compilers, such as Clang or GCC, lever-
aging Java’s Process Builder to execute the compilation process. Users must provide
the command line arguments for the chosen compiler, including those necessary
for compiling the project to be verified. The runner then supplements these argu-
ments with additional compilation options, such as library locations, and outputs
everything into a single file for further processing. Because the project file to be
verified is included in the compilation process, and those can have main functions
declared, we need to tell the compiler which main function to use for verification
(as it can have conflicts with verifiers). The runner does this by also appending
-Dmain=____main.
As the last preprocessing step, the runner appends a new main function that calls
the verification task. This ensures that only the verification task function will be
considered during the verification process.

Verification Backend. To execute the verification process, the runner utilises the
CoVeriTeam Service as the verification backend. As detailed in the background
section, we initiate an HTTP POST request to the web service, providing a predefined
task and selected verification options. These options encompass the verifier tool,
verification property, and data model. The resulting output is then organised within
the output folder, structured with the following hierarchy:
Root Directory

Output
CBMC

ProjectX
Task1

LOG.txt
execution_trace.xml
output.txt
witness.graphml

Task2
LOG.txt
execution_trace.xml
output.txt
witness.graphml

The verification backend interface is also designed to be decoupled, allowing for the
easy implementation of new backends in addition to CoVeriTeam.

Verification View. To showcase the verification output, we designed a user-friendly
verification view. This view presents real-time information on the ongoing verifi-
cation tasks, culminating in the display of the final verification result details at the
conclusion. Using the option debug, we see more detailed information about the
verification process.
1 Using verifier: CPACHECKER with data model: ILP32.
2 verifyConvert_invalidInput SUCCESS (1/2)
3 verifyCheckWheels_invalidNumberOfWheels SUCCESS (2/2)
4 Verification finished successfully. See ’output/cpachecker’ for more
5 information.

Listing 10: Example output of a runner

18 CHAPTER 4. CONTRIBUTION

In the presented command line output in Listing 10, a verification process is con-
ducted using the CPAchecker verifier with a specified data model (ILP32). The
program begins by establishing a temporary directory.
It then explores the directory ./uvl to identify unit verification tasks, revealing
the discovery of two such tasks. The subsequent execution involves verifying a
task named verifyConvert_invalidInput, completing successfully after 9.0
seconds of processing time (SUCCESS 1/2).
A subsequent task, verifyCheckWheels_invalidNumberOfWheels, is then
initiated, and its verification process is detailed through debug information. This
task concludes successfully after 92.9 seconds of processing time (SUCCESS 2/2).
The verification process as a whole is reported as successful, directing the user to
consult the ’output/cpachecker’ directory for a more comprehensive overview, as
mentioned in the previous subsection.

Command-line Interpreter. We also have a command line interpreter that takes user
input and executes wanted behaviour.
1 ./start.sh --verify uvl/ --debug -- gcc -I lib/headers uvl/car.c

Listing 11: Example command-line options of a runner

As demonstrated in Listing 11, initiating the runner involves executing a shell script
named ./start.sh with specific command-line options. The -verify option
directs the runner to commence the verification process, specifying the directory
uvl/ as the location to search for tasks.
Additionally, an optional -debug flag is available to instruct the runner to generate
more detailed output, as illustrated in Listing 10. Including the – option is crucial
because it provides the runner with essential information on how to compile the
program undergoing verification.

Listing 12 shows us all the available command-line options with detailed descrip-
tions.
1 - ‘-d, --debug‘: Show debug information.
2 - ‘-h, --help‘: Print available options.
3 - ‘-m, --data-model <arg>‘: Choose a data model to be used.
4 Valid choices: [ILP32, LP64]. Default: ILP32.
5 - ‘-p, --parser <arg>‘: Path to the input file to be parsed.
6 - ‘-t, --tool <arg>‘: Choose a verifier to be used.
7 Valid choices: [cpachecker, cbmc]. Default: cpachecker.
8 - ‘-v, --verify <arg>‘: Path to the directory containing verification
9 tasks.

10
11 Use ‘--‘ to pass the following compile commands to the runner:
12 compiler [gcc, clang..], header files location with ’-I’, and project
13 source files.

Listing 12: Available runner command-line options

19

5 Evaluation

To evaluate the efficiency of our software verification approach, we performed veri-
fication tasks on a real-world project, specifically the coreutils project [15]. Coreutils
was selected for its reputation as a thoroughly tested project with comprehensive
documentation. We designed tests for four critical functions within the project: cat,
echo, wc, and cksum.

5.1 Experimental Setup

The experiments were carried out on a system running Windows 11 with the Win-
dows Subsystem for Linux (WSL) configuration. The hardware setup included an
Intel i7 central processing unit (CPU) with 2.30 GHz, and the system used 16 GB of
RAM.
The following resource limits were enforced during the experiments:

resourcelimits:
memlimit: "15 GB"
timelimit: "2 min"
cpuCores: "2"

Experimental Tools

The benchmark tasks used in the experiments are detailed in the provided GitLab
repository at the start of Section 4. This repository contains comprehensive informa-
tion on the benchmark tasks, facilitating the replication of the experiments.

The verification tools employed in this study were CBMC and CPAchecker. The ver-
sions of these tools used during the experiments are crucial for result reproducibility.
We used the following versions:

• CBMC
URL: https://gitlab.com/sosy-lab/sv-comp/archives-2023/-/
raw/main/2023/cbmc.zip

• CPAchecker
DOI: 10.5281/zenodo.10203297

The Coveriteam service was utilised to run the experiments and measure data. This
service facilitated the execution of the experiments and ensured consistent and

https://gitlab.com/sosy-lab/sv-comp/archives-2023/-/raw/main/2023/cbmc.zip
https://gitlab.com/sosy-lab/sv-comp/archives-2023/-/raw/main/2023/cbmc.zip

20 CHAPTER 5. EVALUATION

controlled conditions. The complete steps to reproduce the results are documented
in the GitLab repository mentioned earlier.

5.2 Experimental Results

Verification Tool Function Tested Property Used Verification Result

CBMC wc_lines no_overflow Unknown
CPAchecker wc_lines no_overflow Unknown
CBMC hextobin valid_memsafety Successful
CPAchecker hextobin valid_memsafety Successful
CBMC cksum_slice8 enable_unreach_call Failed
CPAchecker cksum_slice8 enable_unreach_call Failed
CBMC simple_cat valid_memsafety Failed
CPAchecker simple_cat valid_memsafety Failed

Table 5.1: Summary of verification outcomes, functions tested, properties used, and
verification results

Quantitative Analysis

Table 5.1 summarises the quantitative results of our software verification experi-
ments on the coreutils project using CBMC and CPAchecker. The verification tasks
were performed on four functions: wc_lines, hextobin, cksum_slice8, and
simple_cat. The properties checked included no_overflow, valid_memsafety,
and enable_unreach_call. The results are categorised as either "Successful" or
"Failed." If the tool has not been able to compute the verification, it returns "Un-
known" output.

Qualitative Analysis

In this section, we present code snippets and discuss specific examples to analyse
the behaviour of verifiers during the verification tasks qualitatively. Our runner
successfully identified and executed all the presented tasks accurately using both
mentioned verifiers.

Example: Verification of hextobin Function

Consider verifying the hextobin function of the echo.c using CBMC or CPAchecker
with the property no_overflow. The following code snippet represents the verifi-
cation task for the mentioned function:

1 // verlib.h
2 #include "verlib.h"
3
4 void verify_hextobin_noOverflow() {
5 // Enable no overflow verification

5.2. EXPERIMENTAL RESULTS 21

6 vt_enable_no_overflow();
7 // Assign non-deterministic value to c
8 char c = vt_anyChar();
9

10 // Call function under verification
11 char result = hextobin(c);
12 }

Moreover, the corresponding function being verified:

1 // verlib.c
2 static int hextobin(unsigned char c) {
3 switch (c) {
4 default: return c - ’0’;
5 case ’a’: case ’A’: return 10;
6 case ’b’: case ’B’: return 11;
7 case ’c’: case ’C’: return 12;
8 case ’d’: case ’D’: return 13;
9 case ’e’: case ’E’: return 14;

10 case ’f’: case ’F’: return 15;
11 }
12 }

In this example, we enable the no_overflow verification property using the vt_-
enable_no_overflow() function provided by the verification library. We then
assign a non-deterministic character value to the variable c using vt_anyChar()
and call the hextobin function. The verifier will verify whether the no_overflow
property holds during the execution of this verification task.

The hextobin function converts a hexadecimal character c to its corresponding dec-
imal value. The switch statement handles various cases, and the function involves
simple arithmetic operations.
The verify_hextobin_noOverflow function tests the hextobin function un-
der the no_overflow property. In this context, the no_overflow property asserts
that the arithmetic operations within hextobin do not result in an integer overflow.
CBMC will analyse the function and verify whether the specified property holds for
all possible inputs.

Unknown Outcome for wc.c lines

It is important to note that the verification outcome for the wc.c lines task is marked
as "Unknown." This is because both CBMC and CPAchecker could not complete
the verification process due to the presence of the _Static_assert statement
within the code. The _Static_assert statement introduces static assertions that
are checked at compile-time. While this is a valuable mechanism for ensuring certain
conditions at compile-time, it can make it challenging for runtime verification tools
to analyse the code thoroughly.

22 CHAPTER 5. EVALUATION

5.3 Threats to Validity

External Validity

An external validity threat arises from whether the results obtained from our bench-
mark tasks can be generalised to real-world programs. Our experiment utilised a
set of well-established software verification problems based on the coreutils project.
While this collection is recognised and relevant in the verification community, it may
not comprehensively represent the diversity of real-world programs. That is why the
external validity of our results is limited to the types of programs and verification
challenges present in our chosen benchmark.
However, it is essential to note that the coreutils project covers a range of function-
alities and is widely used. We aimed to mitigate this threat by selecting a project
with a broad scope, but the specific characteristics of other programs may introduce
variations in verification behaviour.

Internal Validity

Internal validity concerns the accuracy of our experimental setup and whether the
observed results are affected by confounding factors. One potential internal validity
threat is related to the presence of the _Static_assert statement in the wc.c
lines verification task. This static assertion is checked at compile-time and can lead
to early termination of the verification process by CBMC and CPAchecker. As a
result, the verification outcome for this particular task is marked as "Unknown."
While the _Static_assert statement ensures certain conditions during compi-
lation, its presence introduces a limitation in the runtime verification process. The
inability to complete the verification for this task may affect the overall interpretation
of our results.
Additionally, implementing our verification algorithms may contain bugs that could
impact the analysis of specific program paths. While we have not observed false
proofs during our experiments, the presence of bugs could affect the accuracy of
our results. However, the absence of false proofs suggests a reasonable level of
confidence in the validity of our outcomes.
In summary, acknowledging these threats to external and internal validity is crucial
for interpreting the accuracy of our software verification experiment results.

23

6 Future Work

In this section, we evaluate potential future research and development of our im-
plementation to optimise and expand upon the work done in the scope of this
thesis.

6.1 Optimising Existing Components

The overall architecture of the runner is well-optimised for future development;
however, certain areas might benefit from additional optimisation. Specifically,
aspects of the error-handling mechanism may need further adjustments, which
could not be completed due to time constraints.

6.2 Adding New Components

Verifiers. An effective strategy for enhancing the functionalities of this project is
to introduce new components to the existing framework. Currently, the runner
supports only two verifiers, as mentioned in the preceding sections. However,
incorporating additional verifiers, currently maintained by the CoVeriTeam service,
should be relatively straightforward.

Library Expansion. Presently, the library incorporates a limited set of implemented
functions. It would be advantageous for future development to extend and introduce
additional functionalities as necessary. An easily implementable enhancement would
involve expanding the options for verification properties. Currently, the process
consists of specifying function names and adding .prp files, but additional options
could be incorporated for greater flexibility.

Verification Backend. As previously discussed, the architecture should be suffi-
ciently decoupled to handle the integration of a new verification backend. This
could be a locally running system or an entirely separate web service.

Evaluation on more C projects. The current assessment is confined to the coreutils
project, potentially needing more representation of the diversity found in real-world
C programs. A more comprehensive evaluation, encompassing diverse types of
C projects and featuring more complex and insightful verification tasks, could be
beneficial.

25

7 Conclusion

This thesis presents an approach to formal verification of C programs using a dedi-
cated C library, unit verification tasks, and a task execution runner. Our approach
aims to overcome the readability, scalability, and usability challenges affecting
existing verification tools. We have demonstrated the practical application and
effectiveness of our approach by writing verification tasks using our library on
the coreutils project, verifying functions such as cksum, cat, wc, and echo. Our
results show that our runner can be used as a viable alternative to existing formal
verification frameworks, as our approach also offers integration flexibility, allowing
developers to easily incorporate formal verification into their C projects without
significant modifications.
Our contribution is significant for software verification, as it provides a simple,
versatile, and accessible solution for ensuring the correctness and reliability of C
programs. Our approach can be applied to various domains and scenarios and serve
as a valuable guide for developers and researchers working on formal verification
in C. Our work also opens up new possibilities for future research and development,
such as optimising existing components, adding new features, and expanding the
scope of verification tasks and we believe is a step forward in advancing the state-
of-the-art in formal verification, and we hope that it will inspire further innovation
and improvement in this field.

BIBLIOGRAPHY 27

Bibliography

[1] 12th competition on software verification (sv-comp 2023).

[2] theft: property-based testing for c.
[3] D. Beyer and S. Kanav. Coveriteam: On-demand composition of cooperative

verification systems. In D. Fisman and G. Rosu, editors, Tools and Algorithms for
the Construction and Analysis of Systems, pages 561–579, Cham, 2022. Springer
International Publishing.

[4] D. Beyer, S. Kanav, and H. Wachowitz. Coveriteam service: Verification as a
service. In 2023 IEEE/ACM 45th International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), pages 21–25, 2023.

[5] D. Beyer and M. E. Keremoglu. Cpachecker: A tool for configurable software
verification. In G. Gopalakrishnan and S. Qadeer, editors, Computer Aided
Verification, pages 184–190, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[6] C. Cadar, D. Dunbar, and D. Engler. Klee: unassisted and automatic generation
of high-coverage tests for complex systems programs. In Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, OSDI’08,
page 209–224, USA, 2008. USENIX Association.

[7] N. Chong, B. Cook, J. Eidelman, K. Kallas, K. Khazem, F. R. Monteiro,
D. Schwartz-Narbonne, S. Tasiran, M. Tautschnig, and M. R. Tuttle. Code-
level model checking in the software development workflow at amazon web
services. Software: Practice and Experience, 51(4):772–797, 2021.

[8] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. Nusmv: a new symbolic
model checker. STTT, 2:410–425, 03 2000.

[9] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ansi-c programs. In
K. Jensen and A. Podelski, editors, Tools and Algorithms for the Construction and
Analysis of Systems, pages 168–176, Berlin, Heidelberg, 2004. Springer Berlin
Heidelberg.

[10] E. M. Clarke. Model checking. In S. Ramesh and G. Sivakumar, editors,
Foundations of Software Technology and Theoretical Computer Science, pages 54–56,
Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

[11] E. M. Clarke, T. A. Henzinger, and H. Veith. Introduction to Model Checking,
pages 1–26. Springer International Publishing, Cham, 2018.

[12] E. M. Clarke and J. M. Wing. Formal methods: state of the art and future
directions. ACM Comput. Surv., 28(4):626–643, dec 1996.

[13] Frama-C. ACSL: ANSI/ISO C Specification Langage, ongoing.

https://sv-comp.sosy-lab.org/2023/rules.php
https://github.com/silentbicycle/theft/blob/master/doc/properties.md
https://doi.org/https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/10.1109/ICSE-Companion58688.2023.00017
https://doi.org/10.1109/ICSE-Companion58688.2023.00017
https://doi.org/10.1109/ICSE-Companion58688.2023.00017
https://doi.org/https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/https://doi.org/10.5555/1855741.1855756
https://doi.org/https://doi.org/10.5555/1855741.1855756
https://doi.org/https://doi.org/10.5555/1855741.1855756
https://doi.org/https://doi.org/10.5555/1855741.1855756
https://doi.org/https://doi.org/10.1002/spe.2949
https://doi.org/https://doi.org/10.1002/spe.2949
https://doi.org/https://doi.org/10.1002/spe.2949
https://doi.org/https://doi.org/10.1002/spe.2949
https://doi.org/10.1007/s100090050046
https://doi.org/10.1007/s100090050046
https://doi.org/https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/https://link.springer.com/chapter/10.1007/BFb0058022
https://doi.org/https://link.springer.com/chapter/10.1007/BFb0058022
https://doi.org/https://link.springer.com/chapter/10.1007/BFb0058022
https://doi.org/10.1145/242223.242257
https://doi.org/10.1145/242223.242257
https://github.com/acsl-language/acsl/

28 BIBLIOGRAPHY

[14] G. Fraser and A. Arcuri. Evosuite: automatic test suite generation for object-
oriented software. In Proceedings of the 19th ACM SIGSOFT Symposium and the
13th European Conference on Foundations of Software Engineering, ESEC/FSE ’11,
page 416–419, New York, NY, USA, 2011. Association for Computing Machin-
ery.

[15] Free Software Foundation. Gnu core utilities, ongoing.
[16] T. A. Henzinger, R. Jhala, and R. Majumdar. The blast software verification

system. In P. Godefroid, editor, Model Checking Software, pages 25–26, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

[17] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. Prism: A tool for
automatic verification of probabilistic systems. In H. Hermanns and J. Palsberg,
editors, Tools and Algorithms for the Construction and Analysis of Systems, pages
441–444, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[18] G. Holzmann, E. Najm, and A. Serhrouchni. Spin model checking: An intro-
duction. STTT, 2:321–327, 03 2000.

[19] D. Kroening and M. Tautschnig. Cbmc – c bounded model checker. In
E. Ábrahám and K. Havelund, editors, Tools and Algorithms for the Construction
and Analysis of Systems, pages 389–391, Berlin, Heidelberg, 2014. Springer Berlin
Heidelberg.

[20] S. Lab. CPAChecker: A Framework for Configurable Software Verification,
ongoing.

[21] T. Parr. Antlr repository, ongoing.

[22] T. Parr. Antlr website, ongoing.
[23] K. Y. Rozier. Linear temporal logic symbolic model checking. Computer Science

Review, 5(2):163–203, 2011.

https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
https://github.com/coreutils/coreutils
https://doi.org/10.1007/11537328_4
https://doi.org/10.1007/11537328_4
https://doi.org/10.1007/11537328_4
https://doi.org/10.1007/11691372_29
https://doi.org/10.1007/11691372_29
https://doi.org/10.1007/11691372_29
https://doi.org/10.1007/11691372_29
https://doi.org/10.1007/s100090050039
https://doi.org/10.1007/s100090050039
https://doi.org/https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/https://doi.org/10.1007/978-3-642-54862-8_26
https://github.com/sosy-lab/cpachecker
https://github.com/sosy-lab/cpachecker
https://github.com/antlr/antlr4
https://www.antlr.org/
https://doi.org/https://doi.org/10.1016/j.cosrev.2010.06.002
https://doi.org/https://doi.org/10.1016/j.cosrev.2010.06.002

	Contents
	List of Figures
	1 Introduction
	1.1 Thesis Goals
	1.2 Overall Approach
	1.3 Results
	Verification Tasks for cksum
	Invalid Input Verification Task

	1.4 Conclusions

	2 Related Work
	3 Background
	3.1 Formal Verification
	3.2 Verifiers
	3.3 ANTLR
	3.4 CoVeriTeam

	4 Contribution
	4.1 C Library for Software Verification
	Design
	Library Methods
	Distinguishing Features

	4.2 Unit Verification Tasks
	Function Being Tested: checkWheels
	Example Unit Verification Task: invalidNumberOfWheels

	4.3 Runner

	5 Evaluation
	5.1 Experimental Setup
	Experimental Tools

	5.2 Experimental Results
	Quantitative Analysis
	Qualitative Analysis
	Example: Verification of hextobin Function
	Unknown Outcome for wc.c lines

	5.3 Threats to Validity
	External Validity
	Internal Validity

	6 Future Work
	6.1 Optimising Existing Components
	6.2 Adding New Components

	7 Conclusion
	Bibliography

