
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN
CHAIR FOR SOFTWARE AND COMPUTATIONAL SYSTEMS

T2R: Reduction of Termination of C Programs
to Reachability-Safety Problem

Tian Xia

Bachelor Thesis

Supervisor: Prof. Dr. Dirk Beyer

Mentor: Marek Jankola

Submission Date: March 13, 2024

Statement of Originality

I confirm that this bachelor thesis is my own work. In addition to those
sources and materials cited in the text, I only used ChatGPT to generate
and improve wordings of single sentences and small paragraphs.

Munich, March 13, 2024 Tian Xia

Acknowledgments

I would like to express my sincere gratitude to my mentor, Marek Jankola, for
his invaluable guidance and support throughout my thesis work. Especially,
he was always available via Zulip to answer my questions. Further thanks
to my girl friend for her emotional support durch this period. At the end, I
would also like to thank the Software and Computational Systems Lab for
providing me with this topic, which helped me gain valuable insights into
software verification.

Abstract

Program termination analysis is crucial in various contexts, such as embed-
ded systems and safety critical software. Traditionally, proving program
termination involves searching for ranking functions and validating the rank-
ing functions, which can be expensive. However, reachability algorithms are
more tuned than termination analysis techniques, because of far more tasks
in the software verification competition and more variety of usage in the
practice. In this thesis, we propose a new approach, named T2R, which
transforms the termination of C programs to a reachability-safety problem.
In this way, we could leverage various fined-tuned reachability analysers. We
evaluate T2R by combining it with the best tool for reachability analysis
and compare the combination with the state-of-the-art tools in termination
analysis. Our results show that the combination of T2R and the best reach-
ability analyser is more efficient and at least 10% more effective than other
tested termination techniques.

Contents
1 Introduction 1

2 Related Work 3

3 Background 4
3.1 Theoretical Background . 4

3.1.1 Termination and Reachability Analysis 4
3.1.2 Transition System . 4
3.1.3 Control Flow Automaton 4

3.2 Practical Background . 5
3.2.1 assert . 5
3.2.2 CPAchecker . 5
3.2.3 UAutomizer . 5
3.2.4 CPV . 6
3.2.5 SV-COMP Benchmark Set 7

4 T2R Reduction 8
4.1 Theory . 8
4.2 Examples of C Program Instrumentation 9

4.2.1 Typical Cases . 9
4.2.2 Corner Cases . 11

5 Implementation 14
5.1 Requirements . 14

5.1.1 Assumptions of Program to be Verified 14
5.1.2 Dependencies for Running Implementation 15

5.2 Usage of Implementation . 15
5.3 Implementation Flow . 16
5.4 Major Challenges . 17

5.4.1 Extract Variable Names within a Loop 17
5.4.2 Data Structure for Loop Instrumentation 17

6 Evaluation 18
6.1 Environmental Setup . 19

6.1.1 Experimental Environment 19
6.1.2 Limits on Experiments 19
6.1.3 Benchmark Tasks . 19

v

6.1.4 Tools . 20
6.2 Experimental results . 21

6.2.1 RQ1: Which tool for reachability analysis is the best
for instrumented program? 21

6.2.2 RQ2: Is the combination of T2R tool and the best
tool for reachability analysis of instrumented program
more effective and efficient than current termination
analysis techniques? 22

6.3 Threats to Validity . 23
6.3.1 External Validity . 23
6.3.2 Internal Validity . 24

7 Future Work 25
7.1 Practical: Support More Data Types and Loop Structures . . 25
7.2 Theoretical: Prove Termination from Witness of Reachability

Analysis . 25

8 Conclusion 25

vi

1 Introduction
Program termination analysis is necessary in many settings, such as embed-
ded systems and safety critical software [4]. Non-termination bugs can lead to
performance problems or denial-of-service attacks [12]. The general approach
for proving program termination is to search ranking functions and validate
them. However, the search of ranking functions can be costly, whether in
space or in time. For example, when dealing with complex systems, some
techniques may exhaust the available memory before a ranking function can
be found [6]. Moreover, in many cases, we must search for lexicographic
ranking functions instead of simple linear ranking functions because they are
not powerful enough [7]. This makes the search even harder. On the other
hand, the reachability algorithms are more tuned than termination analysis
techniques because of far more tasks in SV-COMP 1 and wider variety of
usage in practice. For example, in SV-COMP 2024, there are 11305 tasks for
reachability analysis, but only 2354 tasks for termination proving. Based on
the theory proposed from the paper Livess Checking as Safety Checking [3],
we propose a novel approach for termination proving, which can leverage
various fined-tuned reachability analysers and avoid constructing expensive
ranking functions.

This approach works by reducing the termination of C programs to a
reachability-safety problem. In more concrete terms, it takes a C program
and instrument every loop within it, including adding an assertion to each
loop, so that the original program does not terminate iff the newly added as-
sertions in its instrumented version can be violated. For example, in Figure 1,
the left side shows an C program for termination analysis, while the right
side presents its instrumented version. The non-termination of the original
program is equivalent to the existence of an input for which the assertion in
its instrumented version does not hold.

For implementation, we first extract the loop locations and the variables
inside these loops from the program to be verified, and then instrument the
program based on the information obtained. As an attempt, this approach
deals with C programs that only contain data types: char, int, short, long,
float, double, and pointers, as well as only the while loop as loop structure.

We evaluated our tool by answering two research questions:

• RQ1: Which tool for reachability analysis is the best for instrumented
1https://sv-comp.sosy-lab.org/2024/index.php

1

1 int main () {
2 int x = nondet_int () ;
3
4 while (x > 0) {
5 x = x − 1 ;
6 }
7
8 return 0 ;
9 }

(a) Original C program

1 int main () {
2 int x = nondet_int () ;
3
4 int x1 ;
5 int i 1 = 0 ;
6 while (x > 0) {
7 assert (i 1 == 0 | | x != x1) ;
8 i f (i 1 == 0 && nondet_int ()) {
9 x1 = x ;

10 i 1 = 1 ;
11 }
12 x = x − 1 ;
13 }
14
15 return 0 ;
16 }

(b) Instrumented version

Figure 1: Simple example for T2R

program?

• RQ2: Is the combination of T2R tool and the best tool for reachabil-
ity analysis of instrumented program more effective and efficient than
current termination analysis techniques?

Our results on a set of 355 instrumented programs showed that UAu-
tomizer [10] with approach trace abstraction is the best tool for reachability
analysis of instrumented program. It has the highest number of correct re-
sults, with 298 (84%). The second highest number of correect results is 294
(83%), achieved by CPAchecker [1] with approach predicate Analysis with
linear arithmetics, and its average performance of each task is even approx-
imately 10 s better than UAutomizer with trace abstraction, but it has 10
more incorrect results.

In the termination analysis, which is conducted on the original ones of
those 355 instrumented programs, the combination of our T2R tool and UAu-
tomizer with trace abstraction is more effective and efficient than CPAchecker
and UAutomizer with termination analysis approaches. It has the highest
number of correct results with 298 (32%), which is 57 (16%) more than
CPAchecker and 36 (10%) more than UAutomizer.

2

Therefore, we believe that our approach demonstrates a good direction
for solving program termination analysis.

2 Related Work
As mentioned in the introduction, the general approach for termination anal-
ysis includes the search of ranking functions and the validation of the ranking
functions. Scientific work Synthesis of Linear Ranking Functions [6] shows a
concrete approach to do it this way. First, it extracts a set of linear expres-
sions bounded inside the loop from some loop invariant. Second, it derives
a set of linear expressions that decrease discretely around the loop from the
loop’s transition relation. The third step then is to compute the intersec-
tion of these two sets. Any expression in the intersection acts as a ranking
function, and thus proves termination of the loop. This has advantage that
simple programs are easily handled, but programs with complex control flows
often exhaust the available memory before a ranking function can be found.

Other than finding ranking functions, Scientific work Loopster: Static
Loop Termination Analysis [12] proposes a lightweight analysis-based ap-
proach to prove program termination. It employs a divide-and-conquer ap-
proach:

1. It derives individual paths from a target multi-path loop and analyze
the termination of each path.

2. It analyzes the dependencies between every two paths.

3. It determines the termination of the entire loop based on the relations
among paths.

Surprisingly, it shows 20×+ performance improvement compared to the
state-of-the-art tools, even if only considering those correctly analyzed pro-
grams. This owes to its static analysis. However, for the same reason, it
cannot handle the loops that contain complex data structures(e.g., arrays,
heaps), function calls, and variables that are updated by complex computa-
tion(e.g., bitwise calculator). By the way, these obstacles, except for the first
one, can be easily overcome by our T2R tool.

3

3 Background
3.1 Theoretical Background
3.1.1 Termination and Reachability Analysis

T2R reduction stands for reduction from termination analysis to reachabil-
ity analysis. Termination analysis is a program analysis that determines
whether a program halts for every input, while reachability analysis deter-
mines whether an assertion condition holds at a concrete location of the
program for every input.

3.1.2 Transition System

When explaining the theory behind T2R reduction, we will introduce a math-
ematical model known as transition system. This model allows the termi-
nation condition of a program to be transformed first into an intermediate
equivalent condition, and then into a reachability problem.

A transition system [5] is a pair (S,→), where S is a set of states that
respectively consist of a program location, representing the current value
of the program counter (e.g., the line number of the next operation to be
performed), and a valuation of the program variables declared so far, and
→ ⊂ S × S is a set of transitions. It is considered finite if the set S is
finite. A trace t of it with initial state s0, is a (possibly infinite) sequence
of states s0, s1, s2, ... such that for each si+1 with i ∈ N, it holds si → si+1.
Every program possesses a distinct transition system that models all potential
executions of the program and we call it underlying transition system. In
Figure 2, there is a non-terminating C program in 2a and the visualization
of its corresponding transition system in 2b.

Last but not the least, T2R reduction operates under the assumption
that the program to be verified has only variables with finite domain so that
its underlying transition system is finite.

3.1.3 Control Flow Automaton

For instrumentation, we need information about every loop in the program
to be verified. However, identifying all the loops in the source code can be
challenging, especially when dealing with complicated loop structures such
as nested loops, loops embedded within functions, or recursion. Therefore,

4

we parse the program as CFA, which models the control flow of the program,
making it easier to identify loops.

A control flow automaton (CFA) [5] is a tuple G = (L, l0, E). It consists of
a finite set L = {l0, ..., ln} of program locations, a program entry l0 ∈ L, and
a set E ⊂ L×Ops×L of edges, where Ops denotes the set of all operations
within the program. Figure 2c provides a graphical representation of a CFA
constructed from the C program in 2a.

3.2 Practical Background
3.2.1 assert

To add diagnostics to programs, we employ the assert [11] macro in C.
It is declared as follows: void assert(int condition). If the condition
evaluates to zero, the macro assert will print an error message on stderr
(standard error stream to display error messages and diagnostics) and aborts
program execution. Otherwise, it will do nothing.

3.2.2 CPAchecker

CPAchecker is a tool and framework for configurable software verification.
It can perform both reachability and termination analysis. For reacha-
bility analysis, its approaches include predicate analysis (PD), predicate
analysis with linear arithmetics (PDL), bounded model checking (BMC),
interpolation-based model checking (IMC), and kInduction (KID). For ter-
mination analysis, it uses a lasso-based approach (LSBC) which uses the tool
LassoRanker. Before a program analysis starts, the input program is firstly
transformed into a syntax tree, and further into a set of CFAs, which is the
central data structure of CPAchecker. Therefore, we plan to use CPAchecker
to obtain the CFA of the program to be verified.

3.2.3 UAutomizer

UAutomizer is a software verification tool for C Programs. Similar to CPAch-
ecker, it can also perform reachability and termination analysis, but with
noticeably different performance. For reachability analysis, it uses trace ab-
straction (TAS). For termination analysis, it also uses a lasso-based approach
(LSBD), but with a different algorithm from CPAchecker’s.

5

1 int main () {
2 int x = 1 ;
3
4 while (x >= 0) {
5 x = x % 2 ;
6 x++;
7 }
8
9 return 0 ;

10 }

(a) C program

s0 : {pc = 2}

s1 : {pc = 4, x = 1}

s2 : {pc = 5, x = 1}

s3 : {pc = 6, x = 1}

s4 : {pc = 4, x = 2}

s5 : {pc = 5, x = 2}

s6 : {pc = 6, x = 0}

(b) Transition system

start 2

4

5

6

9

int x = 1

[x >= 0]

[x < 0]

x = x % 2

x++

(c) CFA

Figure 2: Example for representing C program by transition system and CFA

3.2.4 CPV

CPV is a circuit-based program verifier for C,2 which can perform reachabil-
ity analysis. It functions by converting a C program into a circuit and then
running a hardware verifier (HWV) on it. The hardware verifier (HWV) can

2https://zenodo.org/records/10203472

6

be ABC 3 or AVR [9].

3.2.5 SV-COMP Benchmark Set

For evaluation of our approach, we use verification tasks from the SV-COMP
benchmark set.4 It is constructed and maintained as a common benchmark
for evaluating the effectiveness and efficiency of state-of-the-art verification
technology. The verification tasks for C programs in c/ are classified into
(sub)categories as defined by SV-COMP.5 Each (sub)category is defined by
a .set file that contains patterns specifing a set of programs.

A C verification task contains a .c or .i file and a .yml file as shown
in Figure 3. The input_files specifies the subject program example.c.
The properties section lists the properties that should be checked for this
program. Each property is associated with a property file containing its
definition and an expected verdict. The property file termination.prp re-
lates to termination analysis, while unreach-call.prp relates to reachability
analysis. In this example, it is exepcted that the subject program does not
terminate and an assertion condition in it does not hold for certain inputs.

format_version: '2.0'
input_files: 'example.c'
properties:

- property_file: ../properties/termination.prp
expected_verdict: false

- property_file: ../properties/unreach-call.prp
expected_verdict: false

options:
language: C
data_model: ILP32

Figure 3: Example of .yml file

3https://people.eecs.berkeley.edu/~alanmi/abc/
4https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
5https://sv-comp.sosy-lab.org/2024/benchmarks.php

7

4 T2R Reduction
In this section, we describe T2R reduction at a high level. First, we elucidate
its underlying theory. Then, we present four examples of real instrumentation
to solidify understanding.

4.1 Theory
A program does not terminate iff there exists an infinite trace in its transition
system. Since we restrict the transition system to be finite, such a trace can
always be assumed to be lasso-shaped, denoted as s0, s1, ..., sl−1, (sl, sl+1,
..., sl+k)

ω, where l, k ∈ N0 with l ≤ k, and ω indicates that the sequence
sl, sl+1, ..., sl+k repeats infinitely. Figure 4 illustrates a sub-part of a tran-
sition system, on which such a trace can be executed. Thus, whether a
program terminates is equivalent to the existence of a lasso-shaped trace in
its transition system. To detect it, it is sufficient to find a trace in which a
state occurs, or in other words, is encountered, at least twice. This is because
if a program can reach the same state twice, it can reach it infinitely many
times, although not necessarily in the same execution. Since only the states
with program locations within loops can potentially be encountered twice,
we only check each loop to see if there is a state that can be revisited.

s0 s1
...

sl−1 sl sl+1

...
sk

Figure 4: Example for a generic lasso-shaped trace in transition system

For this purpose, we employ the method State Recording Translation,
whose basic idea is to detect a previously seen state by saving it beforehand.
It is illustrated by a generic instrumentation of a given loop in CFA, as
dipicted in Figure 5. Firstly, we look at the loop to be instrumented in Figure
5a, which, for simplicity, contains variables only of integer type. In order to
find a state that can be seen twice, it is sufficient to detect it only at the
location l1. This is because if the program passes through l1 infinitely many
times and each time reaches a different state, then its underlying trantistion
system would not be finite. Since we do not know whether the current state

8

at l1 will be encountered again later, we use an oracle to tell us whether to
save it. After saving, each time the program passes through l1, we check if
the current state is the same as the saved one. If yes, we have found such a
state.

Now we look at the instrumented loop in Figure 5b. The integer variables
xL
0 , ..., x

L
n are used to save the values of the variables x0, ..., xn inside the loop,

respectively. The boolean variable savedL indicates whether the saving has
been performed. The oracle is represented by the function NDBool(). If
savedL == false and NDBool() == true, meaning that we have yet to
save the values of the variables inside the loop and the oracle instructs us
to do so, we perform the operation ops=s′ . Otherwise, we do nothing. After
saving, we verify if a state at l1 is reachable, where the values of variables
x0, ..., xn are equal to those of xL

0 , ..., x
L
n , respectively, as asserted by πL. If

so, we transition to the error state le. Thus, the termination analysis of a
program has been transformed into a reachability analysis.

4.2 Examples of C Program Instrumentation
Now, let’s take a look at the four examples of real instrumentation. The first
two examples represent typical cases, while the last two corner cases.

4.2.1 Typical Cases

The program to be verified in Figure 6a contains two consecutive while loops.
Thus, instead of detecting a state that will recur later only at one location,
we need to search for such a state at two different places: the line of code
x = x−1 and the line of code y = y+1. Now, we look at the instrumentation
in Figure 6b. For the first loop, the variable x1 is declared to save the value of
the variable x, and the variable i1 signifies whether the saving has occurred.
A value of 0 means false, otherwise true. Moreover, the oracle is represented
by the function nondet_int() in the if construct at line 9, and it returns
non-deterministic integer value. A value of 0 means that we will not save the
current value of x, otherwise we do. The instrumentation of the second loop
is the same.

In Figure 7, the program to be verified, however, contains two nested
loops. In this case, we detect a state that will be encountered later at the
lines of codes x = x − 1 and y = y + 1. Moreover, the outer loop has two
variables used inside, namely x and y, while the inner loop only has y. This

9

Legend:
πL ≡ ¬savedL∨

∨
0≤i≤n xi ̸= xL

i

ops=s′ ≡ xL
0 = x0; ...; x

L
n = xn

...

l0

l1

...

lk

op

op0

op1opk−1

opk

(a) Original loop

...

l0

le

l1

lk

...

op

int xL
0 , x

L
1 , ..., x

L
n ;

savedL = false;

op0

assert(¬πL)

assert(πL)

[¬savedL ∧NDBool()]

ops=s′

[savedL ∨ ¬NDBool()]
op1

opk−1

opk

(b) Instrumented loop

Figure 5: Example for a generic instrumentation of a given loop in CFA.
Further, NDBool() is a function that returns nonterministic boolean value,
and x0, ..., xn are the variables used in the original loop.

implies that when instrumenting the outer loop, we must record the values
of two variables, whereas for the inner loop, only the value of y needs to be
recorded.

10

1 int main () {
2 int x = nondet_int () ;
3 int y = nondet_int () ;
4
5 while (x > 0) {
6 x = x − 1 ;
7 }
8
9 while (y < 0) {

10 y = y + 1 ;
11 }
12
13 return 0 ;
14 }

(a) Original C program

1 int main () {
2 int x = nondet_int () ;
3 int y = nondet_int () ;
4
5 int x1 ;
6 int i 1 = 0 ;
7 while (x > 0) {
8 assert (i 1 == 0 | | x != x1) ;
9 i f (i 1 == 0 && nondet_int ()) {

10 x1 = x ;
11 i 1 = 1 ;
12 }
13 x = x − 1 ;
14 }
15
16 int y2 ;
17 int i 2 = 0 ;
18 while (y < 0) {
19 assert (i 2 == 0 | | y != y2) ;
20 i f (i 2 == 0 && nondet_int ()) {
21 y2 = y ;
22 i 2 = 1 ;
23 }
24 y = y + 1 ;
25 }
26
27 return 0 ;
28 }

(b) Instrumented version

Figure 6: Typical case 1 of instrumentation

4.2.2 Corner Cases

The original program in Figure 8a closely resembles that of Figure 1a, but
with the difference that the condition of the while loop has side effect. At first
glance, it may cast doubt on the effectiveness of the previous instrumentation
approach for this program; however, it is indeed equally effective. The reason
is as follows. The line of code x = x−1 is the location to detect the state that
can be encountered twice. If the loop does not terminate and we cannot find
such a state at the location, it means that every time the program reaches
the location, it has a different state. This would result in the underlying

11

1 int main () {
2 int x = nondet_int () ;
3 int y = nondet_int () ;
4
5 while (x > 0) {
6 x = x − 1 ;
7
8 while (y < 0) {
9 y = y + 1 ;

10 }
11 }
12 return 0 ;
13 }

(a) Original C program

1 int main () {
2 int x = nondet_int () ;
3 int y = nondet_int () ;
4
5 int x1 ;
6 int y1 ;
7 int i 1 = 0 ;
8 while (x > 0) {
9 assert (i 1 == 0 | |

10 ! (x == x1 && y == y1)) ;
11 i f (i 1 == 0 && nondet_int ()) {
12 x1 = x ;
13 y1 = y ;
14 i 1 = 1 ;
15 }
16 x = x − 1 ;
17
18 int y2 ;
19 int i 2 = 0 ;
20 while (y < 0) {
21 assert (i 2 == 0 | | y != y2) ;
22 i f (i 2==0 && nondet_int ()) {
23 y2 = y ;
24 i 2 = 1 ;
25 }
26 y = y + 1 ;
27 }
28 }
29 return 0 ;
30 }

(b) Instrumented version

Figure 7: Typical case 2 of instrumentation

transition system of the program not being finite.
In the second corner case, the previous instrumentation approach, how-

ever, needs to be adjusted for the program shown in Figure 9a because there
is a variable y declared inside the while loop. If we instrumented this pro-
gram in the same manner as before, we would save the value of y in the body
of the if construct, but at this point, y has yet to be defined. Therefore, a
question arises: can we ignore the variables declared inside the loop when

12

1 int main () {
2 int x = nondet_int () ;
3
4 while (x++ > 0) {
5 x = x − 1 ;
6 }
7 return 0 ;
8 }

(a) Original C program

1 int main () {
2 int x = nondet_int () ;
3
4 int x1 ;
5 int i 1 = 0 ;
6 while (x++ > 0) {
7 assert (i 1 == 0 | | x != x1) ;
8 i f (i 1 == 0 && nondet_int ()) {
9 x1 = x ;

10 i 1 = 1 ;
11 }
12 x = x − 1 ;
13 }
14 return 0 ;
15 }

(b) Instrumented version

Figure 8: Corner case 1 of instrumentation

instrumenting? For instance, a loop includes three variables: a, b, and c. a
and b are defined outside the loop, while c is defined only inside the loop. Is
it possible that, at a location within the loop, a and b return to the same
state but c never visits the same value twice? If so, then we would claim the
program as non-terminating if we do not consider c in the assertion condition
and the if construct. Fortunately, such a scenario can never happen because
c can get only its value from a, b, some constants or non-deterministic choice.
If c depends on:

• a and b, then c will behave the same as before, since they are set to
the same value.

• constant, then c behaves the same in every iteration.

• non-deterministic choice, then c can be set the same as in the previous
iterations where a and b reached the same state.

Thus, if a and b visit the same state twice, c can have the same behavior
as it had in the previous iterations and therefore also visit the same value
twice.

13

1 int main () {
2 int x = nondet_int () ;
3
4 while (x > 0) {
5 x = x − 1 ;
6
7 int y =
8 nondet_int () ;
9 i f (y == 1) {

10 break ;
11 }
12 }
13 return 0 ;
14 }

(a) Original C program

1 int main () {
2 int x = nondet_int () ;
3
4 int x1 ;
5 int i 1 = 0 ;
6 while (x > 0) {
7 assert (i 1 == 0 | | x != x1) ;
8 i f (i 1 == 0 && nondet_int ()) {
9 x1 = x ;

10 i 1 = 1 ;
11 }
12 x = x − 1 ;
13
14 int y = nondet_int () ;
15 i f (y == 1) {
16 break ;
17 }
18 }
19 return 0 ;
20 }

(b) Instrumented version

Figure 9: Corner case 2 of instrumentation

5 Implementation
In this chapter, we delve into the implementation of our approach. We begin
by enumerating the assumptions of the program to be verified and the depen-
dencies required for running our implementation. Next, we explain how to
run the implementation. Finally, we provide an overview of the implemen-
tation process, followed by a discussion of the major challenges encountered
during the implementation.

5.1 Requirements
5.1.1 Assumptions of Program to be Verified

The program to be verified is coded in C and only supports the following
data types: char, int, short, long, float, double, and pointers. Additionally,
it exclusively contains the while loop as its loop structure.

14

5.1.2 Dependencies for Running Implementation

Before running the implementation, we need to have four dependencies in-
stalled:

• Python 3.10.12 with standard library

• clang-format 14.0.0 (a C formatter)

• CPAchecker (based on the revision 45859 of the locate-loop-and-live-
variables branch, which is hosted at https://svn.sosy-lab.org/sof
tware/cpachecker/branches/locate-loop-and-live-variables/)

• Java 17 or later

5.2 Usage of Implementation
The project specification-transformation is responsible for running our
implementation. It serves as a versatile framework designed to transform
a program’s property using a specified algorithm. To use it, we execute
the Python script specification-transformation.py in src. Its detailed
usage is outlined in Table 1. This table describes the command syntax for
running the script, with explainations for each component provided below.
For instance, if we are in the project’s directory and wish to instrument the
C program test_program.c located in the subdirectory tests using our
t2R_algorithm.py algorithm, we should set the argument PROGRAM to
tests/test_program.c, the options –from-property to termination, –to-
property to reachability, and –algorithm to T2RAlgorithm, as shown in
Figure 10. Additionally, since we do not specify the output directory, the
transformed program is outputted to the default output directory output,
rataining the same name as before.

Figure 10: Example of running specification-transformation.py to instrument
a C program using our approach

15

Table 1: Usage of specification-transformation.py. Note: irrelevant options
to our instrumentation are ignored.

Command Syntax
specification-transformation.py PROGRAM --algorithm ALGORITHM
[--from-property FROM-PROPERTY] [--to-property TO-PROPERTY]

[-h] [--output-dir OUTPUT_DIR]
Argument Description
PROGRAM The program to be transformed

Option
–algorithm The algorithm to be used for the transformation

–from-property The property from which the program should be
transformed

–to-property The property to which the program should be
transformed

-h, –help Show help message and exit
–output-dir The output directory

5.3 Implementation Flow
The implementation consists of two algorithms: LocateLoopAndLiveVaria-
bleAlgorithm.java and t2R_algorithm.py. The first algorithm is inte-
grated in CPAchecker and located in src/org/sosy_lab/cpachecker/core-
/algorithm. It is used to parse C program as CFA, extracting the neces-
sary loop information for later instrumentation. Specifically, for each while
loop, we collect the line number of the loop head (consisting of the keyword
while, the condition, and the opening bracket),6 and the name and type of
every variable used within the loop but declared outside of it. Figure 11
shows the loop information extracted from two previous programs, respec-
tively. The second, and main, algorithm t2R_algorithm.py is integrated
in the project specification-transformation and located in src/algorithms.
Firstly, it checks for any unsupported data type or loop structure in the in-
put C program. Secondly, it formats the program by clang-format so that
every while loop strictly adheres to the structure depicted in Figure 12, with
the loop head components placed on a single line and the closing bracket

6The C program received by CPAchecker is formatted beforehand so that it is guaran-
teed that the loop head components are on the same line.

16

on a separate line. Thirdly, it calls CPAchecker to extract the necessary
loop information from the formatted program. Lastly, it instruments the
formatted program with the help of the extracted loop information. Figure
13 illustrates the implementation flow described above.

4 {x=int}
(a) Loop information of
the program in Figure 9a

5 {x=int}
9 {y=int}
(b) Loop information of
the program in Figure 6a

Figure 11: Example for loop information

while (c o n d i t i o n) {
. . .

}

Figure 12: Allowed while loop structure

5.4 Major Challenges
5.4.1 Extract Variable Names within a Loop

In the beginning, we intended to obtain variable names via CFA edges using
the getPartitionForEdge(CFAEdge edge) method from the VariableCla-
ssification class. However, instead of solely retrieving variables from an
edge, the method also returns variables upon which they depend. This can
result in transformed loops appearing redundant, although it may not neces-
sarily invalidate our reduction. So we adjusted the approach and decided to
obtain variable names in an edge through its corresponding AST node [8].

5.4.2 Data Structure for Loop Instrumentation

To instrument a loop, we should insert three code snippets: one for variable
declaration, another for variable value storage, and a third for assertion.
These insertions are dependent on the concrete location of the loop head.
Since during the inserting process it will definitely shift, we need to ensure
constant reference to it. Therefore, we devised a new data structure. It is a

17

Start

Check for any
unsupported
type or loop
structure

Format by
clang-format

Extract loop
information by
CPAchecker

Instrument

End

input program

input program

formatted program

formatted program

loop information

instrumented program

Figure 13: Implementation flow

list of pairs [(line number, code line or code snippet)]. We split the program
to be instrumented into a list of code lines and store them into the structure
properly. Furthermore, each inserted code snippet is assigned a universal
line number. As a result, when inserting a code snippet into a loop, we can
determine the location(index) of the loop head by referencing its original line
number. Figure 14 depicts a generic example of inserting instrumentation
code into a while loop.

6 Evaluation
To evaluate our approach, we conduct experiments based the two research
questions stated in the introduction chapter.

18

1 .
2 .
3 while
4 .
5 .
. .
. .

+p1

1 .
2 .
× part1
3 while
4 .
5 .
. .
. .

+p2

1 .
2 .
× part1
3 while
× part2
4 .
5 .
. .
. .

+p3

1 .
2 .
× part1
3 while
× part3
× part2
4 .
5 .
. .
. .

Figure 14: Generic example of inserting instrumentation code into a while
loop. Note: The numbers in left column represent line numbers of program
code. × denotes the universal line number for all inserted code snippets. The
keyword while denotes a loop head. p1, p2 and p3 stand for part1, part2,
and part3, respectively. part1 contains the declaration code, part2 the saving
code, and part3 the assertion code.

6.1 Environmental Setup
6.1.1 Experimental Environment

• CPU: Intel Xeon E3-1230 v5 @ 3.40 GHz, cores: 8, frequency: 3800
MHz

• Operating system: Linux 5.15.0-92-generic

• RAM: 33467 MB

6.1.2 Limits on Experiments

• CPU time limit: 900 s

• CPU core limit: 4

• Memory limit: 15000 MB

6.1.3 Benchmark Tasks

To evaluate our approach, we selected four subcategories from the SV-Bench-
mark set:

19

• Termination-BitVectors.set

• Termination-MainControlFlow.set

• Termination-MainHeap.set

• Termination-Other.set

They contain a total of 4180 .yml files. However, only 2353 of these
files include termination.prp, meaning they are the ones with expected
result of termination analysis. Out of these 2353 files, only 591 have input
files that meet the assumptions of T2R reduction. Among these 591 files,
282 have input files suitable for instrumentation, while the remaining 309
contain unreach-call.prp, indicating that their input files already have
assertions which can influence our instrumentation. But some of these 309
files can be instrumented after commenting out the assertions within them.
As a result, we are left with only 355 .c or .i files 7 which are suitable for
instrumentation and termination analysis. For reachability analysis, we use
their instrumented versions with correspondingly modified .yml files.8

6.1.4 Tools

For reachability analysis we used tools:

• CPAchecker 2.3 9 with approaches KID, BMC, IMC, PD, and PDL

• UAutomizer 0.2.4 10 with approach TAS

• CPV 0.4 11 with approach HWV

For termination analysis we used tools:

• CPAchecker 2.3 with approach LSBC

• UAutomizer 0.2.4 with approach LSBD

7https://gitlab.com/sosy-lab/software/specification-transformation/-/tr
ee/T2R_algorithm/files%20to%20be%20instrumented?ref_type=heads

8https://gitlab.com/sosy-lab/software/specification-transformation/-/tr
ee/T2R_algorithm/instrumented%20files?ref_type=heads

9https://cpachecker.sosy-lab.org/download.php
10https://github.com/ultimate-pa/ultimate/releases
11https://zenodo.org/records/10203472

20

We ran the benchmarks on the VerifierCloud via the webclient.12 Firstly, we
performed reachability analysis on those 355 instrumented tasks. Secondly,
we conducted terminantion analysis on their original versions.

6.2 Experimental results
6.2.1 RQ1: Which tool for reachability analysis is the best for

instrumented program?

Table 2 highlights that PDL and TAS achieved the highest numbers of cor-
rect results, with 298 (84%) and 294 (83%), respectively, while the other
methods yielded only around 100 correct results. However, TAS has 17 (5%)
wrong proofs and PDL has 28 (8%). Upon inspection, we discovered some
interesting things. Let’s start with the incorrect results of TAS. Firstly, their
corresponding subject programs are instrumented as expected.13 Secondly,
all of these programs can trigger integer overflow behavior, which is undefined
in C and has influenced their verification results in various ways. Therefore,
we think that these 17 flawed tasks should not be included as part of our
benchmark tasks. Next, we examine the 28 incorrect results of PDL,14 of
which 16 share the same subject programs as the incorrect results of TAS.
As for the remaining 12, we found no obvious issues. Therefore, it is proba-
ble that the 12 incorrect results were caused by potential algorithmic bugs in
the PDL approach. In summary, TAS has the most correct results, with 298
(84%). Although it has 17 (5%) wrong results, the root cause was not TAS
itself. Thus, we conclude that, in terms of effectiveness, TAS outperforms all
other approaches.

Figure 15 depicts the distribution of CPU time consumption for correct
results of the approaches in the above table. We can see that HWV is the
fastest on the first approximately 85 tasks but then takes significantly more
time for each subsequent task. It suggests that HWV is particularly suitable
for verifying easily solvable programs. However, in terms of overall perfor-

12https://gitlab.com/sosy-lab/doc/-/wikis/Benchmarking-for-Students-wit
h-SVN-account

13https://gitlab.com/sosy-lab/software/specification-transformation/-/tr
ee/T2R_algorithm/incorrect_results_of_trace_abstraction_in_UAutomizer?ref_
type=heads

14https://gitlab.com/sosy-lab/software/specification-transformation/-/tr
ee/T2R_algorithm/incorrect_results_of_predicate_analysis_with_linear_arith
metics_in_CPAchecker?ref_type=heads

21

Table 2: Experimental results for reachability analysis

Verifier CPAchecker UAutomizer CPV
Approach KID BMC IMC PD PDL TAS HWV

Correct results 119 123 96 99 294 298 112
correct proofs 50 53 37 34 235 227 42
correct alarms 69 70 59 65 59 71 70

Incorrect results 0 0 0 0 28 17 0
wrong proofs 0 0 0 0 28 17 0
wrong alarms 0 0 0 0 0 0 0

Timeouts 233 229 180 250 5 39 229
Other inconclusive 3 3 79 6 28 1 14

mance on the benchmark tasks, PDL is the best, successfully completing
more than 280 tasks, with each task taking around 7 s. The second best,
TAS, also completed more than 280 tasks, but with each task taking roughly
17 s.

In conclusion, considering both effectiveness and performance, we believe
that UAutomizer with approach TAS is the best tool for reachability analysis
of instrumented program, because obtaining 4 more correct results and 10
fewer errors is more important than an average performance difference of
approximately 10 s per task.

6.2.2 RQ2: Is the combination of T2R tool and the best tool for
reachability analysis of instrumented program more effective
and efficient than current termination analysis techniques?

Now, we compare the combination of T2R tool and TAS with current termi-
nation analysis techniques, as shown in Table 3. We can see that T2R+TAS
has the highest number of correct results with 298 (32%), which is 57 (16%)
more than LSBC and 36 (10%) more than LSBU . Moreover, based on the
discusstion about the first research question, we can ignore the 17 wrong
proofs of T2R+TAS. Therefore, T2R+TAS demonstrates better effective-
ness over the other two termination analysis techniques.

For efficiency, let’s look at Figure 16. It is evident that, on the first
approximately 75 tasks, LSBC is the fastest. However, considering overall
performance, T2R+TAS outperforms both LSBC and LSBD.

22

0 50 100 150 200 250 300

100

101

102

103

n-th fastest correct result

C
PU

tim
e

(s
)

KID
BMC
IMC
PD

PDL
TAS

HWV

Figure 15: Quantile plot for CPU time consumption of correct results in
reachability analysis

Table 3: Experimental results for termination analysis

Verifier CPAchecker UAutomizer
Approach LSBC LSBU T2R+TAS

Correct results 241 262 298
correct proofs 163 199 227
correct alarms 78 63 71

Incorrect results 7 0 17
wrong proofs 1 0 17
wrong alarms 6 0 0

Timeouts 38 6 39
Other inconclusive 69 87 1

6.3 Threats to Validity
6.3.1 External Validity

Our benchmark tasks include only programs with certain data types and the
while loop as loop structure, so some verifiers may outperform others solely

23

0 50 100 150 200 250 300

101

102

103

n-th fastest correct result

C
PU

tim
e

(s
)

LSBC

LSBU

T2R+TAS

Figure 16: Quantile plot for CPU time consumption of correct results in
termination analysis

on these tasks, whether in termination or reachability analysis. Therefore,
our answers to the two research questions may change, if we include more
programs with additional data types or loop structures, given that our T2R
tool can instrument them.

6.3.2 Internal Validity

The implementation of the T2R tool may contain bugs, and thus, instru-
ment some programs wrongly. We would expect that such a bug could also
lead to incorrect results in the reachability analysis of wrongly instrumented
programs. However, since we inspected the incorrect results in reachability
analysis and found that the instrumentations of the programs were correct,
we assume this is unlikely.

24

7 Future Work
7.1 Practical: Support More Data Types and Loop

Structures
Our current implementation does not support while loop without brackets,
which can have at most one statement in its loop body. So we could fix this
in the future. Also, we could extend our implementation by supporting addi-
tional data types such as struct or array, as well as additional loop structures
like for loop or recursion.

7.2 Theoretical: Prove Termination from Witness of
Reachability Analysis

The reachability analysis of instrumented programs sometimes produce incor-
rect results, which can be a false alarm or a wrong proof. [2] To increase the
reliability of verification results, we accompany their answers by witnesses,
which can be validated by witness validators. However, a witness obtained
from the reachability analysis of a instrumented program does not provide
any information about the termination of the original program. Therefore,
we need to devise a method for proving the termination of a program based
on the witness obtained from the reachability analysis of its instrumented
version.

8 Conclusion
The main goal of this thesis was to devise a tool for reducing the termination
of C programs to a reachability-safety problem. This tool allows us to lever-
age various reachability algorithms, which are more fine-tuned than termina-
tion analysis techniques. Our implementation strategy begins with extracting
the necessary loop information from a C program using CPAchecker, followed
by instrumenting each loop within it using state recording translation. To
evaluate our approach, we first selected the best tool for reachability analy-
sis of instrumented program by testing various configurations of CPAchecker,
UAutomizer, and CPV on a set of 355 instrumented tasks. Subsequently, we
compared the combination of the T2R tool and the selected tool against
the termination analysis techniques of CPAchecker and UAutomizer on the

25

original versions of those 355 instrumented tasks. The results demonstrated
that UAutomizer with approach TAS is the most effective tool for reacha-
bility analysis of instrumented program, although its overal performance is
not the best. However, the combination of it and our T2R tool is noticeably
more effective and efficient than the tested termination analysis techniques.
Therefore, we believe that our approach is worth extending in the future so
that it could be more comprehensive and implement more programs.

26

List of Figures
1 Simple example for T2R . 2
2 Example for representing C program by transition system and

CFA . 6
3 Example of .yml file . 7
4 Example for a generic lasso-shaped trace in transition system 8
5 Example for a generic instrumentation of a given loop in CFA.

Further, NDBool() is a function that returns nonterministic
boolean value, and x0, ..., xn are the variables used in the orig-
inal loop. 10

6 Typical case 1 of instrumentation 11
7 Typical case 2 of instrumentation 12
8 Corner case 1 of instrumentation 13
9 Corner case 2 of instrumentation 14
10 Example of running specification-transformation.py to instru-

ment a C program using our approach 15
11 Example for loop information 17
12 Allowed while loop structure 17
13 Implementation flow . 18
14 Generic example of inserting instrumentation code into a while

loop. Note: The numbers in left column represent line num-
bers of program code. × denotes the universal line number
for all inserted code snippets. The keyword while denotes a
loop head. p1, p2 and p3 stand for part1, part2, and part3,
respectively. part1 contains the declaration code, part2 the
saving code, and part3 the assertion code. 19

15 Quantile plot for CPU time consumption of correct results in
reachability analysis . 23

16 Quantile plot for CPU time consumption of correct results in
termination analysis . 24

27

List of Tables
1 Usage of specification-transformation.py. Note: irrelevant op-

tions to our instrumentation are ignored. 16
2 Experimental results for reachability analysis 22
3 Experimental results for termination analysis 23

28

References
[1] D. Beyer and M. E. Keremoglu. Cpachecker: A tool for configurable soft-

ware verification. In G. Gopalakrishnan and S. Qadeer, editors, Com-
puter Aided Verification - 23rd International Conference, CAV 2011,
Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806 of
Lecture Notes in Computer Science, pages 184–190. Springer, 2011.

[2] D. Beyer and J. Strejcek. Case study on verification-witness validators:
Where we are and where we go. In G. Singh and C. Urban, editors,
Static Analysis - 29th International Symposium, SAS 2022, Auckland,
New Zealand, December 5-7, 2022, Proceedings, volume 13790 of Lecture
Notes in Computer Science, pages 160–174. Springer, 2022.

[3] A. Biere, C. Artho, and V. Schuppan. Liveness checking as safety check-
ing. In R. Cleaveland and H. Garavel, editors, 7th International ERCIM
Workshop in Formal Methods for Industrial Critical Systems, FMICS
2002, ICALP 2002 Satellite Workshop, Málaga, Spain, July 12-13, 2002,
Electronic Notes in Theoretical Computer Science, pages 160–177. El-
sevier, 2002.

[4] A. R. Bradley, Z. Manna, and H. B. Sipma. Linear ranking with reacha-
bility. In K. Etessami and S. K. Rajamani, editors, Computer Aided Ver-
ification, 17th International Conference, CAV 2005, Edinburgh, Scot-
land, UK, July 6-10, 2005, Proceedings, volume 3576 of Lecture Notes
in Computer Science, pages 491–504. Springer, 2005.

[5] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem. Handbook of
Model Checking. Springer, 2018.

[6] M. Colón and H. Sipma. Synthesis of linear ranking functions. In T. Mar-
garia and W. Yi, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 7th International Conference, TACAS 2001 Held
as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2001 Genova, Italy, April 2-6, 2001, Proceedings, vol-
ume 2031 of Lecture Notes in Computer Science, pages 67–81. Springer,
2001.

[7] B. Cook, A. See, and F. Zuleger. Ramsey vs. lexicographic termination
proving. In N. Piterman and S. A. Smolka, editors, Tools and Algorithms

29

for the Construction and Analysis of Systems - 19th International Con-
ference, TACAS 2013, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March
16-24, 2013. Proceedings, volume 7795 of Lecture Notes in Computer
Science, pages 47–61. Springer, 2013.

[8] K. D. Cooper and L. Torczon. Engineering a Compiler. Katey Birtcher,
2023.

[9] A. Goel and K. A. Sakallah. AVR: abstractly verifying reachability. In
A. Biere and D. Parker, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems - 26th International Conference, TACAS
2020, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020,
Proceedings, Part I, volume 12078 of Lecture Notes in Computer Science,
pages 413–422. Springer, 2020.

[10] M. Heizmann, J. Christ, D. Dietsch, E. Ermis, J. Hoenicke, M. Linden-
mann, A. Nutz, C. Schilling, and A. Podelski. Ultimate automizer with
smtinterpol. In N. Piterman and S. A. Smolka, editors, Tools and Al-
gorithms for the Construction and Analysis of Systems, pages 641–643,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[11] B. W. Kernighan and D. M. Ritchie. The C Programming Language.
Prentice Hall, 1988.

[12] X. Xie, B. Chen, L. Zou, S. Lin, Y. Liu, and X. Li. Loopster: static
loop termination analysis. In E. Bodden, W. Schäfer, A. van Deursen,
and A. Zisman, editors, Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn,
Germany, September 4-8, 2017, pages 84–94. ACM, 2017.

30

