
INSTITUT FÜR INFORMATIK
Ludwig-Maximilians-Universität München

MODULAR PARTIAL ORDER
REDUCTION IN SOFTWARE

VERIFICATION

Noah König

Bachelor Thesis

Supervisor Prof. Dr. Dirk Beyer
Advisor Prof. Dr. Dirk Beyer,

Marian Lingsch-Rosenfeld

Submission Date January 6, 2025

Statement of Originality

English:

Declaration of Authorship

I hereby confirm that I have written the accompanying thesis by myself, without
contributions from any sources other than those cited in the text and acknowledg-
ments.

Deutsch:

Eidesstattliche Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst habe
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, January 6, 2025 Noah König

i

Abstract

The verification of concurrent programs faces the state explosion problem due to
non-deterministic context switches at every control location. Partial order reductions
mitigate this problem by exploiting the commutativity of statements from different
threads. Transforming concurrent programs into a sequential form (i.e. sequential-
izations) allow the use of optimized sequential reachability algorithms. In this thesis,
partial order reductions and sequentializations are combined by creating assump-
tions over allowed transitions between thread simulations inside non-deterministic
sequentializations.
Our experiments show that our approach accepts roughly half of the 667 tested input
programs. The sequentialized input program induced a verification overhead and
decreased analysis effectiveness and efficiency in a vast majority of cases. However,
we identified great potential for optimization, especially reductions in the amount of
assumptions that verifiers have to evaluate. Increasing the acceptance rate of input
programs and addressing the performance issues is subject to future work.

iii

Contents

1 Introduction 3

2 Background 5
2.1 pthreads . 5
2.2 Interleaving . 6
2.3 Commutativity . 7
2.4 Total Strict Order . 8
2.5 Partial Order Reduction . 9
2.6 Sequentialization . 10

3 Related Work 11
3.1 Ultimate GemCutter . 11
3.2 CSeq . 14

4 Approach 17
4.1 Automata Transformation . 17
4.2 Inlining Functions . 20
4.3 Thread Simulation . 23
4.4 Modular Partial Order Reduction . 27
4.5 Sequentialization Errors . 30
4.6 Limitations . 32

5 Results and Discussion 35

6 Conclusion and Future Work 43

7 Appendix 45

Bibliography 45

v

List of Figures

2.1 A simple concurrent C program running on two threads. It contains
global variables x, y and local variables i, j. 6

2.2 Exemplary CFAs for each thread from the concurrent program in
Fig. 2.1. The directed transitions or CFA edges represent program
statements. The CFA nodes represent program locations. 7

2.3 Main thread creating threads 1 and 2 from Fig. 2.1. The threads re-
spective start routines t1 and t2 are passed on as the third parameters. 9

3.1 Computation of Weakly Persistent Sets [1]. Strongly connected com-
ponents (SCCs) of directed graphs are subgraphs where all pair of
nodes have a path to each other [2]. 12

3.2 Recursive procedure used by the proof check with proof-sensitive
sequentialization on the fly [1]. 13

3.3 A main function produced by Lazy-CSeq featuring non-deterministic
context switches [3]. 15

4.1 The body of the main method in the sequentialization handling non-
deterministic context-switches. 19

4.2 A sequential C program and its simplified CFA. CPAchecker intro-
duces __CPAchecker_TMP variables (abbreviated to CPA_TMP in
this example) that store the return values of a function if they are
implicitly used. 22

4.3 The switch case of the main thread in Fig. 4.2 derived from its CFA. . 23
4.4 A concurrent C program running on 2 threads featuring the

core methods pthread_create, pthread_mutex_(un)lock and
pthread_join. 25

4.5 An exemplary sequentialization of the concurrent program in Fig. 4.4. 28
4.6 The sequentialization in Fig. 4.1 with POR assumptions over local

accesses injected into it. 29
4.7 Visualization of the possible interleavings in the sequentialization in

Fig. 4.6. Each location represents the state of the pc array. To improve
readability, -1 is replaced with -. 30

4.8 Excerpts from the sequentialization Fig. 4.5 with shortened assertion
failures injected into it. 32

vii

List of Figures

5.1 Quantile Plot showing the progression of execution times along with
the number of correctly solved tasks for CBMC, CPAchecker and
UAutomizer. Only tasks with correct verdicts in all task sets (input,
seq and seq-por) are included (cf. Table 5.2). 39

5.2 Normalized CBMC, CPAchecker and UAutomizer analysis times for
the programs in Table 5.2 where all verdicts from input, seq and
seq-por were correct. 42

1

CHAPTER 1

Introduction

Advancements in computational power allowed humanity to approach problems
such as climate modeling, protein folding or big data analysis. From the 1970s
to the early 2000s, the increase in computational power was induced by an in-
crease in single-processor performance. This increase automatically made sequential
programs faster with the next generation of processors. Since the early 2000s, the
average per year performance increase of single-microprocessors has significantly
slowed down due to physical constraints. In the mid 2000s, most semiconductor
manufacturers changed their processor architectures with a focus on concurrency.
They started designing single integrated circuits with multiple processors [4, 5].
To take advantage of today’s advancements in computational power, it is essential
to leverage the benefits of multiple processors. Software developers have to build
concurrency into their programs. Programming languages such as C, C++, and Java
have extensions that explicitly allow creating concurrent1 programs running on
multiple threads [4].
A thread is a stream of control within a process that allows the execution of multiple
tasks concurrently, yielding better responsiveness and throughput [7]. Although con-
current programs offer significant performance benefits, the complexity of software
has expanded along with it. The growing potential for errors has made it challenging
to maintain confidence in software systems. Software errors in essential sectors such
as transport, communication, healthcare and energy can cause economic or safety
disasters [8].
Software verification aims to prevent these errors by using mathematical methods
to ensure that a program behaves as intended, i.e. aligns with its specification.
Verification is part of formal methods that include logic-based techniques, such
as software model checking [8]. Model checking is an automated technique used
to verify whether a hardware or software system meets certain specifications by

1Concurrent and parallel may be used synonymous in computer science literature [6]. The definitions
of the two terms differ [6, 7]. In this thesis, we will consistently use the term concurrent when
referring to programs running on different threads.

3

1 Introduction

exploring its possible states, i.e. the state space. With a growing number of state
variables, the systems state space increases at an exponential rate known as the
state explosion problem. This problem is especially present in concurrent programs
running on multiple threads. Non-deterministic context switches, i.e. switching from
one thread to another in the execution, can occur at every program location, further
increasing the state space [1].

Goals. This thesis aims to reduce the state space when verifying a concurrent
program with two techniques:

1. Output an equivalent sequential program, i.e. a sequentialization, for a concur-
rent input program. A sequentialization can be given to any verifier capable
of analyzing sequential programs, making it modular. This enables the use of
highly-tuned sequential reachability algorithms for concurrent programs [9].

2. Reduce the state space using a partial order reduction technique with assump-
tions over allowed transitions within the sequentialization to mitigate the state
explosion problem for reachability verifiers.

Roadmap. Chapter 2 outlines the foundations of the verification of concurrent
programs: reductions in the state space and sequentializations. Chapter 3 details a
partial order reduction technique, namely that of Ultimate GemCutter [1], and the
non-deterministic sequentialization approach of Lazy-CSeq [3]. Chapter 4 highlights
our contribution i.e. a sequentialization with partial order reduction assumptions.
Chapter 5 compares the analysis performance of our sequentializations (with and
without partial order reduction) compared to their corresponding input programs
in CBMC, CPAchecker and UAutomizer. Chapter 6 provides an overview of the
key findings and the future direction of our implementation. Chapter 7 features
instructions on how to use our implementation and explains supported functions,
error messages and abbreviations used in this thesis.

4

CHAPTER 2

Background

2.1 pthreads

Portable Operating System Interface (POSIX) threads or pthreads is a C extension
that allows software developers to create concurrent C programs. The library con-
tains management functions for the creation, suspension, cancellation, scheduling
and synchronization of threads [7]. Our implementation currently supports the
pthread functions pthread_create, pthread_mutex_{lock, unlock} and
pthread_join.
In order to create a thread with pthreads, the function pthread_create is used.
Its function declaration is given as [10]:

1 int pthread_create(pthread_t *thread,
2 const pthread_attr_t *attr,
3 void *(*start_routine)(void*),
4 void *arg);

If pthread_create completes successfully, the thread specified by its identi-
fier pthread_t immediately starts executing the function start_routine with
arg as its single function parameter. Before any statement in start_routine
can be executed, the main thread has to execute at least the respective call to
pthread_create first [10].
Concurrent programs may contain critical sections where threads should not
interfere with each other. pthreads allows the usage of mutual exclusion locks
(mutexes) to prevent thread interference. Objects of the type pthread_mutex_t
are initialized with the function pthread_mutex_init and can be used to
prevent critical sections of different threads from interfering with each other.
pthread_mutex_t objects can be used in the functions pthread_mutex_lock
and pthread_mutex_unlock whose declarations are given as [10]:

1 int pthread_mutex_lock(pthread_mutex_t *mutex);
2 int pthread_mutex_unlock(pthread_mutex_t *mutex);

5

2 Background

1 // thread 1
2 extern int x;
3 int i;
4 void *t1(void *arg) {
5 x = 1;
6 if (y == 1) { i = 42; }
7 return ((void *)0);
8 }

1 // thread 2
2 extern int y;
3 int j;
4 void *t2(void *arg) {
5 y = 1;
6 if (x == 1) { j = 42; }
7 return ((void *)0);
8 }

Figure 2.1: A simple concurrent C program running on two threads. It contains
global variables x, y and local variables i, j.

If pthread_mutex_lock completes successfully, the mutex object
pthread_mutex_t is locked until the thread that locked it unlocks it via
pthread_mutex_unlock. If another thread tries to call pthread_mutex_lock
to a locked mutex object, it blocks (i.e. waits) until the mutex is unlocked. Thus it is
guaranteed that the thread that locked the mutex leaves the critical section before
any other thread can interfere [10].
If a thread a works with the computational result of another thread b then a can
wait for the termination of b with the function pthread_join whose declaration is
given as [10]:

1 int pthread_join(pthread_t tid, void **status);

If pthread_join is called, the calling or waiting thread blocks until the thread
with the pthread_t object (the target thread) has terminated [10].

2.2 Interleaving

The usage of libraries such as pthreads, i.e. creating concurrent programs induces
enormous complexity that stems from non-deterministic context-switches. When
performing a context switch, thread statements are interleaved. In a program with
n ≥ 2 threads, there can be as few as n - 1 context switches (i.e. all threads execute
sequentially). There can also be a context switch at every control location. An
interleaving thus forms a global sequence and reflects a possible execution of a
concurrent program. When verifying a concurrent program, all interleavings have
to be considered [1].
Bounded Model Checking (BMC) is a verification technique that addresses the
state explosion problem by searching for counterexamples within a bounded
number of transitions in a system. BMC is often used in the verification of
concurrent programs [3, 11]. In addition, the number of threads is often bounded
when verifying concurrent programs. This excludes e.g. a (seemingly) infinite
loop creating new threads from verification making the number of statements,
permutations of statements and context-switches finite [1], though research for an
unbounded number of threads exists [12].

6

2.3 Commutativity

Take for example the simple concurrent program in Fig. 2.1 and their Control Flow
Automata (CFA) representations in Fig. 2.2. There are 2 threads with 5 locations each,
giving us a total of 52 = 25 possible states in a concurrent execution [11]. Note that
the number of states should not be confused with the number of interleavings, where
an exact number is more difficult to obtain if the CFA contains multiple leaving
edges for at least one node. Assuming that each CFA node has exactly one leaving
edge except the exit node which has no leaving edge, the multinomial coefficient [13]
can be used to calculate the number of interleavings:(

n
k1, . . . ,km

)
=

n!
k1! . . . km!

Where n is the sum of edges for all thread CFAs and k1 ≤ i ≤ m is the number of edges
in the CFA of thread i. Given that adding additional edges to a CFA increases the
number of interleavings, we can assume the CFAs in Fig. 2.2 to have at least 70
interleavings:

n!
k1! . . . km!

=
(4+4)!

4!4!
=

8!
4!4!

= 70

Despite being a very simple program, it demonstrates the complexity of a concurrent
execution.

x = 1

2

1

0

(y == 1)

3

i = 42

!(y == 1)

return ((void *) 0)

y = 1

2

1

0

(x == 1)

3

j = 42

!(x == 1)

return ((void *) 0)

-1 -1

x = 1

2

1

0

(y == 1)

3

i = 42

!(y == 1)

return ((void *) 0)

y = 1

2

1

0

(x == 1)

3

j = 42

!(x == 1)

return ((void *) 0)

-1 -1

Figure 2.2: Exemplary CFAs for each thread from the concurrent program in Fig. 2.1.
The directed transitions or CFA edges represent program statements. The
CFA nodes represent program locations.

2.3 Commutativity

For verification purposes, the amount of interleavings can be reduced by factoring
in commutativity. In an interleaving, two statements from different threads commute

7

2 Background

if their order of execution does not matter (i.e. the assumptions over program
variables are equivalent) [1].

In our example from Fig. 2.1, take the first statements of both threads x = 1 and
y = 1 which we define as a and b respectively. If both threads are at location 1,
denoted as the sequence ⟨ 1,1 ⟩, then a and b were the first two statements to be
executed. Let I be the set of possible interleavings from the state ⟨ 1,1 ⟩. Given
that a and b are independent events, it holds that for all i ∈ I executing ab or ba is
equivalent and reaches the variable values denoted as:

{x 7−→ 1,y 7−→ 1,i 7−→ 0,j 7−→ 0}

Considering only the commutativity of a and b, the amount of interleavings from
the state ⟨ 1,1 ⟩ is effectively halved.
For non-commutativity, let us consider the state ⟨ 1,0 ⟩, i.e. thread 0 has executed
x = 1 which we defined as a earlier. The next statement of thread 1 is y = 1 which
we defined as b. Let c be the assumption on y in thread 0, i.e. y == 1. Executing
abc results in y == 1 evaluating to true and i being assigned 42. The reached
variable values are:

{x 7−→ 1,y 7−→ 1,i 7−→ 42,j 7−→ 0}

Conversely, acb results in y having the initial default int value of 0 and y == 1
evaluating to false. In this case, i also has the initial value of 0 when both threads
have terminated. The reached variable values are:

{x 7−→ 1,y 7−→ 1,i 7−→ 0,j 7−→ 0}

Therefore, the ordering of b and c in the execution matters for the resulting variable
values and they do not commute.

2.4 Total Strict Order

Another example of non-commutativity are Total Strict Orders (TSO), i.e. an order in
which statements must be executed. In a concurrent program, a specific combination
of thread locations may induce a TSO [1].
A simple example is a TSO induced by the creation of a thread. Let us expand the
example from Fig. 2.1 with main thread that creates the other two threads in Fig. 2.3.
The start routine function of a thread (t1 and t2) can only be executed once the
respective call to pthread_create successfully returns [10].
This induces a clear TSO over the set of statements before and including the
call to pthread_create (preceding) and the set of statements executed by the
start_routine function (subsequent). This order reduces the amount of statement
interleavings that must be considered by a verifier [1].

8

2.5 Partial Order Reduction

1 // thread 0 (main thread)
2 int main() {
3 pthread_t id1, id2;
4 pthread_create(&id1, ((void *)0), t1, ((void *)0));
5 pthread_create(&id2, ((void *)0), t2, ((void *)0));
6 return 0;
7 }

Figure 2.3: Main thread creating threads 1 and 2 from Fig. 2.1. The threads respective
start routines t1 and t2 are passed on as the third parameters.

2.5 Partial Order Reduction

In contrast to a TSO, a partial order does not enforce a strict order. The underlying
idea of a Partial Order Reduction (POR) is that commuting statements can be
executed in any order because they result in equivalent assumptions over program
variables. POR techniques are one of the most widespread methods when verifying
concurrent programs [11].
The commutativity of statements allows the creation of equivalence classes of in-
terleavings. In order to prove program correctness, one representative from each
equivalence class has to be verified. A POR algorithm may extract the smallest
interleaving which introduces the least verification overhead [1].
Usually, it is not feasible to construct a CFA containing all interleavings and then
prune it. Instead, POR algorithms work on the fly: at every control location it is
decided if an edge can be soundly excluded from execution [1, 11]. POR algorithms
can reduce the state space complexity from exponential to polynomial in the number
of program statements [1].

POR can be demonstrated by considering the example program in Fig. 2.1 from state
⟨ 1,1 ⟩. Given that no pair of statements read or write the same variables (or more
specifically, the same memory locations) from ⟨ 1,1 ⟩ and onwards, all statements
are independent events and commute. Generally, local variable accesses always
commute because only one thread is involved and other threads cannot interfere.
Only global variable accesses have to be considered for commutativity. The set I
defined earlier thus forms an equivalence class and choosing any i ∈ I is sufficient to
show program correctness. This effectively reduces the amount of interleavings to
consider from state ⟨ 1,1 ⟩ to 1.
Similarly, the same logic can be applied to the states ⟨ 2,0 ⟩ and ⟨ 0,2 ⟩. Going
forward from both states, all pairs of statements commute. Thus, in theory, we can
reduce the number of interleavings in our simple example program in Fig. 2.1 from
at least 70 to 3 for verification purposes.
Thread 0 from Fig. 2.3 introduces additional complexity and, neglecting the TSOs
induced by thread creations, the number of interleavings grows to at least 34650:

n!
k1! . . . km!

=
(4+4+4)!

4!4!4!
=

12!
4!4!4!

= 34650

9

2 Background

Given that the main thread does not read or write the global variables x and y, all
pairs of statements between threads 0, 1 and threads 0, 2 commute. Thus, thread
0 can terminate before being interleaved with thread 1 or 2 and the execution of
thread 0 does not introduce additional complexity during verification. The number
of interleavings to verify remains 3.

2.6 Sequentialization

A sequentialization is the transformation of a concurrent program into an equivalent
sequential program [14]. A sequentialization may be a source-to-source transforma-
tion or a transformation based on an automaton of a given input program. A verifier
takes as input a concurrent program, processes it and outputs it as a new sequential
and non-deterministic program. This pre-processing step alters the concurrent input
program by adding control code that simulates context switches between threads.
The outputted sequential transformation can be given to a verifier capable of
analyzing sequential programs. Sequentializations can introduce assumptions over
the program, e.g. if a thread is currently active, to reduce the state space [3, 15, 16].

10

CHAPTER 3

Related Work

To achieve the goals of this thesis introduced in Chapter 1, we extract ideas from
the verification tools UGemCutter [1] and (Lazy-)CSeq [3, 17]. Both UGemCutter
and (Lazy-)CSeq took part in editions of the Competition on Software Verification
(SV-COMP) that compares verification tools from both industry and research around
the world. It is hosted yearly since its first edition in 2012. Different competition cat-
egories such as ConcurrencySafety for concurrent programs emphasize the strengths
and weaknesses of a tool [18, 19].

3.1 Ultimate GemCutter

UGemCutter is a tool analyzing concurrent C programs with a POR approach.
UGemCutter placed 2nd in the ConcurrencySafety category in the SV-COMP
2024 [19] and uses automata similar to the CFAs introduced in Fig. 2.2 to internally
represent a program with locations and transitions. Before detailing UGemCut-
ters POR technique, let us first introduce the terms and symbols necessary for its
understanding [1]:

• li⇝ lj is the conflict relation between the locations li, lj of two threads with i ̸=
j. A conflict occurs if an outgoing edge a from li and an outgoing edge b from
some location lj’ that is reachable from lj do not commute.

• enabledTi(li) is the set of outgoing edges for the current location of thread Ti.

• a <q b is the notation of the positional TSO over a and b in program location q.

• Σ is the alphabet i.e. set of all program statements for all threads in the concur-
rent program automaton P.

• enabled(q) is the union of sets of outgoing edges for all threads T1, .., Tn in the
program location q = ⟨ l1 , ... , ln ⟩ i.e. enabledT1(l1) ∪ ... ∪ enabledTn(ln) with n ≥
2.

11

3 Related Work
Sound Sequentialization for Concurrent Program Verification PLDI ’22, June 13–17, 2022, San Diego, CA, USA

than the choice of weakly persistent membranes for the in-
put automaton A: IfM is a weakly persistent membrane for
q, thenM \ S is a weakly persistent membrane for the state
⟨q, S⟩ ofS⋖ (A). In the remainder of this paper we denote by
πS the function with πS (⟨q, S⟩) = π (q) \ S . We arrive at the
soundness theorem for the combined reduction:

Theorem 6.6 (Soundness of Combined Reduction). The au-
tomaton

(
S⋖ (A)

)
↓πS recognizes the lexicographic reduction

induced by the preference order lex (⋖).

L (
(
S⋖ (A)

)
↓πS) = redlex (⋖) (L (A))

The relevance of the two reduction techniques in our con-
text differs from the understood wisdom in model checking
(e.g. chapter 8 of [17]): There, persistent sets are the key
reduction technique, as the central objective is to reduce
the number of states; sleep sets play a secondary role. We
contrast this with our setting of concurrent program veri-
fication: Sleep sets are of first importance, allowing us to
compute language-minimal reductions (admitting smaller
proofs, which can be found with fewer refinement rounds).
Weakly persistent sets play a secondary role in the subse-
quent step of checking the proof candidate. Put bluntly, if we
don’t succeed at constructing a good proof candidate, being
able to check the proof candidate efficiently won’t help us.

7 Proof Checking for Reductions
We have shown how compact recognizers for language-
minimal reductions can be computed using techniques from
partial order reduction literature. We now apply this result
to the proof check of our verification approach. We first
present an algorithm to compute weakly persistent sets for
a concurrent program, and then integrate this algorithm in
the overall proof checking approach.

7.1 Persistent Sets for Concurrent Programs
In Section 6, we have seen that, given a mapping π from
states of an automaton to weakly persistent membranes, we
can construct small and language-minimal reductions. The
question is how one can compute such a mapping π . Here,
we investigate the question for the setting where the automa-
ton is an interleaving product automaton P , i.e., where P is
defined from the parallel composition of threads, formally
P = T1 ∥ . . . ∥ Tn (see Section 3). Assume furthermore that
⋖ maps states of P to total strict orders on Σ.

The first step in the design of an algorithm to compute π
is to define the problem to be solved. The issue here is to rule
out trivial solutions for the mapping π . The first solution is
to assign to each state q the whole set of its outgoing edges.
This solution is useless as the corresponding π -reduction
does not prune any state. The second solution is based on
checking reachability in the (unreduced, i.e., exponentially
large) state space of the interleaving product automaton.
This solution is useless since it defeats the very purpose of

Preprocessing step: Compute the conflict relation, i.e., the
set {(ℓi , ℓj) | ℓi ⇝ ℓj }
Procedure CompatiblePersistentSet(q):

Input: state q = ⟨ℓ1, . . . , ℓn⟩ of program P
Output: setM such thatM is weakly persistent at q
active ←

{
i ∈ {1, . . . ,n} | enabledTi (ℓi) , ∅

}

conflicts ← { (i, j) ∈ active2 | ℓi ⇝ ℓj
∨ ∃a ∈ enabledTj (ℓj),b ∈ enabledTi (ℓi) . a <q b }

SCCs ← strongly connected components of graph
(active, conflicts)
E ← topologically maximal SCC in SCCs
returnM := ⋃i ∈E enabledTi (ℓi)
Algorithm 1: Computation of Weakly Persistent Sets

persistent sets, which is to avoid the combinatorial explosion
in the size of the concurrent program. We narrow down
the specification of the algorithm that computes π to three
conditions: (C1) The corresponding π -reduction is sound;
(C2) the algorithm has polynomial complexity (in the size
of the concurrent program P); and (C3) in the case of full
commutativity (every statement of a thread commutes with
every statement of another thread), the π -reduced automaton
is linear in the size of the concurrent program P . The case
of a full commutativity relation is used as a test case for
reduction algorithms; the question is whether, under the
right circumstances, the reduction can be optimal.

Let q = ⟨ℓ1, . . . , ℓn⟩ be the state for which we aim to com-
pute a weakly persistent membrane. A simple approach to
compute persistent sets from the literature [2] is to pick some
threadTi such that the enabled letters of the thread’s current
location ℓi commute with all letters in other threads Tj . The
set of enabled letters enabledTi (ℓi) then forms a persistent
set. We use here a straightforward extension of this idea.
Let us first introduce the notion of conflict: Location ℓi is in
conflict with location ℓj of another thread, denoted ℓi ⇝ ℓj ,
if an outgoing edge a of ℓi does not commute with an out-
going edge b of some location ℓ′j reachable from ℓj (within
the thread Tj). We pick a subset of threads E ⊆ {1, . . . ,n}
that have not yet terminated (enabledTi (ℓi) , ∅ for i ∈ E),
such that E is conflict-closed (ℓi ⇝ ℓj , i ∈ E ⇒ j ∈ E).
The enabled actions of all threads in E then form a weakly
persistent set.
Algorithm 1 shows the complete procedure. We reduce

the computation of a conflict-closed set E to the computation
of strongly connected components of a graph where nodes
represent threads and edges represent conflicts. Additional
edges ensure compatibility with the preference order lex (⋖).
To guarantee conflict-closedness, we select a topologically
maximal component for E, i.e., a component where no node
has an edge to another component. In the following, we
denote by π the function implemented by Algorithm 1; and
define πS analogously to Section 6.2 as πS (⟨q, S⟩) = π (q) \ S .

Figure 3.1: Computation of Weakly Persistent Sets [1]. Strongly connected compo-
nents (SCCs) of directed graphs are subgraphs where all pair of nodes
have a path to each other [2].

• a ↷↷

ϕ b is the symmetric commutativity relation under condition ϕ . a and b
commute from a program location satisfying the assertion ϕ .

(Weakly) Persistent Sets. UGemCutter uses the commutativity of statements
in a concurrent program to reduce the state space in its POR technique. Firstly, a
persistent set K is calculated which is a subset of the outgoing edges enabled(q) of the
program location q. On the other hand, K’ with K ∩ K’ = /0 is the set of edges that
are either enabled in q or reachable from q through edges k’ /∈ K. If for all k ∈ K, k’ ∈
K’ it holds that k and k’ are independent (i.e. commute) then K ⊆ enabled(q) forms a
persistent set in program location q [20].
Persistent sets take into consideration all runs. This makes weakly persistent sets
(WPS) less restrictive because they only consider sequences of edges that reach a
final location with no outgoing edges in the program automaton P [1].

Algorithm Fig. 3.1 is based on the idea of persistent sets. It constructs a directed
graph of threads that are in conflict. Threads that have terminated are not taken into
consideration, only active threads represent nodes in the graph. Conflicts between
thread locations represent the directed edges. If two thread locations li, lj are in
conflict or if there is a TSO on any pair of their outgoing edges, a conflict edge from
i to j exists.
The algorithm continues by computing the SCCs of the directed graph and extracting
an SCC where no node is connected to another SCC (we call E the topologically
maximal SCC). E is conflict-closed i.e. if for a node i ∈ E it holds that li ⇝ lj (meaning
an edge from i to j exists) then j ∈ E. Additionally, a path but not necessarily a direct
edge from j to i exists as per the definition of SCCs. Next, the union of enabled edges
for all threads in E forms the elements in the WPS at location q [1].

12

3.1 Ultimate GemCutter
Sound Sequentialization for Concurrent Program Verification PLDI ’22, June 13–17, 2022, San Diego, CA, USA

A priori: V ← ∅
Procedure CheckProof(q,φ, S):

Input: state q of program P , sleep set S ⊆ Σ,
assertion φ of Floyd/Hoare automaton A

if ⟨q,φ, S⟩ ∈ V then return
else if q ∈ F and φ ̸ |= post then “ctex. found”
V ← V ∪ { ⟨q,φ, S⟩ }
for a ∈ CompatiblePersistentSet(q) \ S do

S ′← {b ∈ enabled (q) | (b ∈S ∨ b <q a) ∧ a↷↷φ b}
CheckProof(δP (q,a),δA (φ,a), S ′)

end
Algorithm 2: Recursive procedure used by the proof check
with proof-sensitive sequentialization on the fly.

sets in this setting. Combining normal weakly persistent sets
with proof-sensitive sleep sets is sound and preserves the
additional reduction (in terms of the language) afforded by
proof-sensitivity.

For proof-sensitive commutativity, it is sufficient to prove
correctness of one representative per equivalence class to
conclude correctness of the entire program. Algorithm 2
takes advantage of this, by checking whether the proof can-
didate A suffices to prove correctness of a reduction of P .
We do not necessarily construct the entire reduction if a
counterexample is found early. Computing the reduction on
the fly during proof checking further allows us to take ad-
vantage of proof-sensitive commutativity wrt. the states of
A. While this may seem self-referential, it is not a threat to
soundness: The proof candidateA is always correct; we only
check here if it is sufficient. Thus we only use already-proven
facts about the program to reduce it. We could equally well
take this information from a separate program analysis.

Theorem7.4 (Soundness). If CheckProof(qinit , pre, ∅) does
not find a counterexample, the program is correct, i.e., P satis-
fies the pre/postcondition-pair (pre, post).

In addition to soundness, we are interested in the efficiency
of our proof check. We can show that for certain preference
orders (as before), the proof check can in the best case achieve
polynomial complexity in the size of the program:

Theorem7.5 (Efficiency). For a non-positional thread-uniform
mapping ⋖, and under full commutativity, the time required
by Algorithm 2 is polynomial in size(P).

We optimize proof checking across refinement rounds to
avoid repeatedly reducing parts of the program that have
already been proven correct: If during a proof check a state
⟨q,φ, S⟩ – with program location q, Floyd/Hoare assertion φ,
and sleep set S – cannot reach a counterexample, we mark
this state as “useless”. In later refinement rounds, we con-
clude that a state of the form ⟨q,φ ∧ψ , S⟩ – the same state
with a strengthened assertion φ ∧ψ – is again useless. We
prune all outgoing edges of this state, without changing the

reduction language. For the soundness of this optimization,
we rely on the monotonicity of proof-sensitive commutativ-
ity: If statements commute under some condition, they also
commute under stronger conditions. Thus, as we strengthen
the Floyd/Hoare-assertions in each round, we have more and
more commutativity, and prune more (never fewer) edges.
The candidate proof may identify sections of the state

space as unreachable. For instance, the proof may estab-
lish that mutual exclusion holds for two critical regions of
threads. In such cases, we can forgo the sequentialization
of all (typically non-equivalent) interleavings in which both
threads are in the critical region at the same time, because
no such interleaving can be executed by the program. Thus,
on-the-fly sequentialization may avoid the construction of
large parts of the state space. An upfront sequentialization
(decoupled from a subsequent verification algorithm) would
not be able to do so.

8 Empirical Evaluation
We implemented our approach in a tool called Ultimate
GemCutter. GemCutter analyses C programs that use
pthread-style primitives to dynamically create and manip-
ulate threads.5 GemCutter attempts to prove that such a
program only uses a bounded number of threads, and if
successful, then verifies the bounded-thread program. For
programs with unbounded threads, GemCutter may be able
to find bugs. It will never unsoundly declare an unbounded-
thread program as correct.

To determine commutativity between statements, we com-
bine an efficient check of a sufficient condition – neither
statement writes a variable accessed by the other statement;
roughly speaking the heap is here represented as a single
array variable – with a more precise (and proof-sensitive)
SMT-based check. In cases where the SMT solver is unable
to determine commutativity within a small timeout, we fall
back to assume non-commutativity. It is always sound to
declare things that do commute as non-commutative. In prac-
tice, we rarely observe such cases, typically in connection
with C memory management features that are modeled with
quantified array formulae in SMT.
We implemented several preference orders6: (1) a non-

positional preference order (called “seq”) that approximates
sequential composition of threads; (2) a positional preference
order that approximates lockstep scheduling; and (3) a (non-
positional) preference order that uses a pseudo-random gen-
erator with a fixed seed to order statements. Unless otherwise
stated, data for GemCutter refers to a portfolio-aggregation
of the best preference order for each benchmark (among (1)
and (2) described above, and three versions of the random
5 To accommodate such programs (given an upper bound on the number of
threads), we adapted Algorithm 1 to deal with dynamic thread management.
6Information on how to specify preference orders and other settings for
GemCutter is available at https://github.com/ultimate-pa/ultimate/blob/
dev/releaseScripts/default/adds/gemcutter/README.md.

Figure 3.2: Recursive procedure used by the proof check with proof-sensitive se-
quentialization on the fly [1].

The SCC definition implies that if E has a single element, the thread has no conflicts
with another thread. If E has multiple elements, the threads only have conflicts with
each other and no conflicts with the threads in E’ with E ∩ E’ = /0. Thus, the WPS
calculated by the algorithm Fig. 3.1 prefers leaving edges of location q that have
minimal conflicts.

(Positional) Lexicographic Preference Orders. The concept of Lexicographic
Preference Orders (LPO) works closely with TSOs. In location q, a positional LPO
adjusts the order of continuing statements based on the past sequence of statements
(the context). It allows for dynamic reordering of commuting statements that adapts
as the system transitions through different locations. Positional LPOs ensure that for
a context c that reached location q, appending a suffix s to it respects the TSO of q and
that for a <q b the accepted sequence of statements i.e. interleaving cas is preferred over
cbs. The set of interleavings accepted by the automaton P is reduced by positional
LPOs. Each equivalence class of interleavings has one unique representative in
the positional LPO reduction with only the minimal interleaving with the least
verification overhead being accepted. This forms the basis of UGemCutters POR
algorithm [1].

Sound Sequentialization with Sleep Set Pruning. Persistent sets work closely
with sleep sets, the second technique used by UGemCutters POR approach. A
sleep set is a set of program statements or edges that can also be soundly pruned
from execution. But in contrast to persistent sets that consider commutativity (i.e.
the syntax of program statements), sleep sets consider only the previous state
exploration information. In some cases, persistent sets cannot prevent the execution
of commuting edges in a location. Using persistent and sleep sets in tandem can
avoid the exploration of various interleavings of these commuting edges [20].

13

3 Related Work

The recursive sequentialization algorithm of UGemCutter is given in Fig. 3.2. It
uses separate automatons for the concurrent program statements and locations (P)
as well as its assertions (A). S is the sleep set and initially empty. V keeps track of
already verified sequences of locations q, assertions ϕ and sleep sets S. F is the set of
final locations that have no outgoing edges in P. A counterexample is found if the
assertion ϕ violates the programs post condition i.e. does not meet its specification.
A selective search on outgoing edges of the program location q is performed by
computing the WPS (cf. Sect. 3.1). Edges that are both in the WPS and the current
sleep set S are soundly pruned from execution. For every edge a in the WPS that
is not pruned, a new state is visited via the transition functions δ of P and A
respectively. Before that, the sleep set S is updated to S’ by selecting edges b ∈
enabled(q). If a ↷↷

ϕ b holds and b was in the sleep set S before or there is a positional
TSO a <q b, then b is added to the udpated sleep set S’.

The commutativity of a and b is used to maximize the sleep set by executing a
before b despite the positional TSO b <q a. Thus b does not have to be considered in
subsequent locations q’ and is pruned i.e. added to the sleep set.
Additionally, the WPS calculated beforehand focuses on conflict-minimal edges
described in Sect. 3.1. Thus, the amount of edges b ∈ enabled(q) that are in conflict
with the edges a in the WPS and for which b <q a holds is maximized.
The algorithm in Fig. 3.2 considers exactly the minimal representative from
each equivalence class of interleavings and thus sound, forming the basis of its
POR technique. The authors showed that their algorithm has at best polynomial
complexity in the sum of program statements for all threads [1].

3.2 CSeq

CSeq is a family of verification tools that transform concurrent programs into
equivalent sequential programs i.e. sequentializations. It simulates context switches
by non-deterministically increasing a round counter k up to the bound K-1. In each
round k, a context switch may occur. If the counter reaches the bound, an early exit
can be triggered to simulate thread termination. This simulation code is inserted
into the original program to represent the behavior of the concurrent input program.
The simulation begins with the first thread accessing a copy of the memory and
subsequent threads proceed with the memory state left by the previous thread. At
the end of the simulation, CSeq asserts that each threads final memory state aligns
with the initial guesses so that the simulation corresponds to a possible execution
path [17].

pthread control methods are replaced with custom functions simulating their behav-
ior. E.g. pthread_create is replaced by cseq_create which stores a pointer to
the newly created threads function in an array. This array keeps track of the order
in which threads are created and their corresponding round. The main function is
treated as the first thread, starting in round 0. Thread termination (pthread_exit)

14

3.2 CSeq

1 int main() {
2 for(r=1; r<=K; r++) {
3 ct=0;
4 if(active[ct]) { // only active threads
5 cs=pc[ct]+nondet_uint(); // next context switch
6 assume(cs<=size[ct]); // appropriate value?
7 main_thread(); // thread simulation
8 pc[ct]=cs; // store context switch
9 }

10 // ...
11 ct=2;
12 if(active[ct]) {
13 // ...
14 }
15 }
16 }

Figure 3.3: A main function produced by Lazy-CSeq featuring non-deterministic
context switches [3].

and joining (pthread_join) are handled with CSeq-specific code. The cseq_exit
function updates the threads status upon termination, while cseq_join uses an
assume statement to ensure that a thread only continues once its target thread
has finished executing. Similarly, mutex operations such as locking and unlock-
ing are replaced by CSeq-specific code that tracks the status of locks using integer
variables [17].

Lazy-CSeq. Lazy-CSeq [3] is a verification tool for concurrent C programs which
won the ConcurrencySafety category in SV-COMP 2015 [21], 2020 [22] and 2021 [23].
Lazy-CSeq injects a new main1 method into a sequentialization that allows for
non-deterministic context switching (cf. Fig. 3.3) with the help of numerous injected
variables:

• r: An int value tracking the current round, bounded to K.

• ct: An int thread identifier.

• active: A bool array tracking if threads have terminated yet.

• cs: The pc at which the next context switch occurs.

• pc: The int program counters for all threads as per Fig. 2.2.

• size: An int array tracking how many statements a thread contains in total.

A for loop with a bounded number of iterations (K) handles thread simulations
i.e. continue executing a thread. Program counters are injected into the source code
to identify and continue thread simulation from a certain point in the program via
parametrized goto statements. One thread simulation run executes n statements

1The original main method is renamed to main_thread as per Fig. 3.3 line 7.

15

3 Related Work

where n is 0 or a positive int (i.e. an unsigned int from nondet_uint()) before
a context switch occurs, covering all possible interleavings. pthread methods are
replaced with custom implementations, e.g. pthread_create_2 sets the active
index of the created thread to true [3].

Differences to our Approach. Our non-deterministic sequentialization intro-
duced in the next Chapter 4 uses a variant of the context non-determinism method
introduced by Lazy-CSeq where thread simulations are cycled through in a loop. At
the loop head, we inject assumptions over allowed transitions between thread simu-
lations to reduce the state space. We also introduce our own variable management
and replace pthread control methods with variables to simulate their behavior via
assumptions.
In contrast to (Lazy-)CSeq, our approach does not re-implement pthread methods or
features injected assertions, the latter of which will be handled by the tool analyzing
the sequential transformation. In our approach, a thread simulation run executes
a single statement. Furthermore, we do not simulate the entire memory state, but
reuse exactly the variables from the input program.

16

CHAPTER 4

Approach

Our algorithm aims to combine ideas of both UGemCutters and (Lazy-)Cseq intro-
duced in Chapter 3. In this chapter, the details and limitations of our implementation
are discussed. The basis for our analysis and transformation of concurrent programs
is CPAchecker [24], a framework for the configurable verification of C programs,
based on Configurable Program Analysis (CPA). CPAchecker uses a CFA with nodes
and egdes (cf. Fig. 2.2) to internally represent an input program. CPAcheckers CFA
implementation is highly sophisticated and a well suited starting point for our
code transformation compared to building a source-to-source transformation from
scratch.

4.1 Automata Transformation

Our implementation derives thread-specific CFAs which are subsets of the input
CFAs nodes and edges that are reachable by a thread. The set of threads contains the
main thread and all threads created in pthread_create calls, i.e. pthreads. The
input CFA is searched for edges that are calls to pthread_create. If an edge is
found, it is treated as a single created thread.
The start_routine function, i.e. the third parameter of pthread_create, is ex-
tracted from the function call. The input CFA is searched for the start_routines
entry node which serves as the starting node of the threads CFA while the exit node
marks the threads termination.
The pthread_t object, i.e. the first parameter of pthread_create, is also
extracted from the function call and serves as a unique thread identifier. These
identifiers are important when dealing with the semantics of pthread functions that
use pthread_t objects [10].

Despite not being used, the pthread_t variables are still declared inside the
sequentialization. Generally, all variables that are declared in the input program

17

4 Approach

are also declared in the sequentialization. Each variable is given a new name in the
sequentialization, i.e. it is substituted. In the sequentialization, all local variables from
the input program are global. To avoid naming collisions, a unique unsigned int
identifier is created for all variable names. In this thesis however, we use substitute
names of the form G_{var_name} for global and L{thread_id}_{var_name}
for thread-local variables to improve readability. The appendix features a Table 7.3
with shortened variable and function names in this thesis and their actual names in
the sequentialization.

The main function of the sequentialization is used to simulate context-switches and
interleavings. The main function non-deterministically switches between thread
simulations in a loop. Each thread is simulated with a switch case that contains all
possible control locations of a thread simulation. One execution of the loop executes
at most one case statement which may represent multiple statements of a thread
simulation.
Furthermore, the sequentialization introduces an assume function:

1 assume(const int cond) {
2 if (cond == 0) { abort(); }
3 }

It is a helper function to create assumptions over variables and allowed transitions.
If cond evaluates to 0, the function calls abort(), terminating the execution. This
ensures that only interleavings satisfying cond are considered by a verifier, reducing
the amount of program states to explore.
An assumption may be an implication of the form a ⇒ b ⇐⇒ ¬ a ∨ b which can be
encoded into the sequentialization via assume(!a || b). To improve readability
in this thesis, we use the (non-existent) C expression a ==> b for implications
which we define as equivalent to !a || b.

Example. Let us analyze the example concurrent program from Fig. 2.1 and Fig. 2.3
introduced in Chapter 2. Recall that the number of interleavings for threads 0, 1
and 2 is at least 34650 without factoring in TSOs. Our sequentialization approach
preserves this complexity while still being human readable. This is demonstrated in
the sequentialization in Fig. 4.1 which is equivalent to the concurrent program. We
inject various variables that allow thread simulations:

• The next_thread variable is assigned non-deterministically to a value be-
tween 0 and 2.

• The int array pc tracks the current location of all thread simulations.

• Ti_ACTIVE variables are introduced to track whether a thread simulation i
is currently active. The ACTIVE variable of the main thread is initialized to 1,
all other to 0.

• The assumption assume(pc[next_thread] != -1) implies that if all
thread simulations have reached an exit location, the analysis has finished.

18

4.1 Automata Transformation

1 // sequentialization control variables
2 const int NUM_THREADS = 3;
3 int pcs[] = { 0, 0, 0 };
4 int next_thread = -1;
5

6 // thread simulation variables
7 int T0_ACTIVE = 1, T1_ACTIVE = 0, T2_ACTIVE = 0;
8

9 // global variables
10 extern int G_x;
11 extern int G_y;
12

13 // local variables of thread 0, 1, 2 respectively
14 pthread_t L0_id1, L0_id2;
15 int L1_i;
16 int L2_j;
17

18 while (1) {
19 // assign next_thread non-deterministically and bound to [0,2]
20 next_thread = __VERIFIER_nondet_int();
21 assume(0 <= next_thread && next_thread < NUM_THREADS);
22

23 // iterate loop until all pcs are -1
24 assume(pc[next_thread] != -1);
25

26 // enforce TSOs: only active threads can execute
27 assume(!T0_ACTIVE ==> next_thread != 0);
28 assume(!T1_ACTIVE ==> next_thread != 1);
29 assume(!T2_ACTIVE ==> next_thread != 2);
30

31 // represent each thread simulation with a switch statement
32 if (next_thread == 0) {
33 switch (pc[0]) {
34 case 0: T1_ACTIVE = 1; pc[0] = 2; continue;
35 case 2: T2_ACTIVE = 1; T0_ACTIVE = 0; pc[0] = -1; continue;
36 }
37 } else if (next_thread == 1) {
38 switch (pc[1]) {
39 case 0: G_x = 1; pc[1] = 1; continue;
40 case 1: if (G_y == 1) { pc[1] = 2; }
41 else { pc[1] = 3; } continue;
42 case 2: L1_i = 42; T1_ACTIVE = 0; pc[1] = -1; continue;
43 }
44 } else if (next_thread == 2) {
45 switch (pc[2]) {
46 case 0: G_y = 1; pc[2] = 1; continue;
47 case 1: if (G_x == 1) { pc[2] = 2; }
48 else { pc[2] = 3; } continue;
49 case 2: L2_j = 42; T2_ACTIVE = 0; pc[2] = -1; continue;
50 }
51 }
52 }

Figure 4.1: The body of the main method in the sequentialization handling non-
deterministic context-switches.

19

4 Approach

• The assume statements in lines 27 to 29 enforce the TSOs induced by the
calls to pthread_create. The assumptions exclude non-active threads from
executing.

• Switch statements are derived from the CFA representations of each thread
in the input program. The case labels case n: represent a single CFA node
n. The case blocks, that is, the statements executed in a case, represent one or
multiple leaving CFA edges of n.

• Statements like pthread_t declarations and return statements from the
input program (cf. Fig. 2.1 and Fig. 2.3) are deemed unnecessary and pruned
in the sequentialization, reducing the state space.

Though correct, the sequentialization only enforces the necessary TSOs over thread
creations to reduce the amount of possible interleavings. The commutativity of
statements and the POR technique are not factored in via assume statements. This
is one of the two goals of this thesis introduced in Chapter 1 and elaborated on
further in this chapter.

4.2 Inlining Functions

The sequentializations of input programs produced by our implementation
only contain function definitions (i.e. functions with a body) for reach_error
(elaborated on later in Sect. 4.5), assume and main. All other functions from
the input program are inlined, i.e. included inside the main function. Thus, all
statements from different threads and different functions can be interleaved
individually. The inlining requires us to store as well as retrieve original calling
contexts, simulate parameter values and replace return statements.

For function parameters, we introduce variables with names of the form
P{thread_id}_{var_name}. The values passed to the function are assigned to
the corresponding parameter variables. These parameter variables are thread-unique
because each thread-specific CFA has its own CFA representation of the functions
called by the thread. We introduce thread-specific nodes and edges that store the
original nodes and edges from the input program. Thus, e.g. two thread nodes in
two different threads CFAs may represent the same original node of a function CFA.
This allows us to interleave the same function called by different threads.

If a function is defined in the input program, we create a CFA representation
for the functions body that allows us to identify the original calling context of
a function call. A function may be called numerous times by a thread but we only
inline functions once for each thread. Thus we introduce RETURN_PC variables
that store the original context in the sequentialization. RETURN_PC variables are
unique for each thread and function. The name for a RETURN_PC has the form
T{thread_id}_RETURN_PC_{func_name}.
The edges returning to the calling context are initially blank i.e. they contain no
statements in the input CFA [24]. In the sequentialization, we add a statement to

20

4.2 Inlining Functions

these return edges where we assign the stored RETURN_PC to the pc of the current
thread.

If the return value of a function is used, the sequentialization replaces both the
function call and the return statements of a function. Otherwise, return statements
present in a threads case statements would stop the main function from executing
or prevent compiling the C program if the return data types do not match.
The input program may store the return value of a function explicitly, e.g.
int var = func(), or implicitly, e.g. if (func()) { ... } or return func().
In both cases, the expression of the return statement is extracted and assigned to
variable storing the return value. These assignments are context-sensitive i.e. we
only update the variable storing the return value that is linked to the current value
of the RETURN_PC in a switch statement.

Example. Let us consider the example program in Fig. 4.2 and its CFA. Even
though it contains only the main thread, it is sufficient to showcase our approach to
representing a thread and a function call in the sequentialization with a switch case.
The step by step procedure of our algorithm is as follows:

1. Declare the global variables int G_x, int L0_y and int L0_CPA_TMP as
substitutes for the global variable x and the local variables y and CPA_TMP,
respectively.

2. Declare a global variable int P0_x for the parameter declaration x of the
function is_even.

3. Declare a global variable T0_RETURN_PC_is_even to store the calling con-
text when calling the function is_even.

4. For each node in the threads CFA, create a case statement in the threads switch
case in the main functions loop.

5. Prune unnecessary cases to reduce the state space.

The resulting switch case representation of the CFA is shown in Fig. 4.3.
Case 0 and 1 highlight the separation of variable declarations and assignments. All
declarations are made global and put outside the main function in the sequential-
ization, which is why they are not featured in Fig. 4.3. The switch statements only
feature variable assignments and not declarations, otherwise the variables would be
out of scope in other cases.
Case 2 showcases the assignments of the parameter variable P0_z and the
RETURN_PC to the successor node of the storing the calling context, i.e. 3. In addition,
case 2 jumps into the CFA of the is_even function, i.e. case 7.
In case 7, the original return statement of is_even is replaced with the context-
sensitive assignment of the variable storing the return value (in this case
L0_CPA_TMP) which is extracted from the edge storing the calling context. The
assigned value is the expression of the return statement, i.e. P0_z % 2 == 0. Note

21

4 Approach

1 int x = 21;
2 int is_even(int);
3 int main();
4 int is_even(int z) { return z % 2 == 0; }
5 int main(void) {
6 int y = 21;
7 if (is_even(x + y)) { printf("even"); }
8 else { printf("odd"); }
9 return 0;

10 }

int y = 21;

2

1

3

int CPA_TMP =

is_even(x + y);

6

!(1 == CPA_TMP)

4

1 == CPA_TMP

printf(„even“);

return 0;

-1

5

printf(„odd“);

7

8

return

z % 2 == 0;

is_even(x + y);

0

int x = 21;

Figure 4.2: A sequential C program and its simplified CFA. CPAchecker introduces
__CPAchecker_TMP variables (abbreviated to CPA_TMP in this exam-
ple) that store the return values of a function if they are implicitly used.

how z was substituted with its parameter variable P0_z. Case 8 has initially no
statement i.e. is blank, but we assign the value of the corresponding RETURN_PC (in
this case 3) to the pc of thread 0 to jump back to the original calling context.
Case 3 represents the handling of control flow statements that are all replaced with
if and else if statements in the switch cases, meaning that loops do not require
explicit handling in the sequentialization. All loop statements from different threads
can thus be interleaved individually.

22

4.3 Thread Simulation

1 switch (pc[0]) {
2

3 // case 0 to 5 from main()
4 case 0: G_x = 21;
5 pc[0] = 1; continue;
6 case 1: L0_y = 21;
7 pc[0] = 2; continue;
8 case 2: P0_x = G_x + L0_y;
9 T0_RETURN_PC_is_even = 3;

10 pc[0] = 7; continue;
11 case 3: if (1 == L0_CPA_TMP) { pc[0] = 4; }
12 else if (!(1 == L0_CPA_TMP)) { pc[0] = 5; }
13 continue;
14 case 4: printf("even");
15 pc[0] = 6; continue;
16 case 5: printf("odd");
17 pc[0] = 6; continue;
18 case 6: T0_ACTIVE = 0;
19 pc[0] = -1; continue;
20

21 // case 7 to 8 from is_even(int x)
22 case 7:
23 switch (RETURN_PC_T0_is_even) {
24 case 3: L0_CPA_TMP = P0_x % 2 == 0;
25 }
26 pc[0] = 8; continue;
27 case 8: pc[0] = RETURN_PC_T0_is_even; continue;
28 }

Figure 4.3: The switch case of the main thread in Fig. 4.2 derived from its CFA.

4.3 Thread Simulation

Not only thread objects such as pthread_t but also thread control methods are
removed in the sequentialization. We inject thread simulation variables into the
sequentialization to correctly reproduce the behavior of a thread control method.
Input programs usually do not define thread control methods but include the header
file or declare the methods themselves. In this case, the thread control methods have
no function CFA representation in contrast to the function calls in Sect. 4.2.
We distinguish between thread control methods that are:

1. explicitly handled

2. supported but need no explicit handling

3. unsupported, resulting in an input program rejection

The appendix features a non-exhaustive list of supported thread control methods
Table 7.1.
Our algorithm identifies explicitly handled thread control methods and takes care
of their semantics, i.e. their induced TSOs. To enforce a TSO in the sequentialization,
we include assumptions over allowed program transitions (i.e. context-switches)
to reduce the state space and to realistically simulate threads. We support several

23

4 Approach

methods from the pthread standard introduced in Sect. 2.1 as well as methods
used in the SV-COMP to instruct verifiers handling concurrency, all of which are
elaborated on in this section.

pthread_create. The sequentialization replaces pthread_create calls with up-
dates to int variables of the form T{thread_id}_ACTIVE. A threads respective
variable is set to 1 if the corresponding pthread_create is encountered and to 0
if the pc of the thread is set to -1, i.e. if the threads simulation is terminated.
An ACTIVE variable for the main thread is also introduced and initialized to 1. If
the pc of the main thread is set to -1, the main threads ACTIVE variable is set to 0.

An assumption is created over the ACTIVE variable of a thread i in the sequential-
ization loop:

1 assume(!Ti_ACTIVE ==> next_thread != i);

This enforces that if a thread i is not active, it cannot be the next thread executing a
case statement.

pthread_mutex_{lock, unlock}. For each pthread_mutex_t object
in the sequentialization, we create a global int variable of the form
{mutex_name}_LOCKED. In addition, for all mutexes locked by a thread, we intro-
duce a global int variable of the form T{thread_id}_LOCKS_{mutex_name}.
The LOCKED and LOCKS variables work in tandem to replace calls to
pthread_mutex_lock in a case statement:

1 if (m_LOCKED) { Ti_LOCKS_m = 1; }
2 else { m_LOCKED = 1; Ti_LOCKS_m = 0; pc[i] = x; } continue;

If a mutex m is locked, then thread i is in a waiting state (the LOCKS variable set
to 1) and its pc is not updated. If m is not locked, the waiting state of the thread is
reset (the LOCKS variable set to 0) and the mutex m marked as LOCKED. Thread i
can then continue executing case statements because its pc is updated.
Following this logic, the pthread_mutex_unlock method is replaced by a reset
of the LOCKED variable:

1 m_LOCKED = 0;

An assumption is created over the LOCKED and LOCKS variables of a mutex and
added to the sequentialization loop:

1 assume((m_LOCKED && Ti_LOCKS_m) ==> next_thread != i);

This enforces that if a mutex m is locked and a thread i waits for m to be unlocked,
then i cannot be the next thread executing a case statement.
This assumption is sufficient to include mutex lock TSOs in the sequentialization
because the pthreads standard defines that relocking a mutex causes a deadlock.
In addition, a thread trying to unlock a mutex it did not lock or that is already
unlocked results in undefined behavior [10].

24

4.3 Thread Simulation

1 pthread_t id1;
2 pthread_mutex_t m;
3 int x = 0;
4 void *t1(void *arg) {
5 pthread_mutex_lock(&m);
6 x++;
7 pthread_mutex_unlock(&m);
8 return ((void *)0);
9 }

10 int main() {
11 pthread_mutex_init(&m, 0);
12 pthread_create(&id1, ((void *)0), t1, ((void *)0));
13 pthread_mutex_lock(&m);
14 x *= 2;
15 pthread_mutex_unlock(&m);
16 pthread_join(id1, ((void *)0));
17 return 0;
18 }

Figure 4.4: A concurrent C program running on 2 threads featuring the
core methods pthread_create, pthread_mutex_(un)lock and
pthread_join.

pthread_join. For all threads joined by a thread, we introduce a global int vari-
able of the form T{waiting_thread_id}_JOINS_T{target_thread_id}, ini-
tialized to 0. The ACTIVE and JOINS variables work in tandem to replace calls to
pthread_join in a case statement:

1 if (Ti_ACTIVE) { Tj_JOINS_Ti = 1; }
2 else { Tj_JOINS_Ti = 0; pc[j] = x; } continue;

If a thread i is active, then thread j is in a waiting state (the JOINS variable set to
1) and its pc is not updated. If i is not active, the waiting state of the thread is reset
(the JOINS variable set to 0). Thread j can then continue executing case statements
because its pc is updated. Note that a thread cannot join itself i.e. i == j cannot
hold.

An assumption is created over the JOINS variable in the sequentialization loop:
1 assume((Ti_ACTIVE && Tj_JOINS_Ti) ==> next_thread != j);

This enforces that if a thread i is active and a thread j wants to join i, then j cannot
be the next thread executing a case statement.

__VERIFIER_atomic_{begin, end}. The function declarations of
__VERIFIER_atomic_begin and __VERIFIER_atomic_end are given
as:

1 extern int __VERIFIER_atomic_begin(void);
2 extern int __VERIFIER_atomic_end(void);

__VERIFIER_atomic_begin is used together with __VERIFIER_atomic_end
in the SV-COMP to mark an atomic block. Calling __VERIFIER_atomic_begin
results in the calling thread not being interrupted in its execution until

25

4 Approach

__VERIFIER_atomic_end is called [25].

If the input program contains at least one call to __VERIFIER_atomic_begin,
an int variable with the name ATOMIC_IN_USE is added to the sequen-
tialization. In addition, for each thread calling __VERIFIER_atomic_begin
in the input program, we create a global int variable of the form
T{thread_id}_BEGINS_ATOMIC. The ATOMIC_IN_USE and BEGINS variables
work in tandem to replace calls to __VERIFIER_atomic_begin in a case state-
ment:

1 if (ATOMIC_IN_USE) { Ti_BEGINS_ATOMIC = 1; }
2 else { ATOMIC_IN_USE = 1; Ti_BEGINS_ATOMIC = 0; pc[i] = x; } continue;

If the atomic section is currently in use i.e. any other thread is currently in an atomic
section then thread i waits (the BEGINS variable set to 1) and its pc not updated.
If the atomic section is not in use, the waiting state of thread is reset (the BEGINS
variable set to 0) and the atomic section marked as in use. Thread i then can execute
further case statements because the pc is updated.
To ensure that ATOMIC_IN_USE is reset we replace calls to
__VERIFIER_atomic_end with:

1 ATOMIC_IN_USE = 0;

Assumption are created over the ATOMIC_IN_USE and BEGINS variables in the
sequentialization loop:

1 assume((ATOMIC_IN_USE && Ti_BEGINS_ATOMIC) ==> next_thread != i);

This enforces that if the atomic section is currently in use and thread i is in a waiting
state, then i cannot be the next thread executing a case statement.

TSO Example. To demonstrate the handling of thread control methods in our
implementation, let us consider another example program in Fig. 4.4. The approach
also follows the procedures introduced in Sect. 4.1 and Sect. 4.2, i.e. handling function
calls, substituting variable names and creating a switch statement for each thread.
We now focus on handling thread control methods, where each...

• thread has its own ACTIVE variable.

• mutex has its own LOCKED variable.

• thread locking a mutex has its own LOCKS variable.

• thread joining a thread has its own JOINS variable.

• program has an ATOMIC_IN_USE variable.

• thread beginning an atomic section has its own BEGINS variable.

All of these variables are initialized to 0 except the ACTIVE variable for the main
thread which is initialized to 1.

26

4.4 Modular Partial Order Reduction

A sequentialized version of the example program Fig. 4.4 can be found in Fig. 4.5.
Note that the call to pthread_mutex_init needs no explicit handling and can be
soundly pruned from the sequentialization. These prunings result in gaps between
pc, e.g. the main thread 0 has no case 1. Calls to pthread_create for a thread
i can be replaced by the assignment ti_active = 1 as seen in case 2 in thread
0. The locking and unlocking of the mutex m are demonstrated in cases 2 and
4 in thread 0 respectively. The pthread_join method call is replaced with the
if-else statement in case 5 in thread 0.
The return statements of each thread are removed entirely because we inline all
functions in the main function of the sequentialization. The return statements of
main and t1 (i.e. the start routine) mark the termination of a thread. The respective
ACTIVE variables are set to 0.

4.4 Modular Partial Order Reduction

To further reduce the state space, we inject a simple form of POR in the sequential-
ization via assumptions over allowed transitions. The underlying idea of our POR is
the commutativity of statements similar to the POR of UGemCutter (cf. Sect. 3.1).
However, the sequentialization may not choose exactly the minimal representative
of each equivalence class of interleavings because it does not check if statements
commute on the fly (i.e. factoring in the past sequence of statements). Instead, the
sequentialization checks whether a case statement accesses local or global variables.
This approach is feasible based on just the syntax of the input program.
Per definition, statements that only access thread-local variables commute because
they cannot interfere with other threads. We introduce assumptions over pc that do
not access a global variable. This goal is achieved by associating a case statement
and its pc with the input CFA edges it represents. CPAchecker features global access
checking for a given CFA edge, based on if it reads or writes a variable that has a
global declaration. If all edges of a given case statement are local, the previous thread
continues executing until a case statement with a global access is encountered.
Additionally, we identify case statements where the pc of a thread is not guaranteed
to be updated e.g. when simulating calls to pthread_join as described in Sect. 4.3.
Assumptions are created to correctly simulate the behavior of pthread_join.
These assumptions could be contradictory to the POR assumptions resulting in pre-
emptive and incorrect thread simulation termination. This is why POR assumptions
for these case statements are not included, regardless of whether they are local or
global.

27

4 Approach

1 // input program variables
2 pthread_t G_id1;
3 pthread_mutex_t G_m;
4 int G_x = 0;
5

6 // thread simulation variables
7 int T0_ACTIVE = 1, T1_ACTIVE = 0;
8 int G_m_LOCKED = 0;
9 int T0_LOCKS_G_m = 0, T1_LOCKS_G_m = 0;

10 int T0_JOINS_T1 = 0;
11

12 /* function declarations and assume function here ... */
13 int main() {
14 /* declare and initialize NUM_THREADS, pc[] and next_thread ... */
15 while (1) {
16 /* assign and bound next_thread ... */
17

18 // TSO assumptions over thread simulation variables
19 assume(!T0_ACTIVE ==> next_thread != 0);
20 assume(!T1_ACTIVE ==> next_thread != 1);
21 assume((G_m_LOCKED && T0_LOCKS_G_m) ==> next_thread != 0);
22 assume((G_m_LOCKED && T1_LOCKS_G_m) ==> next_thread != 1);
23 assume((T1_ACTIVE && T0_JOINS_T1) ==> next_thread != 0);
24

25 // switch statements for each thread simulation
26 if (next_thread == 0) {
27 switch (pc[0]) {
28 case 0: T1_ACTIVE = 1; pc[0] = 2; continue;
29 // simulate pthread_mutex_lock
30 case 2: if (G_m_LOCKED) { T0_LOCKS_G_m = 1; }
31 else { T0_LOCKS_G_m = 0; G_m_LOCKED = 1;
32 pc[0] = 3; } continue;
33 case 3: G_x *= 2; pc[0] = 4; continue;
34 // simulate pthread_mutex_unlock
35 case 4: G_m_LOCKED = 0; pc[0] = 5; continue;
36 // simulate pthread_join
37 case 5: if (T1_ACTIVE) { T0_JOINS_T1 = 1; }
38 else { T0_JOINS_T1 = 0; pc[0] = 6; } continue;
39 case 6: T0_ACTIVE = 0; pc[0] = -1; continue;
40 }
41 } else if (next_thread == 1) {
42 switch (pc[1]) {
43 // simulate pthread_mutex_lock
44 case 0: if (G_m_LOCKED) { T1_LOCKS_G_m = 1; }
45 else { T1_LOCKS_G_m = 0; G_m_LOCKED = 1;
46 pc[1] = 1; } continue;
47 case 1: G_x++; pc[1] = 2; continue;
48 // simulate pthread_mutex_unlock
49 case 2: G_m_LOCKED = 0; pc[1] = 3; continue;
50 case 3: T1_ACTIVE = 0; pc[1] = -1; continue;
51 }
52 }
53 }
54 return 0;
55 }

Figure 4.5: An exemplary sequentialization of the concurrent program in Fig. 4.4.

28

4.4 Modular Partial Order Reduction

1 // assign -1 to prev_thread (no assumption holds in first iteration)
2 int prev_thread = -1;
3 int next_thread = -1;
4

5 while (1) {
6 next_thread = __VERIFIER_nondet_int();
7 /* other assumptions as before here ... */
8

9 // POR assumptions over local accesses:
10 assume((prev_thread == 0 && pc[0] == 0) ==> next_thread == 0);
11 assume((prev_thread == 0 && pc[0] == 2) ==> next_thread == 0);
12 assume((prev_thread == 1 && pc[1] == 2) ==> next_thread == 1);
13 assume((prev_thread == 2 && pc[2] == 2) ==> next_thread == 2);
14

15 // reassign prev_thread after all reads in this loop iteration
16 prev_thread = next_thread;
17

18 if (next_thread == 0) {
19 /* switch cases as before here ... */
20 }
21 }

Figure 4.6: The sequentialization in Fig. 4.1 with POR assumptions over local ac-
cesses injected into it.

For POR, we inject a prev_thread variable (initialized to -1) into the se-
quentialization that stores the previous value of next_thread, i.e. the thread
that executed a case statement in the previous loop iteration. The assignment
prev_thread = next_thread is handled after all reads of prev_thread in the
sequentialization loop. Assumptions are created over the prev_thread variable in
the sequentialization loop:

1 assume((prev_thread == i && pc[i] == n) ==> next_thread == i);

This enforces that if a thread i executed a case statement in the previous loop
iteration and is now at location n, a pc which has no global access and that is
guaranteed to update the threads pc, then i also executes the next case statement.
This reduces the amount of locations where a context-switch can occur.

POR Example. To showcase the POR approach via assumptions, let us again con-
sider the concurrent program in Fig. 2.1 and Fig. 2.3 from Chapter 2. It is a suitable
example because it features both local and global variables. An exemplary sequen-
tialization loop was given in Fig. 4.1. The sequentialization featured assumptions
over thread simulation variables in lines 24 to 29.
Given that T0_ACTIVE is initialized to 1 and both T1_ACTIVE, T2_ACTIVE to 0,
the sequentialization ensures that we always start in thread simulation 0.
The additional assumptions our algorithm injects into the sequentialization are
demonstrated in Fig. 4.6. Note that the POR assumptions are created over the
original program statements. In the sequentialization, T1_ACTIVE = 1 is a global
access because the thread simulation variable T1_ACTIVE is global, while the origi-

29

4 Approach

⟨-,-,0⟩

⟨0,0,0⟩

⟨2,0,0⟩

⟨-,0,0⟩

⟨-,0,1⟩⟨-,1,0⟩

⟨-,1,1⟩ ⟨-,0,2⟩⟨-,2,0⟩ ⟨-,1,1⟩

⟨-,-,1⟩

⟨-,-,2⟩

⟨-,-,-⟩

⟨-,0,-⟩

⟨-,1,-⟩

⟨-,2,-⟩

⟨-,-,-⟩

⟨-,2,1⟩ ⟨-,1,2⟩

⟨-,-,1⟩

⟨-,-,2⟩

⟨-,-,-⟩

⟨-,1,-⟩

⟨-,2,-⟩

⟨-,-,-⟩

⟨-,2,1⟩ ⟨-,1,2⟩

⟨-,-,1⟩

⟨-,-,2⟩

⟨-,-,-⟩

⟨-,1,-⟩

⟨-,2,-⟩

⟨-,-,-⟩

thread

termination

context

switch

1-

Figure 4.7: Visualization of the possible interleavings in the sequentialization in
Fig. 4.6. Each location represents the state of the pc array. To improve
readability, -1 is replaced with -.

nal statement, pthread_create(&id1, ((void *)0), t1, ((void *)0))
does not modify the global state and always commutes.
In Sect. 4.1, we showed that the amount of interleavings for the parallel program in
Fig. 2.1 and Fig. 2.3 is at least 34650 when neglecting TSOs. For verification purposes
where only one interleaving from each equivalence class has to be considered, the
amount of execution paths can be reduced to at most 3 as shown in Sect. 2.5. In this
simple example, our POR technique reduces the amount of interleavings to consider
from at least 34650 (neglecting TSOs) to 6, effectively. The interleaving model for this
sequentialization is visualized in Fig. 4.7, showing that thread 0 always terminates
before a context-switch occurs.

4.5 Sequentialization Errors

Given that we feed the sequentializations back to the sequential reachability analysis
of verifiers, it is fundamental to preserve the correctness characteristic in the code
transformation for a correct verdict. To increase the reliability of our sequentializa-

30

4.5 Sequentialization Errors

tions, we inject assertion failures for program locations that are only reachable when
the output program is erroneous.
The SV-COMPs ConcurrencySafety-Main category checks if calls to the func-
tion reach_error are reachable. This is why we use reach_error for assertion
failures marking erroneous sequentialization program locations:

1 // function declaration
2 void reach_error(
3 const char *__file, unsigned int __line, const char *__function) {
4 __assert_fail("0", __file, __line, __function);
5 }
6 // exemplary function call
7 reach_error("__MPOR_SEQ__{input_file}", l,
8 "__SEQUENTIALIZATION_ERROR__");

Where "0" is a string representation of the expression expected to be true. It evalu-
ates to 0, i.e. false. The following parameters "__MPOR_SEQ__{input_file}",
l and "__SEQUENTIALIZATION_ERROR__" are the filename, line of code
and function name in which the assertion failure occurred, respectively.
The tested input programs usually used "__PRETTY_FUNCTION__", i.e.
the function name together with its signature, making it distinct from our
"__SEQUENTIALIZATION_ERROR__", except the unlikely case that the original
function also had this name. This, together with the file name, allows us to
distinguish erroneous sequentializations from faulty input programs.

All switch statements in the sequentialization feature a call to reach_error as
the default case. Whenever a pc or RETURN_PC cannot be matched to a case, the
reach_error indicates that an invalid value was assigned.

Furthermore, invariants are injected to the start of the sequentialization loop if
enabled (cf. Chapter 7). We identify invalid combinations of LOCKS, JOINS and
ACTIVE thread simulation values:

(i) If a thread i locks a mutex m, then i must be active:

1 if (Ti_LOCKS_m && !Ti_ACTIVE) {
2 reach_error(...); }

(ii) If a thread i wants to join a thread j, then i must be active:

1 if (Ti_JOINS_Tj && !Ti_ACTIVE) {
2 reach_error(...); }

These assumptions hold if pre-emptive thread terminations are not allowed. Our al-
gorithm does not currently support functions that allow the termination of a waiting
thread, e.g. pthread_cancel, pthread_kill or pthread_cond_timedwait,
making this approach sound.

An example of assertion failures in a sequentialization can be found in Fig. 4.8.

31

4 Approach

1 while (1) {
2

3 // loop invariants identifying invalid value combinations
4 if (T0_LOCKS_G_m && !T0_ACTIVE) { reach_error(...); }
5 if (T1_LOCKS_G_m && !T1_ACTIVE) { reach_error(...); }
6 if (T0_JOINS_T1 && !T0_ACTIVE) { reach_error(...); }
7

8 next_thread = VERIFIER_nondet_int();
9 /* other assumptions as before here ... */

10

11 if (next_thread == 0) {
12 switch (pc[0]) {
13 /* other cases as before here ... */
14 default: reach_error(...); break;
15 }
16

17 } else if (next_thread == 1) {
18 switch (pc[1]) {
19 /* other cases as before here ... */
20 default: reach_error(...); break;
21 }
22 }
23 }

Figure 4.8: Excerpts from the sequentialization Fig. 4.5 with shortened assertion
failures injected into it.

4.6 Limitations

Our implementation imposes restrictions on the accepted input programs and may
terminate without producing an output. The appendix features a non-exhaustive
Table 7.2 of error messages. The technical reasons behind the input rejections are:

• Given that edges that are calls to pthread_create in the input CFA are
treated as a single created thread, pthread_create calls inside loops are not
supported.

• Extracting pthread_t and pthread_mutex_t objects from calls to
pthread_create and pthread_mutex_lock is essential when handling
their semantics i.e. induced TSOs. This is why arrays of pthread objects are
not supported.

• Thread control methods are only simulated and never actually return in the se-
quentialization resulting in return values of thread control being unsupported.

• When handling function calls, the parameter variables are constant for dura-
tion of a call. Thus our implementation does not support (in)direct recursion
to prevent parameter variables from being overwritten before the function
completes execution.

• If a function is guaranteed to abort the program or execute an infinite
loop, it contains no exit node in its CFA representation. If a thread has a
start_routine without an exit node, the input program is rejected.

32

4.6 Limitations

• Our POR approach assumes that a parameter variable is always local, even if
a global variable is assigned to it. Thus, non-commuting statements may be
assumed to commute in the sequentialization.

Additionally, the algorithm may produce a sequential output program not equivalent
to the input program if any C thread creation library other than pthreads is used (i.e.
undefined behavior).

33

CHAPTER 5

Results and Discussion

SV-Benchmarks1 is a collection of verification tasks used in the SV-COMP to measure
the performance of a verification tool. For the evaluation of our implementation,
we use the Concurrency.set, a diverse subset of SV-Benchmark C programs
that contain concurrency. For all tasks, SV-Benchmarks features a .c or .i file
with C code and a .yml file with metadata containing e.g. properties with an
expected_verdict that can be true or false. From the Concurrency.set
we extract all tasks that include the property file unreach-call.prp i.e. whether
calls to the function reach_error are reachable. This specification is also used in
the ConcurrencySafety-Main category in SV-COMP 2024 [19].

For the evaluation, we define 4 questions:

• Q1. What is the percentage of input programs our algorithm accepts (cf. 7.2)?

• Q2. Do the sequentialized versions improve analysis effectiveness compared
to the input program?

• Q3. Do the sequentialized versions improve analysis efficiency compared to
the input program?

• Q4. Do the additional POR assumptions (cf. Sect. 4.4) improve analysis effec-
tiveness and efficiency?

For Q2, Q3 and Q4, we use tools capable of analyzing both sequential and
concurrent C programs, namely CBMC [26], CPAchecker [24] and UAutomizer [27].
The versions used where the SV-COMP submissions from 2023 for CBMC2

(which was not updated for SV-COMP since) and from 2025 for CPAchecker3 and

1gitlab.com/sosy-lab/benchmarking/sv-benchmarks
2zenodo.org/records/10396159
3zenodo.org/records/14205219

35

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://zenodo.org/records/10396159
https://zenodo.org/records/14205219

5 Results and Discussion

UAutomizer4.

The comparison contains 3 sets of verification tasks:

• input programs input as taken from the SV-Benchmarks

• sequentializations seq of each input program

• sequentializations with POR assumptions seq-por of each input program (cf.
Sect. 4.4)

The sequentializations were created with the MPORAlgorithm implemented in the
CPAchecker branch modular-partial-order-reduction5. Additional loop
invariants (cf. Sect. 4.5) were not enabled.
The evaluation was performed with the benchmarking framework BenchExec [28]
(version 3.28-dev6) on a Linux 6.8.0-51-generic machine with an Intel Xeon E3-1230
v5 CPU running at 3800 MHz and 33 GB of RAM. Each verification run was limited
to a timeout of 900s, 15 GB of memory usage and 2 CPU cores.

Q1. The task extraction from SV-Benchmarks amounted to a total of 726 input
programs. Parsing failed for 59 out of 726 (attributable to CPAchecker), giving us a
total of 667 input programs our implementation tried to transform. 319 or about 48
percent of which where accepted by our implementation. 61 programs are correct,
i.e. the function reach_error is not reachable, whereas 258 programs are false.
304 programs were rejected by our implementation (cf. Table 7.2) and 44 resulted
in internal code transformation errors, e.g. assertion failures when substituted
variables are expected to be present.

Q2. When it comes to the effectiveness of the analysis, an overview of verdicts
produced by CBMC, CPAchecker and UAutomizer can be found in Table 5.1. Of
319 input tasks, the native concurrency analysis of CBMC, CPAchecker and UAu-
tomizer were able to correctly analyze 302, 277 and 304 programs, respectively.
The sequentialized versions seq (seq-por) had correct verdicts in 10 (9), 4 (=)
and 6 (=) occasions by CBMC, CPAchecker and UAutomizer, respectively. CBMC
timed out on circular_buffer_bad (cf. Table 5.2) from seq-por while it was
able to correctly falsify the program in the seq tasks. CBMC timed out on the
stack_longest-2 task in the seq-por set where it ran out of memory in the
seq set. The task queue_longer reported another error code in the seq-por
set despite the analysis of CBMC running out of memory, same as in the seq set.
CPAcheckers verdicts and errors were identical between the seq and seq-por sets.
UAutomizer verdicts were identical between the 2 sequentialized sets, although it
tended to run out of memory more often in the seq-por set.
CBMC was able to produce correct verdicts for 2 programs in both the
seq and seq-por sets that resulted in errors in the input set, namely

4zenodo.org/records/14209043
5gitlab.com/sosy-lab/software/cpachecker/-/tree/modular-partial-order-reduction, revision

5ed7be831478bcb261e0f721cfa059eeafad65ce
6github.com/sosy-lab/benchexec, revision b2cb946ffdb7327c92b530906cb1e4e7d6137c0d

36

https://zenodo.org/records/14209043
https://gitlab.com/sosy-lab/software/cpachecker/-/tree/modular-partial-order-reduction
https://github.com/sosy-lab/benchexec

correct incorrect error

true false true false timeout out of RAM other

CBMC 51 251 0 0 3 0 14

input CPAchecker 50 227 0 0 29 3 10

UAutomizer 52 252 0 0 2 13 0

CBMC 4 6 0 3 303 3 0

seq CPAchecker 2 2 0 0 315 0 0

UAutomizer 3 3 0 0 9 304 0

CBMC 4 5 0 3 305 1 1

seq-por CPAchecker 2 2 0 0 315 0 0

UAutomizer 3 3 0 0 1 312 0

Table 5.1: Overview of analysis verdicts by CBMC, CPAchecker and UAutomizer
for the task sets input, seq and seq-por.

singleton and time_var_mutex (cf. Table 5.2). CBMC also produced
incorrect verdicts for 3 programs in both the seq and seq-por sets that
resulted in errors in the input set, namely bigshot_s, bigshot_s2 and
singleton_with-uninit-problems (cf. Table 5.2). Both bigshot_s and
bigshot_s2 were falsified due to internal POINTER_OBJECT mismatching in
CBMC while singleton_with-uninit-problems reached the reach_error
function. Both CPAchecker and UAutomizer were unable to correctly analyze
sequentializations when the input program could not be analyzed. Both also did not
produce any incorrect verdict in any run.

Q3. For the comparison of analysis efficiency, we only include programs where
the tools were able to produce correct verdicts in all 3 task sets (cf. Table 5.2).
CBMC, CPAchecker and UAutomizer were able to correctly solve 7, 4 and 6 tasks,
respectively as shown in Fig. 5.1. When considering the 4 tasks that all tools were
able to solve (cf. Table 5.2) and using CBMCs analysis times as a baseline normalized
to 1, CPAchecker and UAutomizer were 46.3 and 84.6 times slower. Note that the
efficiency differences between tools is of only minor concern in this thesis.
We focus on the efficiency differences between the task sets input, seq and
seq-por and use relative analysis times to provide a more comparable evaluation.
The times in the input set are used as a baseline (see Fig. 5.2), with the relative
times for the seq and seq-por sets adjusted accordingly. On average, the seq
(seq-por) verification was 4.54 (4.82), 9.57 (10.92) and 5.57 (14.09) times slower
compared to the input verification for CBMC, CPAchecker and UAutomizer,
respectively. CBMC verified one program in the seq task, namely lazy01, in 68
percent of the time compared to the corresponding input task. No sequentialization
from seq-por was verified faster compared to the corresponding input task.

37

5 Results and Discussion

input seq seq-por

result time RAM result time RAM result time RAM

CBMC 13-privatized_66-mine-W-init_true true .212 8.12 true .995 18.3 true 1.02 19.4

36-apron_16-traces-unprot2_true true .217 8.40 true 3.67 42.5 true 3.83 49.4

36-apron_41-threadenter-no-

locals_unknown_1_neg

false .178 8.37 false .275 8.52 false .305 10.5

36-apron_41-threadenter-no-

locals_unknown_1_pos

false .183 8.20 false .276 8.65 false .293 10.5

bigshot_s error .169 8.90 false 1.60 58.2 false 1.90 61.7

bigshot_s2 error .168 9.18 false 1.37 44.2 false 1.54 57.5

circular_buffer_bad false 16.0 251 false 197 728 error 875 746

lazy01 false 3.58 100 false 2.44 47.2 false 7.15 83.7

singleton error .169 8.15 false 112 627 false 97.4 618

singleton_with-uninit-problems error .162 8.31 false 150 678 false 151 689

stateful01-1 false 6.57 135 false 31.7 271 false 30.1 286

stateful01-2 true 34.4 152 true 57.2 305 true 47.6 323

time_var_mutex error .163 8.56 true 91.4 286 true 96.8 290

CPAchecker 13-privatized_66-mine-W-init_true true 8.81 187 true 50.6 506 true 62.2 586

36-apron_16-traces-unprot2_true true 9.25 205 true 252 809 true 279 757

36-apron_41-threadenter-no-

locals_unknown_1_neg

false 9.37 204 false 26.8 321 false 29.6 426

36-apron_41-threadenter-no-

locals_unknown_1_pos

false 9.17 214 false 22.4 325 false 30.1 431

UAutomizer 13-privatized_66-mine-W-init_true true 18.9 302 true 66.2 734 true 132 1460

36-apron_16-traces-unprot2_true true 17.0 296 true 133 1550 true 533 2830

36-apron_41-threadenter-no-

locals_unknown_1_neg

false 15.1 284 false 29.6 356 false 62.9 819

36-apron_41-threadenter-no-

locals_unknown_1_pos

false 15.8 304 false 28.0 370 false 57.3 635

bigshot_s2 true 30.1 405 true 252 1890 true 480 3430

stateful01-1 false 17.4 313 false 174 4800 false 391 13600

Table 5.2: Overview of CBMC, CPAchecker and UAutomizer verification effective-
ness and efficiency for programs in the task sets input, seq and seq-por
where at least one sequentialized version did not produce an error. Ver-
dicts are either correct, incorrect or erroneous. Times are given in seconds
and RAM usage in MB.

Q4. When it comes to efficiency factoring in the additional POR assumptions,
the analysis was, on average, slower by 6.2, 14.1 and 253.0 percent for CBMC,
CPAchecker and UAutomizer, respectively. CBMC verified 2 sequentializations

38

1 2 3 4 5 6 7
Tasks solved correctly in all sets

100

101

102

103

M
in

. t
im

e
in

 s

UAutomizer - input
UAutomizer - seq
UAutomizer - seq-por
CPAchecker - input
CPAchecker - seq
CPAchecker - seq-por
CBMC - input
CBMC - seq
CBMC - seq-por

Figure 5.1: Quantile Plot showing the progression of execution times along with
the number of correctly solved tasks for CBMC, CPAchecker and UAu-
tomizer. Only tasks with correct verdicts in all task sets (input, seq and
seq-por) are included (cf. Table 5.2).

faster with POR assumptions, namely stateful01-1 and stateful01-2, by 5.2
and 20.3 percent, respectively.

Discussion. While the acceptance rate of roughly 48 percent (Q1) is a good
starting point for our implementation, there is room for improvement. The 44 tasks
that produced internal errors resulted e.g. from parameters passed to start routines
of threads via the pthread_create function which can be supported without
much effort. The 300 rejected input programs however will be more difficult to
support. We did not obtain exact numbers matching programs to an error message
(cf. Table 7.2) but many concurrency SV-Benchmarks use thread creations in loops
together with arrays of pthread objects. These rejections can later be supported
through loop unrolling. Additionally, further support for more pthread functions
can be implemented and function call stacks simulated to support recursion.

39

5 Results and Discussion

For verification effectiveness (Q2) we observed that our sequentializations in both
the seq and seq-por task sets prevented a correct verdict for a vast majority
of programs (98.4 percent on average) for CBMC, CPAchecker and UAutomizer
(cf. Table 5.1). CBMC was able to verify 2 sequentializations that resulted in
errors for their corresponding input programs. However, CBMC also produced
incorrect verdicts for 3 sequentializations (with bigshot_s among them, cf.
Table 5.2) that resulted in errors for their corresponding input programs. Given that
UAutomizer was able to verify bigshot_s, the incorrect falsification of CBMC may
be attributed to a tool error and not a faulty sequentialization i.e. when an injected
error is reachable (cf. Sect. 4.5). For singleton_with-uninit-problems,
CBMC did not report the line of code in which reach_error was called, leaving
the possibility for a sequentialization error open (cf. Sect. 4.5). It cannot be safely
derived that the sequentializations enabled an analysis, i.e. improved effectiveness,
on any occasion. Further examination of CBMCs 3 incorrect falsifications is required.

The analysis efficiency (Q3) saw major differences between CBMC, CPAchecker
and UAutomizer for the input, seq and seq-por task sets, emphasizing the
distinct analysis approaches of each tool. Given that there was only one occasion
where the verification of sequentialized version performed better compared to the
corresponding input program, we derive that the current form of sequentialized
versions generally decrease analysis efficiency.

For POR efficiency (Q4), recall that the seq-por tasks feature additional assump-
tions at the loop head compared to their seq counterparts. Given that all assump-
tions are evaluated in each loop iteration and that the seq-por set, on average,
performed worse compared to the seq set, we derive that the overhead introduced
by additional POR assumptions weighs heavier than the reduction in the state space.
Reducing the amount of assumptions, e.g. grouping POR assumptions with similari-
ties in their left-hand sides together in an if-block may improve efficiency. Another
option would be to skip the assumptions in the loop head entirely by staying within
a thread simulations case block when statements commute, e.g. via goto state-
ments. These ideas are theoretical and their implementation and evaluation are
subject to future work. It remains to be seen whether a reduction of assumptions
improves efficiency which may indirectly impact effectiveness.

Threats to Validity. Correct verdicts in all 3 task sets were produced in 7, 4 and
6 out of 319 occasions for CBMC, CPAchecker and UAutomizer, respectively (cf.
Table 5.2). This relatively small dataset makes the efficiency evaluation subject to
imprecision.
Furthermore, earlier results showed that contradictory assumptions in sequentializa-
tions resulted in preemptive thread terminations and thus incorrect true verdicts.
To prevent contradictory assumptions over the next_thread variable, we exclude
cases that are not guaranteed to update the pc of a thread from POR assumptions
(cf. Sect. 4.4), e.g. simulations of the function pthread_mutex_lock (cf. Fig. 4.5).
Given that no tool produced an incorrect true verdict on any seq or seq-por task,

40

we infer that contradictory assumptions were not present in our algorithms version
used for the evaluation.
The loop invariants introduced in Sect. 4.5 were not included in the evaluation. In
earlier experiments however, none of the tested programs reported a reach_error
from loop invariants during analysis.

41

5 Results and Discussion

0 5 10 15 20 25 30 35

stateful01-2

stateful01-1

lazy01

36-apron_41-threadenter-
no-locals_-unknown_1_pos

36-apron_41-threadenter-
no-locals_unknown_1_neg

36-apron_16-traces-
unprot2_true

13-privatized_66-mine-W-
init_true

1

1

1

1

1

1

1

1.66

4.82

0.68

1.51

1.54

16.91

4.69

1.38

4.58

2

1.6

1.71

17.65

4.81

CBMC

input (normalized to 1) seq seq-por

0 5 10 15 20 25 30 35

36-apron_41-threadenter-
no-locals_-unknown_1_pos

36-apron_41-threadenter-
no-locals_unknown_1_neg

36-apron_16-traces-
unprot2_true

13-privatized_66-mine-W-
init_true

1

1

1

1

2.44

2.86

27.24

5.74

3.28

3.16

30.16

7.06

CPAchecker

0 5 10 15 20 25 30 35
time relative to normalized input

stateful01-1

bigshot_s2

36-apron_41-threadenter-
no-locals_-unknown_1_pos

36-apron_41-threadenter-
no-locals_unknown_1_neg

36-apron_16-traces-
unprot2_true

13-privatized_66-mine-W-
init_true

1

1

1

1

1

1

10

8.37

1.77

1.96

7.82

3.5

22.47

15.95

3.63

4.17

31.35

6.98

UAutomizer

Figure 5.2: Normalized CBMC, CPAchecker and UAutomizer analysis times for the
programs in Table 5.2 where all verdicts from input, seq and seq-por
were correct.

42

CHAPTER 6

Conclusion and Future Work

Verifying concurrent programs is difficult due to exponential increases in the state
space with a growing number of threads and statements. Refined POR methods like
that of UGemCutter (cf. Sect. 3.1) can reduce the complexity from exponential to
polynomial by exploiting the commutativity of statements.
Sequentializations like that of Lazy-CSeq (cf. Fig. 3.3) allow verifying concurrent
programs with sequential reachability algorithms. Sequentialized programs remain
human readable while preserving the complexity of concurrent programs and also
allowing a reduction in the state space.
In this thesis, we presented an approach to combine the two methods by creating
assumptions over allowed context-switches between thread simulations inside
sequentializations. In Chapter 4 we showed that the theoretical basis is solid when
it comes to reducing the amount of interleavings.
The experimental evaluation showed that the algorithm accepted a fair amount
(roughly half) of the 667 tested programs. Analysis runs with the verification tools
CBMC, CPAchecker and UAutomizer showed that our approach introduces an over-
head that prevented verification in a vast majority of tested programs. In cases where
the analysis produced a correct verdict, the sequentialized programs performed
less efficient compared to their input counterparts. POR assumptions worsened effi-
ciency even more (cf. Chapter 5), indicating that despite a few outliers, assumptions
create an overhead for verifiers.
This led us to identify great potential for optimization, especially when reducing the
amount of assumptions a verifier has to evaluate at each control location.
In future work, we want to add more support to increase the input program accep-
tance rate of our implementation. Additionally, we plan to reduce the amount of
assumptions to evaluate e.g. by grouping assumptions together into control flow
statements. Further optimizations can be done by not only checking for global ac-
cesses in the POR assumptions but for accesses to the same variable or memory
locations.

43

CHAPTER 7

Appendix

Usage. Our algorithm is currently implemented in the CPAchecker repository1

branch modular-partial-order-reduction and can be run from the root
folder of CPAchecker:

1 bin/cpachecker --mpor path/to/input_program.i

CPAchecker requires preprocessed input C files without #include statements. All
declarations from header files must be present in the input program. Preprocess
input C files if necessary with the additional --preprocess command:

1 bin/cpachecker --mpor path/to/input_program.c --preprocess

Configuration. The output sequentialization can be configured with additional
--option commands. All options are disabled by default i.e. the options only have
to be included if their value is true:

• Enable POR assumptions over global variable accesses:
1 --option analysis.algorithm.MPOR.includePOR=true

• Enable loop invariants over thread simulation variables to identify faulty value
combinations (slows down verification performance):

1 --option analysis.algorithm.MPOR.includeLoopInvariants=true

1gitlab.com/sosy-lab/software/cpachecker

45

https://gitlab.com/sosy-lab/software/cpachecker

7 Appendix

Function Name Description Explicit
Handle

pthread_create Creates a new thread.

pthread_join The calling thread waits for the
given thread to terminate.

pthread_mutex_init Initializes the given mutex.

pthread_mutex_lock The calling thread locks the given
mutex.

pthread_mutex_unlock The calling thread unlocks the given
mutex.

__VERIFIER_atomic_begin The calling threads execution is not
interrupted.

__VERIFIER_atomic_end The calling threads execution can be
interrupted again.

Table 7.1: Overview of supported pthread functions.

Error Message Example Trigger

MPOR only supports language C -

MPOR expects concurrent C program with at
least one pthread_create call

-

MPOR does not support pthread_create
calls in loops (or recursive functions)

while(1) { pthread_create

(...); }

MPOR does not support arrays of pthread ob-
jects in line ...

pthread_t ids[1];

MPOR does not support the function in line ... pthread_cond_wait(...);

MPOR does not support the pthread method
return value assignment in line ...

x = pthread_create(...);

MPOR does not support the (in)direct recursive
function in line ...

-

MPOR expects the main function and all start
routines to contain a FunctionExitNode

-

Table 7.2: Overview of input program characteristics rejected by our implementation.
Error Messages ending with "..." feature the line in which the characteristic
was found and the code of the CFA edge.

46

Abbreviation Full Name

G_varName GLOBAL_varId_varName

Li_varName LOCAL_THREADi_varId_varName

Pi_paramName PARAM_THREADi_varId_paramName

assume(const int cond) __MPOR_SEQ__assume(const int cond)

Ti_RETURN_PC_funcName __MPOR_SEQ__THREADi_RETURN_PC_funcName

Ti_ACTIVE __MPOR_SEQ__THREADi_ACTIVE

mutexName_LOCKED __MPOR_SEQ__mutexName_LOCKED

Ti_LOCKS_mutexName __MPOR_SEQ__THREADi_LOCKS_mutexName

Ti_JOINS_Tj __MPOR_SEQ__THREADi_JOINS_THREADj

ATOMIC_IN_USE __MPOR_SEQ__ATOMIC_IN_USE

Ti_BEGINS_ATOMIC __MPOR_SEQ__THREADi_BEGINS_ATOMIC

Table 7.3: Overview of variable and function name abbreviations in this thesis and
their actual names in the output sequentialization. varId starts at 0 and
is incremented for every substituted variable during the sequentialization
process to prevent naming collisions. The prefix __MPOR_SEQ__ marks
ghost elements i.e. they were not present in the input program as variables
or functions.

47

Bibliography

[1] A. Farzan, D. Klumpp, and A. Podelski, “Sound sequentialization for concur-
rent program verification,” in Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, PLDI 2022, (New
York, NY, USA), p. 506–521, Association for Computing Machinery, 2022.

[2] S. Hong, N. C. Rodia, and K. Olukotun, “On fast parallel detection of strongly
connected components (scc) in small-world graphs,” in Proceedings of the In-
ternational Conference on High Performance Computing, Networking, Storage and
Analysis, SC ’13, (New York, NY, USA), Association for Computing Machinery,
2013.

[3] O. Inverso, T. L. Nguyen, B. Fischer, S. La Torre, and G. Parlato, “Lazy-cseq:
A context-bounded model checking tool for multi-threaded c-programs,” in
2015 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp. 807–812, 2015.

[4] P. Pacheco and M. Malensek, An Introduction to Parallel Programming. Elsevier
Science, 2021.

[5] J. Shalf, “The future of computing beyond moore’s law,” Phil. Trans. R. Soc.,
2020.

[6] S. Kumar, Introduction to Parallel Programming. Cambridge University Press,
2023.

[7] B. Lewis and D. Berg, Threads Primer: A Guide to Multithreaded Programming.
SunSoft Press, 1996.

[8] J. B. Almeida, M. J. Frade, J. S. Pinto, and S. M. de Sousa, Rigorous Software
Development: An Introduction to Program Verification. Undergraduate Topics in
Computer Science, Springer London, 1 ed., 2011. Published: 04 January 2011,
Softcover ISBN: 978-0-85729-017-5, 52 b/w illustrations.

[9] S. La Torre, P. Madhusudan, and G. Parlato, “Reducing context-bounded con-
current reachability to sequential reachability,” in Computer Aided Verification
(A. Bouajjani and O. Maler, eds.), (Berlin, Heidelberg), pp. 477–492, Springer
Berlin Heidelberg, 2009.

49

Bibliography

[10] Sun Microsystems, Inc., Multithreaded Programming Guide, 2005.

[11] E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani, Model Checking and the
State Explosion Problem, pp. 1–30. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012.

[12] K. Athanasiou, P. Liu, and T. Wahl, “Unbounded-thread program verification
using thread-state equations,” in Automated Reasoning (N. Olivetti and A. Tiwari,
eds.), (Cham), pp. 516–531, Springer International Publishing, 2016.

[13] R. P. Stanley, Enumerative Combinatorics. Cambridge University Press, 2011.

[14] S. Qadeer and D. Wu, “Kiss: keep it simple and sequential,” SIGPLAN Not.,
vol. 39, p. 14–24, jun 2004.

[15] B. Fischer, O. Inverso, and G. Parlato, “Cseq: A sequentialization tool for c,” in
Tools and Algorithms for the Construction and Analysis of Systems (N. Piterman
and S. A. Smolka, eds.), (Berlin, Heidelberg), pp. 616–618, Springer Berlin
Heidelberg, 2013.

[16] O. Inverso, E. Tomasco, B. Fischer, S. La Torre, and G. Parlato, “Bounded model
checking of multi-threaded c programs via lazy sequentialization,” in Computer
Aided Verification (A. Biere and R. Bloem, eds.), (Cham), pp. 585–602, Springer
International Publishing, 2014.

[17] B. Fischer, O. Inverso, and G. Parlato, “Cseq: A concurrency pre-processor for
sequential c verification tools,” in 2013 28th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pp. 710–713, 2013.

[18] D. Beyer, “Competition on software verification - (sv-comp),” in International
Conference on Tools and Algorithms for Construction and Analysis of Systems, 2012.

[19] D. Beyer, “State of the art in software verification and witness validation: Sv-
comp 2024,” in Tools and Algorithms for the Construction and Analysis of Systems
(B. Finkbeiner and L. Kovács, eds.), (Cham), pp. 299–329, Springer Nature
Switzerland, 2024.

[20] P. Godefroid, “Partial-order methods for the verification of concurrent systems,”
in Lecture Notes in Computer Science, 1996.

[21] D. Beyer, “Software verification and verifiable witnesses,” in Tools and Algo-
rithms for the Construction and Analysis of Systems (C. Baier and C. Tinelli, eds.),
(Berlin, Heidelberg), pp. 401–416, Springer Berlin Heidelberg, 2015.

[22] D. Beyer, “Advances in automatic software verification: Sv-comp 2020,” in
Tools and Algorithms for the Construction and Analysis of Systems (A. Biere and
D. Parker, eds.), (Cham), pp. 347–367, Springer International Publishing, 2020.

[23] D. Beyer, “Software verification: 10th comparative evaluation (SV-COMP 2021),”
in Proc. TACAS (2), LNCS 12652, pp. 401–422, Springer, 2021.

50

Bibliography

[24] D. Baier, D. Beyer, P.-C. Chien, M.-C. Jakobs, M. Jankola, M. Kettl, N.-Z. Lee,
T. Lemberger, M. Lingsch-Rosenfeld, H. Wachowitz, and P. Wendler, “Software
verification with cpachecker 3.0: Tutorial and user guide (extended version),”
2024.

[25] J. Erhard, M. Bentele, M. Heizmann, D. Klumpp, S. Saan, F. Schüssele,
M. Schwarz, H. Seidl, S. Tilscher, and V. Vojdani, “Correctness witnesses for
concurrent programs: Bridging the semantic divide with ghosts (extended
version),” 2024.

[26] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C programs,”
in Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2004)
(K. Jensen and A. Podelski, eds.), vol. 2988 of Lecture Notes in Computer Science,
pp. 168–176, Springer, 2004.

[27] M. Heizmann, J. Christ, D. Dietsch, E. Ermis, J. Hoenicke, M. Lindenmann,
A. Nutz, C. Schilling, and A. Podelski, “Ultimate automizer with smtinterpol,”
in Tools and Algorithms for the Construction and Analysis of Systems (N. Piterman
and S. A. Smolka, eds.), (Berlin, Heidelberg), pp. 641–643, Springer Berlin
Heidelberg, 2013.

[28] D. Beyer, S. Löwe, and P. Wendler, “Benchmarking and resource measurement,”
in Model Checking Software (B. Fischer and J. Geldenhuys, eds.), (Cham), pp. 160–
178, Springer International Publishing, 2015.

51

	1 Introduction
	2 Background
	2.1 pthreads
	2.2 Interleaving
	2.3 Commutativity
	2.4 Total Strict Order
	2.5 Partial Order Reduction
	2.6 Sequentialization

	3 Related Work
	3.1 Ultimate GemCutter
	3.2 CSeq

	4 Approach
	4.1 Automata Transformation
	4.2 Inlining Functions
	4.3 Thread Simulation
	4.4 Modular Partial Order Reduction
	4.5 Sequentialization Errors
	4.6 Limitations

	5 Results and Discussion
	6 Conclusion and Future Work
	7 Appendix
	Bibliography

