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The Issue
1 #include <stdio.h>
2 #include <unistd.h>
3 extern char input ();
4
5 int main() {
6 char x = input();
7 if (x == ’a’) {
8 while (1) {
9 fork ();
10 }
11 } else {
12 remove("important.txt" );
13 if (access("important. txt", F_OK) != −1) {
14 return 1;
15 }
16 }
17 }

I Goal: Achieve 100% branch coverage
I But: We don’t want to use our

system to execute the test suite that
achieves that.
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Existing Solutions to Robust Execution

I Virtual Machines
I Containerization (Docker etc.)
⇒ Potentially large overhead
⇒ Manual setup
⇒ Setups consist of multiple tools
⇒ Require superuser privileges
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Our Solution
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Robust Test Execution

I Test isolation through Linux kernel features (BenchExec )
https://github.com/sosy-lab/benchexec/

I Control Groups (CGroups)
I Containers

I Each individual test execution isolated
I Protection against:

I Resource exhaustion
I File system modifications
I Dependencies between tests
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Coverage Measurements

I lcov + gcov for line coverage

I Test-Comp coverage computed through program
instrumentation GOAL_n:;

I Produced data:

I Test success
I Individual test coverage
I Accumulated test coverage (after each execution)
I Resource consumption per test execution
I .json data + .svg plot
I Reduced test suite

Thomas Lemberger LMU Munich, Germany 7 / 8



Coverage Measurements

I lcov + gcov for line coverage
I Test-Comp coverage computed through program

instrumentation GOAL_n:;

I Produced data:

I Test success
I Individual test coverage
I Accumulated test coverage (after each execution)
I Resource consumption per test execution
I .json data + .svg plot
I Reduced test suite

Thomas Lemberger LMU Munich, Germany 7 / 8



Coverage Measurements

I lcov + gcov for line coverage
I Test-Comp coverage computed through program

instrumentation GOAL_n:;

I Produced data:

I Test success
I Individual test coverage
I Accumulated test coverage (after each execution)
I Resource consumption per test execution
I .json data + .svg plot
I Reduced test suite

Thomas Lemberger LMU Munich, Germany 7 / 8



Coverage Measurements

I lcov + gcov for line coverage
I Test-Comp coverage computed through program

instrumentation GOAL_n:;

I Produced data:
I Test success

I Individual test coverage
I Accumulated test coverage (after each execution)
I Resource consumption per test execution
I .json data + .svg plot
I Reduced test suite

Thomas Lemberger LMU Munich, Germany 7 / 8



Coverage Measurements

I lcov + gcov for line coverage
I Test-Comp coverage computed through program

instrumentation GOAL_n:;

I Produced data:
I Test success
I Individual test coverage

I Accumulated test coverage (after each execution)
I Resource consumption per test execution
I .json data + .svg plot
I Reduced test suite

Thomas Lemberger LMU Munich, Germany 7 / 8



Coverage Measurements

I lcov + gcov for line coverage
I Test-Comp coverage computed through program

instrumentation GOAL_n:;

I Produced data:
I Test success
I Individual test coverage
I Accumulated test coverage (after each execution)

I Resource consumption per test execution
I .json data + .svg plot
I Reduced test suite

Thomas Lemberger LMU Munich, Germany 7 / 8



Coverage Measurements

I lcov + gcov for line coverage
I Test-Comp coverage computed through program

instrumentation GOAL_n:;

I Produced data:
I Test success
I Individual test coverage
I Accumulated test coverage (after each execution)
I Resource consumption per test execution

I .json data + .svg plot
I Reduced test suite

Thomas Lemberger LMU Munich, Germany 7 / 8



Coverage Measurements

I lcov + gcov for line coverage
I Test-Comp coverage computed through program

instrumentation GOAL_n:;

I Produced data:
I Test success
I Individual test coverage
I Accumulated test coverage (after each execution)
I Resource consumption per test execution
I .json data + .svg plot

I Reduced test suite

Thomas Lemberger LMU Munich, Germany 7 / 8



Coverage Measurements

I lcov + gcov for line coverage
I Test-Comp coverage computed through program

instrumentation GOAL_n:;

I Produced data:
I Test success
I Individual test coverage
I Accumulated test coverage (after each execution)
I Resource consumption per test execution
I .json data + .svg plot
I Reduced test suite

Thomas Lemberger LMU Munich, Germany 7 / 8



TestCov available open source (Apache 2.0):
https://gitlab.com/sosy-lab/software/test-suite-validator/
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Test-Suite Format

I xml-based
I Two components:

1. metadata.xml
2. one xml-file per test case

I Sequence of test inputs
I Handled as zip archive
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Metadata

<?xml version="1.0"?>
<!DOCTYPE test−metadata PUBLIC "+//IDN sosy−lab.org//DTD test−format test−metadata 1.1//EN" "https://sosy−lab.org/test−format/test−metadata−1.1.dtd">
<test−metadata>
<sourcecodelang>C</sourcecodelang>
<producer>Testsuite Validator v2.0</producer>
< specification >CHECK(FQL(cover EDGES(@CONDITIONEDGE)))</specification>
<programfile>example.c</programfile>
<programhash>eeecda9cbf27c43c9017fa00dd900c19a5ec18d46303f59a6e0357db78c33849</programhash>
<entryfunction>main</entryfunction>
<architecture>32bit</architecture>
< inputtestsuitefile >original−suite. zip</ inputtestsuitefile >
<inputtestsuitehash>11911d658dcfbf8501390bf0faa96eb193b11bb1</inputtestsuitehash>
<creationtime>2019−06−19T14:17:34Z</creationtime>

</test−metadata>
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Test Case

<?xml version="1.0"?>
<!DOCTYPE testcase PUBLIC "+//IDN sosy−lab.org//DTD test−format testcase 1.1//EN" "https://sosy−lab.org/test−format/testcase−1.1.dtd">
<testcase>
<input>’b’</input>
<input>10</input>
<input>0x0f</input>

</testcase>
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