
TestCov
Test Execution and Coverage Measurement

in Test-Comp

Thomas Lemberger

LMU Munich, Germany

Thomas Lemberger LMU Munich, Germany 1 / 8



Our Starting Point

Program

Coverage
Criterion

Test
Suite
Test
Suite
Test
Suite

Test
Execution

Coverage

Thomas Lemberger LMU Munich, Germany 2 / 8



The Issue
1 #include <stdio.h>
2 #include <unistd.h>
3 extern char input ();
4
5 int main() {
6 char x = input();
7 if (x == ’a’) {
8 while (1) {
9 fork ();
10 }
11 } else {
12 remove("important.txt" );
13 if (access("important. txt", F_OK) != −1) {
14 return 1;
15 }
16 }
17 }

I Goal: Achieve 100% branch coverage
I But: We don’t want to use our

system to execute the test suite that
achieves that.

Thomas Lemberger LMU Munich, Germany 3 / 8



The Issue
1 #include <stdio.h>
2 #include <unistd.h>
3 extern char input ();
4
5 int main() {
6 char x = input();
7 if (x == ’a’) {
8 while (1) {
9 fork ();
10 }
11 } else {
12 remove("important.txt" );
13 if (access("important. txt", F_OK) != −1) {
14 return 1;
15 }
16 }
17 }

I Goal: Achieve 100% branch coverage
I But: We don’t want to use our

system to execute the test suite that
achieves that.

Thomas Lemberger LMU Munich, Germany 3 / 8



The Issue
1 #include <stdio.h>
2 #include <unistd.h>
3 extern char input ();
4
5 int main() {
6 char x = input();
7 if (x == ’a’) {
8 while (1) {
9 fork ();
10 }
11 } else {
12 remove("important.txt" );
13 if (access("important. txt", F_OK) != −1) {
14 return 1;
15 }
16 }
17 }

I Goal: Achieve 100% branch coverage
I But: We don’t want to use our

system to execute the test suite that
achieves that.

Thomas Lemberger LMU Munich, Germany 3 / 8



The Issue
1 #include <stdio.h>
2 #include <unistd.h>
3 extern char input ();
4
5 int main() {
6 char x = input();
7 if (x == ’a’) {
8 while (1) {
9 fork ();
10 }
11 } else {
12 remove("important.txt" );
13 if (access("important. txt", F_OK) != −1) {
14 return 1;
15 }
16 }
17 }

I Goal: Achieve 100% branch coverage
I But: We don’t want to use our

system to execute the test suite that
achieves that.

Thomas Lemberger LMU Munich, Germany 3 / 8



Existing Solutions to Robust Execution

I Virtual Machines
I Containerization (Docker etc.)
⇒ Potentially large overhead
⇒ Manual setup
⇒ Setups consist of multiple tools
⇒ Require superuser privileges

Thomas Lemberger LMU Munich, Germany 4 / 8



Our Solution

Program
under
Test

Coverage
Criterion

Test
Suite
Test
Suite
Test
Suite

TestCov

Coverage
Statistics

Reduced
Test
Suite

Thomas Lemberger LMU Munich, Germany 5 / 8



Robust Test Execution

I Test isolation through Linux kernel features (BenchExec )
https://github.com/sosy-lab/benchexec/

I Control Groups (CGroups)
I Containers

I Each individual test execution isolated
I Protection against:

I Resource exhaustion
I File system modifications
I Dependencies between tests

Thomas Lemberger LMU Munich, Germany 6 / 8

https://github.com/sosy-lab/benchexec/


Robust Test Execution

I Test isolation through Linux kernel features (BenchExec )
https://github.com/sosy-lab/benchexec/
I Control Groups (CGroups)

I Containers
I Each individual test execution isolated
I Protection against:

I Resource exhaustion
I File system modifications
I Dependencies between tests

Thomas Lemberger LMU Munich, Germany 6 / 8

https://github.com/sosy-lab/benchexec/


Robust Test Execution

I Test isolation through Linux kernel features (BenchExec )
https://github.com/sosy-lab/benchexec/
I Control Groups (CGroups)
I Containers

I Each individual test execution isolated
I Protection against:

I Resource exhaustion
I File system modifications
I Dependencies between tests

Thomas Lemberger LMU Munich, Germany 6 / 8

https://github.com/sosy-lab/benchexec/


Robust Test Execution

I Test isolation through Linux kernel features (BenchExec )
https://github.com/sosy-lab/benchexec/
I Control Groups (CGroups)
I Containers

I Each individual test execution isolated

I Protection against:

I Resource exhaustion
I File system modifications
I Dependencies between tests

Thomas Lemberger LMU Munich, Germany 6 / 8

https://github.com/sosy-lab/benchexec/


Robust Test Execution

I Test isolation through Linux kernel features (BenchExec )
https://github.com/sosy-lab/benchexec/
I Control Groups (CGroups)
I Containers

I Each individual test execution isolated
I Protection against:

I Resource exhaustion
I File system modifications
I Dependencies between tests

Thomas Lemberger LMU Munich, Germany 6 / 8

https://github.com/sosy-lab/benchexec/


Robust Test Execution

I Test isolation through Linux kernel features (BenchExec )
https://github.com/sosy-lab/benchexec/
I Control Groups (CGroups)
I Containers

I Each individual test execution isolated
I Protection against:

I Resource exhaustion

I File system modifications
I Dependencies between tests

Thomas Lemberger LMU Munich, Germany 6 / 8

https://github.com/sosy-lab/benchexec/


Robust Test Execution

I Test isolation through Linux kernel features (BenchExec )
https://github.com/sosy-lab/benchexec/
I Control Groups (CGroups)
I Containers

I Each individual test execution isolated
I Protection against:

I Resource exhaustion
I File system modifications

I Dependencies between tests

Thomas Lemberger LMU Munich, Germany 6 / 8

https://github.com/sosy-lab/benchexec/


Robust Test Execution

I Test isolation through Linux kernel features (BenchExec )
https://github.com/sosy-lab/benchexec/
I Control Groups (CGroups)
I Containers

I Each individual test execution isolated
I Protection against:

I Resource exhaustion
I File system modifications
I Dependencies between tests

Thomas Lemberger LMU Munich, Germany 6 / 8

https://github.com/sosy-lab/benchexec/


Coverage Measurements

I lcov + gcov for line coverage

I Test-Comp coverage computed through program
instrumentation GOAL_n:;

I Produced data:

I Test success
I Individual test coverage
I Accumulated test coverage (after each execution)
I Resource consumption per test execution
I .json data + .svg plot
I Reduced test suite

Thomas Lemberger LMU Munich, Germany 7 / 8



Coverage Measurements

I lcov + gcov for line coverage
I Test-Comp coverage computed through program

instrumentation GOAL_n:;

I Produced data:

I Test success
I Individual test coverage
I Accumulated test coverage (after each execution)
I Resource consumption per test execution
I .json data + .svg plot
I Reduced test suite

Thomas Lemberger LMU Munich, Germany 7 / 8



Coverage Measurements

I lcov + gcov for line coverage
I Test-Comp coverage computed through program

instrumentation GOAL_n:;

I Produced data:

I Test success
I Individual test coverage
I Accumulated test coverage (after each execution)
I Resource consumption per test execution
I .json data + .svg plot
I Reduced test suite

Thomas Lemberger LMU Munich, Germany 7 / 8



Coverage Measurements

I lcov + gcov for line coverage
I Test-Comp coverage computed through program

instrumentation GOAL_n:;

I Produced data:
I Test success

I Individual test coverage
I Accumulated test coverage (after each execution)
I Resource consumption per test execution
I .json data + .svg plot
I Reduced test suite

Thomas Lemberger LMU Munich, Germany 7 / 8



Coverage Measurements

I lcov + gcov for line coverage
I Test-Comp coverage computed through program

instrumentation GOAL_n:;

I Produced data:
I Test success
I Individual test coverage

I Accumulated test coverage (after each execution)
I Resource consumption per test execution
I .json data + .svg plot
I Reduced test suite

Thomas Lemberger LMU Munich, Germany 7 / 8



Coverage Measurements

I lcov + gcov for line coverage
I Test-Comp coverage computed through program

instrumentation GOAL_n:;

I Produced data:
I Test success
I Individual test coverage
I Accumulated test coverage (after each execution)

I Resource consumption per test execution
I .json data + .svg plot
I Reduced test suite

Thomas Lemberger LMU Munich, Germany 7 / 8



Coverage Measurements

I lcov + gcov for line coverage
I Test-Comp coverage computed through program

instrumentation GOAL_n:;

I Produced data:
I Test success
I Individual test coverage
I Accumulated test coverage (after each execution)
I Resource consumption per test execution

I .json data + .svg plot
I Reduced test suite

Thomas Lemberger LMU Munich, Germany 7 / 8



Coverage Measurements

I lcov + gcov for line coverage
I Test-Comp coverage computed through program

instrumentation GOAL_n:;

I Produced data:
I Test success
I Individual test coverage
I Accumulated test coverage (after each execution)
I Resource consumption per test execution
I .json data + .svg plot

I Reduced test suite

Thomas Lemberger LMU Munich, Germany 7 / 8



Coverage Measurements

I lcov + gcov for line coverage
I Test-Comp coverage computed through program

instrumentation GOAL_n:;

I Produced data:
I Test success
I Individual test coverage
I Accumulated test coverage (after each execution)
I Resource consumption per test execution
I .json data + .svg plot
I Reduced test suite

Thomas Lemberger LMU Munich, Germany 7 / 8



TestCov available open source (Apache 2.0):
https://gitlab.com/sosy-lab/software/test-suite-validator/

Thomas Lemberger LMU Munich, Germany 8 / 8

https://gitlab.com/sosy-lab/software/test-suite-validator/


Appendix

Thomas Lemberger LMU Munich, Germany 9 / 8



References

[1] D. Beyer, S. Löwe, and P. Wendler.
Reliable benchmarking: Requirements and solutions.
Int. J. Softw. Tools Technol. Transfer, 21(1):1–29, 2019.

Thomas Lemberger LMU Munich, Germany 10 / 8



Test-Suite Format

I xml-based
I Two components:

1. metadata.xml
2. one xml-file per test case

I Sequence of test inputs
I Handled as zip archive

Thomas Lemberger LMU Munich, Germany 11 / 8



Metadata

<?xml version="1.0"?>
<!DOCTYPE test−metadata PUBLIC "+//IDN sosy−lab.org//DTD test−format test−metadata 1.1//EN" "https://sosy−lab.org/test−format/test−metadata−1.1.dtd">
<test−metadata>
<sourcecodelang>C</sourcecodelang>
<producer>Testsuite Validator v2.0</producer>
< specification >CHECK(FQL(cover EDGES(@CONDITIONEDGE)))</specification>
<programfile>example.c</programfile>
<programhash>eeecda9cbf27c43c9017fa00dd900c19a5ec18d46303f59a6e0357db78c33849</programhash>
<entryfunction>main</entryfunction>
<architecture>32bit</architecture>
< inputtestsuitefile >original−suite. zip</ inputtestsuitefile >
<inputtestsuitehash>11911d658dcfbf8501390bf0faa96eb193b11bb1</inputtestsuitehash>
<creationtime>2019−06−19T14:17:34Z</creationtime>

</test−metadata>

Thomas Lemberger LMU Munich, Germany 12 / 8



Test Case

<?xml version="1.0"?>
<!DOCTYPE testcase PUBLIC "+//IDN sosy−lab.org//DTD test−format testcase 1.1//EN" "https://sosy−lab.org/test−format/testcase−1.1.dtd">
<testcase>
<input>’b’</input>
<input>10</input>
<input>0x0f</input>

</testcase>

Thomas Lemberger LMU Munich, Germany 13 / 8


	Appendix

