
Contract-LIB
A Common Interchange Format

for Software System Specification

Gidon Ernst

Presentation at the Alpine Verification Meeting 2024, Freiburg im Breisgau
Draft: https://www.sosy-lab.org/people/ernst/
Code: https://github.com/gernst/contract-lib
To appear at SpecifyThis @ ISoLA 2024

Wolfram Pfeifer
Mattias Ulbrich

https://www.sosy-lab.org/people/ernst/
https://github.com/gernst/contract-lib

2/17Build-a-Deductive-Verifier Checklist

💡 have a new cool idea ✓

🍵 target programming language ✓

 ★ foundational methodology ✓

∀∃ mathematical specification language ✓

(think: a tool like Dafny)

3/17Build-a-Deductive-Verifier Checklist

💡 have a new cool idea ✓

🍵 target programming language ✓

 ★ foundational methodology ✓

∀∃ mathematical specification language ✓

 have fun verifying programs

4/17Build-a-Deductive-Verifier Checklist

💡 have a new cool idea ✓

🍵 target programming language ✓

 ★ foundational methodology ✓

∀∃ mathematical specification language ✓

📑 support the standard library ... ⌛
🔌 share verified code / specs across tools ... !?

🔌 share proof artifacts across tools ... !?

🔌 connect proofs across languages ... !?

hindering progress
tow

ards “real w
orld”

5/17

6/17Tool Interoperability

● On the wish-list since forever [e.g. Rushby 2005]
● Conflict

– innovation yay cool research! [Separation Logic, ...]

– maturity yay practical impact! [De Gouw+ 2015]

● Landscape of deductive verifiers
– 🔒 tool lock-in, reinventing the wheel

– ⪿ standards are rather complex [JML, ACSL]

key challenge: find simple common ground

7/17First Attempt: ArrayList in Dafny

class ArrayList<T> {

 var data: array<T>

 var length: int

 method add(last: T)

 ensures length == old(length) + 1

 ensures data[old(length)] == last

 ensures forall i :: 0 <= i < old(length) ==>

 data[i] == old(data[i])

}

8/17First Attempt: ArrayList in Dafny

class ArrayList<T> {

 var data: array<T>

 var length: int

 method add(last: T)

 ensures length == old(length) + 1

 ensures data[old(length)] == last

 ensures forall i :: 0 <= i < old(length) ==>

 data[i] == old(data[i])

}

bad abstraction
● leak implementation details
● leak language semantics
● leak verification details

9/17Software Verification (Principled Approach)

data abstractions
(sequences, sets,
maps, trees, ...)

data structures
pointers etc, ...

implementation specification

laws of
programming

10/17Second Attempt: ArrayList in Dafny

class ArrayList<T> {

 var data: array<T>

 var length: int

 ghost var content: seq<T>

 method add(last: T)

 ensures content == old(content) + [last]

 requires valid()

 ensures valid()

 predicate valid() { ... }

}

● behavior: easy & intuitive
● implementation as well as

abstraction mechanism is
private to the class

11/17Key Observation

objects

data abstractions
(sequences, sets,
maps, trees, ...)

data structures
pointers etc, ...

laws of
programming

complex & difficult
innovation happens here

 👻 well-understood
stable across tools

12/17Lesson from SMT-LIB etc...:
Have a clear &
well-defined scope

objects

data abstractions
(sequences, sets,
maps, trees, ...)

data structures
pointers etc, ...

laws of
programming

 👻 well-understood
stable across tools

13/17Contract-LIB: Contribution

● identify simple common ground
– behaviors of well-encapsulated stateful components / OOP

– be independent of language, method, tool

– but be universally compatible (... maybe not with Rust)

14/17Contract-LIB: Contribution

● identify simple common ground
– behaviors of well-encapsulated stateful components / OOP

– be independent of language, method, tool

– but be universally compatible (... maybe not with Rust)

● define easy-to-adopt technical realization: SMT-LIB with
– old, par, standardize extra theories (Map, Seq, Set)

– declare-abstractions data model of abstract state

– define-contract behavioral model for methods

15/17ArrayList Interface in Contract-LIB

(declare-abstractions

 ((ArrayList 1))

 ((par (T)

 ((ArrayList

 (ArrayList.content (Seq T)))))

(define-contract

 ArrayList.add

 (par (T) ((this (inout ArrayList)) (last (in T)))

 ((true

 (= (ArrayList.content this)

 (seq.++ (old (ArrayList.content this))

 (seq.unit last))))))

16/17Summary & Outlook

Contract-LIB: define and formalize common ground of specifications
across deductive verification tools

● Ongoing: Tool-chain (Java) + Adoption Guidelines
● Outlook: integrate with tools & gather experience

– share specs / verified components across tools

– develop a common repository of case-studies and standard libraries

● Paper: design discussion, examples, semantics, integration
guideline, related work (MoXI, CHC, Boogie, Why3, ...)

 ❤️�Acknowledgement: Thanks to all participants in the intense
discussions at Dagstuhl and Lorentz seminars

17/17Integration Workflow

● data types
● user-defined

functions
● abstractions
● contracts

Contract-LIB
specification

● signatures
of operations

Language-specific

● fully precise
behavioral model

● template for coupling
& framing invariants

Language- & tool-
specific program
annotations

multiway
import / export

VerCors, KeY, Dafny, Viper, Why3, ...

