
Multi-Processing for DSSThomas Lemberger

Multi-Processing for
Distributed Summary Synthesis

Matthias Kettl, Thomas Lemberger, and Akshay Warrier

Multi-Processing for DSSThomas Lemberger

Multi-Processing for Distributed Summary Synthesis

The next evolution of Distributed Summary Synthesis (DSS), for multi-processing.
Based on microservice technology.
Backend uses original DSS implementation in CPAchecker.

➔ Mitigates resource limits
➔ Simpler and more flexible in its setup
➔ Enables huge set of existing tooling

2 / 15

Multi-Processing for DSSThomas Lemberger

Issues with DSS

● On average, DSS runs 100 concurrent worker threads (cf. supplementary webpage)

● DSS requires more memory than traditional predicate abstraction (cf. paper, RQ 4)

● But DSS is a single, multi-threaded Java process
○ Limit on CPU cores
○ Limit on available memory

3 / 15

https://www.sosy-lab.org/research/distributed-summary-synthesis/raw/results/merged.html#/
https://dl.acm.org/doi/10.1145/3660766

Multi-Processing for DSSThomas Lemberger

Advantages of microservice architecture

● Java microservices are popular ➔ lots of tooling and support
● Frameworks provide lots of functionality out of the box

Examples:

● Quarkus automatically generates network communication and glue code from
interface definition

● Minikube provides quick infrastructure setup based on small yaml file
● Linkerd injects load balancing and basic profiling with a single command-line
● Prometheus collects, persists and visualizes profiling data without

configuration

4 / 15

Multi-Processing for DSSThomas Lemberger

Distributed Summary Synthesis

5 / 15

Multi-Processing for DSSThomas Lemberger

Distributed Summary Synthesis

6 / 15

● Workers maintain precondition and violation condition for their block
● Workers decide when to re-analyze

 ➔ Behavior is distributed among workers

 🗲 Inflexible dependence between workers and blocks

Multi-Processing for DSSThomas Lemberger

Multi-Processing for Distributed Summary Synthesis

7 / 15

● Worker is fully stateless, not related to any block
● Controller manages conditions for all blocks
● Controller schedules the verification analyses for all blocks

Multi-Processing for DSSThomas Lemberger

Multi-Processing for Distributed Summary Synthesis

8 / 15

W
or

ke
r

● Worker is fully stateless, not related to any block
● Controller manages conditions for all blocks
● Controller schedules the verification analyses for all blocks

Multi-Processing for DSSThomas Lemberger

Controller

9 / 15

Conditions

StartRequest {
 string programCode
 string specification
 bytes blockGraph
}

VerificationRequest {
 int64 timepoint
 string programCode
 string specification
 bytes blockGraph
 string blockId
 Condition[] oldMessages
 Condition[] newMessages
}

VerificationResponse {
 int64 timepoint
 Condition[] messages
}

W
or

ke
r

● Asynchronous communication
● New block verifications are triggered

based on incoming messages and
block graph

● Current schedule: FIFO

Multi-Processing for DSSThomas Lemberger

Worker

10 / 15

● Uses CPA-Daemon in backend
● Translates block verification requests into CPA-Daemon calls/CPAchecker options
● Other translation schemes/verification engines possible

Multi-Processing for DSSThomas Lemberger

Worker: CPAchecker Backend

11 / 15

● We extended CPAchecker to run a single-block analysis for DSS
 ➔ JSON exports for condition messages and block graph

blocks.json:
{
 "L1": {
 "predecessors": ["L0", "L2"],
 "successors": ["L2", "L3"],
 "startNode": 5,
 "endNode": 9,
 "edges": [[5, 8], [8, 9]]
 },
 // … snip …
}

Multi-Processing for DSSThomas Lemberger 12 / 15

● We extended CPAchecker to run a single-block analysis for DSS
 ➔ JSON exports for condition messages and block graph
 ➔ Configuration options to trigger single-block run

$ bin/cpachecker \
 --predicateAnalysis-block \
 --option distributedSummaries.importDecomposition=blocks.json \
 --option distributedSummaries.spawnWorkerForId=L1 \
 --option distributedSummaries.knownConditions=L2-vCond.json \
 --option distributedSummaries.newConditions=L0-postCond.json \
 program.i

Worker: CPAchecker Backend

Multi-Processing for DSSThomas Lemberger

Technology

● Scheduler and Worker implemented as Kotlin Quarkus services
● Communication through gRPC (procedure-based communication)
● Load-balancing with linkerd
● Orchestration with kubernetes

13 / 15

Multi-Processing for DSSThomas Lemberger

Current State

● Experiments are work in progress
● Example: ldv-linux-3.4-simple/...leds--leds-regulator... with 91 blocks
● Message size is huge because we always send everything

○ Verification request + response: 150–2000 kB each
○ Total: 355MB
○ The message size is not a bottleneck so far

● Redundant work because of poor analysis order: 1037 runs over 91 blocks
● Redundant work in CFA creation and parsing

○ Make CPAchecker directly import CFA, send that instead of program code
○ Use CPA-Daemon backend that reuses CFA

● Next steps: Visualization of work process, smarter controller

14 / 15

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/3d65c76d8521ef5bc79077a31e7b7e41dd077309/c/ldv-linux-3.4-simple/43_1a_cilled_ok_nondet_linux-43_1a-drivers--leds--leds-regulator.ko-ldv_main0_sequence_infinite_withcheck_stateful.cil.out.i

Multi-Processing for DSSThomas Lemberger

W
or

ke
r

Conclusion

● Next Evolution of Distributed Summary Synthesis (DSS)
● CPAchecker as verification engine in the backend
● Enables multi-processing
● Simplifies DSS architecture
● Base for future exploration and development

15 / 15

