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ABSTRACT

Verifiers export violation witnesses, which help independent valida-

tors to confirm a reported specification violation. It is assumed that

violation witnesses are helpful if they are very precise: ideally, they

should describe a single program path for the validator to check.

But we claim that this leads verifiers to produce large, detailed wit-

nesses that include a lot of unnecessary information that actually

hinders validation. We reduce violation witnesses with automated

fault localization to only that information which fault localization

suspects as fault. We performed a large experimental evaluation

on the witnesses produced in the International Competition on

Software Verification (SV-COMP 2023) to explore the effect of our

reduction. Our experiments show that the witnesses reduced using

our approach shrink considerably and can be confirmed better.
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1 INTRODUCTION

When a formal software verifier reports an alarm, it produces a

violation witness [6] to increase the confidence in its result. A vi-

olation witness describes a subset of program paths of which at

least one contains the reported specification violation. This helps

to reason about the alarm and allows to validate the alarm. All

participants of the International Competition on Software Verifica-

tion (SV-COMP) [3] produce such violation witnesses.

Contrary to a test case, violation witnesses are hardly readable

for humans and can grow to thousands of lines. Additionally, we

observe that witnesses contain unnecessary states and assumptions.

We solve these problems through fault localization: Given a vio-

lation witness, we reconstruct a potential error path, apply fault

localization to get suspects for faults along the path, and delete
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Figure 1: Workflow of fault localization on violation wit-

nesses; after creating the product automaton of specifica-

tion 𝜙 , witness𝑊 , and program 𝑃 , we apply fault localization

on the obtained error path 𝑐𝑒𝑥𝑊 to find suspects 𝑓𝐺 ; these are

used to reduce the violation witness𝑊 to𝑊 ′

all edges that are deemed irrelevant from the witness. Figure 1

illustrates the workflow of our approach.

Related Work. Many fault-localization techniques exist [1, 10, 13,

14, 17]. Other approaches [5, 11, 15, 16] provide step-by-step simu-

lators for error paths. We reduce the size of witnesses to relevant

information beyond input values. This works on witnesses that miss

input values, and makes simulators focus on relevant information.

2 FAULT LOCALIZATION ON VIOLATION

WITNESSES

Program Representation. Our implementation and experiments

work on GNU C programs. For presentation, we consider an im-

perative, sequential programming language with two types of op-

erations: assign operation (x = x + 1) and assume operation

([x <= 0]). Ops is the set of all valid operations. We represent pro-

grams as control-flow automata (CFA). A CFA (𝐿, 𝑙0,𝐺) consists of
program locations 𝐿, initial location 𝑙0 ∈ 𝐿 and edges𝐺 = 𝐿×Ops×𝐿.
Fault Localization. A suspect is a set of program lines that, to-

gether, may be responsible for a program error. Given a feasible

error path that ends in a program error, fault localization deter-

mines a finite set F = {𝑓0, 𝑓1, . . . , 𝑓𝑛} of suspects. All three different
fault-localization techniques that we consider work on error paths

with negated final assumption, yielding an infeasible error path:

MaxSat [14] finds the maximum satisfiable subsets of the infeasible

error path and returns the complement as suspects.MinUnsat com-

putes minimal unsat cores as suspects. Unsat returns an arbitrary

unsat core and serves as baseline in our experiments.

Violation Witness. A violation witness describes program ex-

ecutions of which at least one leads to a specification violation

by restricting the set of all possible program executions through

source-code guards and state-space guards: Source-code guards re-

strict the control flow, and state-space guards restrict the potential

program states. A witness validator [6] checks whether a violation

witness describes any program execution that reaches the claimed

specification violation. If it does, the violation witness is confirmed.
If it does not, the violation witness is rejected.
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Table 1: Remaining transitions after reduction with rall

MaxSat MinUnsat Unsat

Mean 45.92 % 45.47 % 42.92 %

Median 66.62 % 66.71 % 40.81 %
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Figure 2: Change of confirmation rate of MetaVal with rall
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Figure 3: Change of confirm. rate of UAutomizer with rstate

Our Witness Reduction. Figure 1 illustrates the workflow of our

approach. Given a program 𝑃 , a violation witness𝑊 , and a specifica-

tion𝜑 , we build the product automaton, extract the error path 𝑐𝑒𝑥𝑊 ,

run fault localization on it, and produce a set of suspects. We then

take the suspects and the original witness to obtain the reduced

witness𝑊 ′
. A transition is irrelevant if it is not part of the suspects.

We experiment with three reduction strategies: Strategy rall deletes
all irrelevant edges that contain no information about program

branches. Strategy rstate deletes irrelevant state-space guards and
keeps all source-code guards. Strategy rmatch turns irrelevant state-

space guards into trivial 𝑡𝑟𝑢𝑒 state-space guards. The witnesses still

steer the validation. We proved that all three strategies are sound.

3 EVALUATION

Experiment Setup.We conduct the experiments onmachines with

an Intel Xeon E3-1230 v5 @ 3.40GHz 8-core processor and 33GB

memory, limited to 2 cores and 7GB of memory. The timeout for

validation is set to 90 s. This aligns with the SV-COMP 2023 setup.

We use all violation witnesses [4] that were produced by 14 non-

hors-concours verifiers on 3 225 non-recursive unsafe verification

tasks with property unreach-call of SV-COMP 2023. For witness

reduction, we use CPAchecker in revision 44 191 and our tool Flow
1

in revision cc5e4f8d. For witness validation, we use four validators

from SV-COMP 2023: CPAchecker [7], UAutomizer [12], MetaVal [9],

and Symbiotic-Witch [2]. The presented data exclude witnesses for

which the respective fault-localization approach did not work.

1
https://gitlab.com/sosy-lab/software/fault-localization-on-witnesses

Results. With reduction rall, we decrease the number of transi-

tions in witnesses to about 45 % with MaxSat and MinUnsat, and

to 43% with Unsat—on average, across the three fault localiza-

tion techniques (see Table 1). We exemplarily show data for the

validators MetaVal and UAutomizer after applying rall and rstate, re-
spectively (Figs. 2 and 3). Our reduction techniques has positive

and negative effects. However, up to 32% more witnesses can be

confirmed after reduction.

4 CONCLUSION

Applying fault localization to violation witnesses is an effective

and sound way to increase the confirmation rate and to lower the

number of unnecessary transitions in the witness automaton. Next

to boosting the performance of validators, our approach makes

witnesses easier to store and comprehend.

Data-Availability Statement. The experiment setup and all ex-

perimental data are archived and available at Zenodo [8].
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