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Abstract—An essential step towards collective intelligence in
systems comprised of multiple independent and autonomous
agents is that individual decision-makers are capable of acting
cooperatively. Cooperation is especially challenging in environ-
ments where collective and individual rationality diverge, like in
the Prisoner’s Dilemma (PD), which is often used to test whether
algorithms are capable of circumventing the single non-optimal
Nash equilibrium. In this paper, we extend the approach “Learn-
ing to Incentivize other Learning Agents” in two ways: 1. We
analyze the impact of the payoff matrices on incentive updates,
as different payoff matrices could accelerate or decelerate the
growth of incentives. 2. We adapt the concept of the market from
“Action Markets in Deep Multi-Agent Reinforcement Learning”
to iterated PD games as to trade incentives, i.e., the final revenue
of the agent is the game revenue minus the incentive it provided,
and propose (sufficient) conditions for reaching stable two-way
cooperation under specific assumptions.

Index Terms—Prisoner’s Dilemma, Cooperation, Incentivizing,
Reinforcement Learning

I. INTRODUCTION

Numerous applications critically depend on the decision-
makers’ ability to behave cooperatively. Examples are au-
tonomous vehicles [1], smart clouds, and more generally,
ensembles [2] and collective adaptive systems [3]. Such sys-
tems comprise heterogeneous decision-makers and require the
ability that individuals can act in the general interest to assure
that their decisions do not lead to dysfunctional or even catas-
trophic system behavior. Despite that, there is evidence that
independently trained agents tend to act defectively or develop
overly greedy strategies, particularly when shared resources
are scarce [4]. Such behavior might have fatal consequences
in scenarios with depletable resources where greediness gives
rise to the tragedy of the commons and eventually might lead
to the total exhaustion of resources [5]. This raises the question
of how independently trained agents with individual goals and
objectives can be incentivized to make collectively desirable
decisions.

To address this question, in this work, we apply meth-
ods from the field of reinforcement learning (RL) to model
(boundedly) rational decision-making of individual agents.
After reinforcement learning for individual agents has been
extensively studied, more and more researchers are focusing
on how cooperation can be maintained for maximum wel-
fare in multi-agent environments [6]. Game-theory and social
dilemma are inevitable topics in this discussion. Humans have
difficulty deciding in a social dilemma situation, as individuals
need to choose between increasing their benefits at the cost

of the overall good and giving up some of their individual
benefits to maximize the overall payoffs. In a social dilemma
like the Prisoner’s Dilemma (PD), the simple equilibrium is
continuous mutual betrayal. Bó and Fréchette [7] conducted 18
experimental sessions with 266 participants, where the simple
PD game is played repeatedly with a given probability of
continuation. These experiments showed that the evolution
of cooperation is independent of experience gained by the
subjects, and cooperation may not prevail even when it is a
possible equilibrium.

Inspired by humans incentivizing others to influence their
behavior, “learning to incentivize others” (LIO) via inter-agent
incentivization was proposed by Yang et al. [8]. LIO allows
agents to give rewards directly to others in a multi-agent
environment. Agents also learn their incentive functions by
considering the recipients’ reactions. The emergence of stable
cooperation in this setup was analyzed in an iterated PD (IPD)
with a particular payoff matrix. Agents have the memory of
the last iteration, including probabilities of cooperation as
well as incentives provided by the opponent. Based on this
observation, each agent’s policy and incentive function are
updated using gradient ascent. They proved that two LIO
agents converge to mutual cooperation.

Due to the particular payoff matrix used in [8], incentives
increase or decrease at a fixed rate regardless of agents’ current
willingness to cooperate. Therefore, some terms related to
the payoff matrix in the update equations are eliminated. In
addition, agents are not required to “pay” incentives in the
LIO formulation. That means agents can create new value
by incentivization rather than transferring utility in the sense
of a market. With these “unpaid” incentives, the incentives
provided could be greater than the expected benefits, and
because of the loose restrictions on the scope of incentives, the
continuously increasing incentives for cooperation will make
mutual cooperation (CC) a global Nash equilibrium after a
certain time.

In this work, we tackle these shortcomings of the LIO setup
by using generic payoff matrices for the IPD in our analysis
and requiring agents to “pay” for any incentives they provide
to others. We make the following contributions:

• We provide a formal description of the IPD with paid
incentives with parametrized payoff matrices.

• We analyze convergence to stable cooperation in IPD with
paid incentives.



• Our main theorem provides sufficient conditions required
for stable two-way cooperation, or the lack thereof, under
specific assumptions.

• We support our theoretical findings with empirical results
from numerical experiments.

The paper is structured as follows: Section II introduces related
work on learning to collaborate. In Section III, we formalize
the IPD with paid incentives and prove our main theorem.
Section IV contains empirical results in support of our theory.
Finally, Section V concludes and points to directions of further
work.

II. RELATED WORK

The question of emerging cooperation between independent
decision-makers has been historically addressed in game-
theory. Cooperative AI [6] complements this field by utilizing
artificial intelligence that allows to analyze complex scenarios
for which game-theoretic models are hardly applicable. One
line of cooperative AI uses machine learning methods to
analyze the dynamics in complex multi-agent systems. Perolat
et al. [9] apply reinforcement learning to estimate equilib-
ria in common-pool resource domains where temporal and
spatial aspects make theoretic models inapplicable. Also in
this line of work, Leibo et al. [4] extend social dilemmas to
bring them closer towards real-world situations and find that
independently trained agents tend to become less cooperative
the scarcer shared resources become. Other approaches aim at
developing cooperative algorithms, e.g., that resemble proven
game-theoretic strategies. Lerer and Peysakhovich [10] intro-
duce a method that learns the tit-for-tat strategy. This strategy
is considered cooperative but also has other intriguing features
like forgiving without being exploitable [11].

More recently, different peer incentivization mechanisms
have been presented that rely on the direct exchange of
rewards to promote cooperation among independent agents.
One approach called action trading lets agents exchange
environmental rewards against their actions, so agents can
incentivize each other to specific behaviors [12]. A related
approach called gifting allows agents to give rewards to their
peers unconditionally to let them collaborate more effectively
by sharing their rewards [13].

The starting point of our work is the paper learning to
incentivize other learning agents (LIO) [8]. In LIO an incentive
function is defined that outputs the amount of reward the
opponent agent receives as an incentive to become more
cooperative.This extension demonstrates that a policy gradient
algorithm applied to a variant of the Prisoner’s dilemma
converges to a fully cooperative policy. In this work, we
further investigate the incentive approach in the following
way. Here, agents can only incentivize others by paying
them with their environmental reward, so reward cannot be
created out of anything. In that sense, reward defines a locally-
conserved quantity that might prevent pathological behaviors
from emerging [14]. Also, in this work, instead of analyzing
a single variant of the Prisoner’s Dilemma, we focus on the

Fig. 1. Payoff matrices in PD game.

generalized form of the Prisoner’s Dilemma, which is defined
by the set of inequalities given in section III.

III. ITERATED PRISONER’S DILEMMA WITH INCENTIVES

The Prisoner’s Dilemma reflects that the best choice of
individuals does not result in the best choice for groups. It
is also a classic example of game-theory in which multiple
participants react to each other and influence the gains of
others [15]. This section focuses on the effect of each variable
on the emergence of cooperation under different revenue
settings in IPD games with agents who are able to incentivize
others.

Using the common notations for the PD game, R is the
payoff both agents could gain in a mutual cooperative (CC)
situation. In contrast, two defectors could get a profit of P
individually (DD). A player can gain the highest payoff T by
choosing defection while the opponent is cooperating. In this
case, the cooperator only gets the minimum profit S (CD/DC).
A parametrized payoff matrix for a PD is shown in Fig. 1.

To be a PD game in a strong sense, the following inequal-
ities must hold:

T > R > P > S (1)

2R > T + S, (2)

which restrict the payoffs in PD games. The PD reflects
a social dilemma, because of the condition (2) alternative
exploitation could not be better for both players than mutual
cooperation, since patient players can improve by defecting
alternately [16].

If the same players repeatedly face off in the PD game, the
resulting interaction is called an iterated Prisoner’s Dilemma
(IPD) [17]. Yang et al. [18] study this interaction under
the addition that agents can incentivize each other. In their
interaction, RL agents in a shared multi-agent environment
can learn an incentive function to reward other agents by
explicitly accounting for the impact of incentives on their own
performance through recipients’ learning.

A PD with incentives gives the agents an additional choice
by providing an incentive for cooperation or defection. The
given incentive influences the received payoff of the agents.

Definition 1. A PD game with incentives can be described by
the Tuple (N ,A,H, r).

• N = {1, 2} is the set of players.
• A = A1×A2 is the joint action space with Ai = {C,D}.
• H = H1 × H2 with Hi ⊂ (R+

0 )
|Ai| is a set of feasible

incentives provided for the individual actions.



• r = (r1, r2) is the tuple of reward functions with ri :
A×H → R.

If there are no incentives, the dominant strategy is to betray
in every round, as mutual betrayal is the unique dominant
strategy in PD games. On the contrary, if the incentive for
cooperation reaches a certain value, the dynamics change
and can lead to mutual cooperation becoming the dominant
strategy.

Deducing an iterated game from a PD with incentives results
in an IPD game with incentives. For each iteration t, the agent
with index i observes the probability θit of cooperating and
the incentive ηit provided by the opponent. The rewards ri for
each agent can depend on the agents actions and incentives.
Furthermore, future rewards are discounted by a factor γ.
Using this information, agents update their policy parameter to
θit+1 and their incentives to ηit+1. More specifically, we have
the following definition.

Definition 2. An IPD with incentives is an iterated extension
of a PD game with incentives (N ,A,H, r) and consists of the
following elements for each round t:

• Agent i chooses its action ait to be cooperation (C) with
probability θit and defection (D) with probability 1− θit.
Furthermore, it provides two kinds of incentives to the
opposing agent. The incentive ηit = (ηiC,t, η

i
D,t) ∈ Hi

consists of the incentive for cooperation ηiC,t and the
incentive for defection ηiD,t.

• Agent i’s reward is given by rit = E[ri(at, ηt)|θt].
• Agent i observes θt = (θ1t , θ

2
t ) and ηt and updates its

probabilities for cooperation and incentives to θit+1 and
ηit+1 respectively.

• Agent i’s objective is to maximize its discounted long-
term return J i(θt, ηt) =

∑∞
k=0 γ

kE
[
rik(a

1
k, a

2
k, ηt)|θt

]
.

In [18], the policy is decoupled from incentivization, taking
regular actions and giving incentives are two fundamentally
different behaviors. That means agent i is not penalized for
the behavior of its incentive, i.e., ri is independent of ηit.
This paper considers whether incentivization can be seen
as a trading behavior. The agents exchange profits through
incentivizing, thus achieving the effect of influencing each
other’s behavior.

We expand the result of [18] by applying the concept of
markets [12], [19] and explore the conditions under which
mutual cooperation can be expected when players need to pay
for their own incentives. We consider the following dynamics
of an IPD game with incentives. At the beginning of each
iteration t, agents observe probabilities of cooperation θt, and
the probabilities for four possible situations [CC, CD, DC,
DD] are calculated and stored in the set pt with

pt =
[
θ1t θ

2
t , θ

1
t

(
1− θ2t

)
,
(
1− θ1t

)
θ2t ,

(
1− θ1t

) (
1− θ2t

)]T
.

(3)
The rewards for players are the sum of fixed payoff in the

payoff matrix and incentives from the opponent, minus the
incentives they provide to the opponent. The set of feasible

incentives H is restricted to [0, T − S]4, where the maximum
value corresponds to the maximum achievable benefit of a
defector in the case of (CD) or (DC).

The achievable reward vectors for each agent are:

r1t =[R+ η2C,t − η1C,t, S + η2C,t − η1D,t,

T + η2D,t − η1C,t, P + η2D,t − η1D,t]
T

(4)

r2t =[R+ η1C,t − η2C,t, T + η1D,t − η2C,t,

S + η1C,t − η2D,t, P + η1D,t − η2D,t]
T

(5)

The value function for each agent is defined the same as in
[18] and coincides with the expected long-term return:

V i (θt, ηt) =

∞∑
k=0

γkpTt r
i
t =

1

1− γ
pTt r

i
t. (6)

Define a projection on an interval by

Γ[b,c](x) =


b, for x < b

x, for x ∈ [b, c]

c, for x > c

(7)

Agent 2 updates its policy by calculating the gradient of the
value function from (6) with learning rate α:

θ2t+1 =Γ[0,1]

(
θ2t + α∇θ2

t
V 2 (θt, ηt)

)
=Γ[0,1]

(
θ2t +

α

1− γ
∇θ2

t

(
θ1t θ

2
t

(
R+ η1C,t − η2C,t

)
+ θ1t

(
1− θ2t

) (
T + η1D,t − η2C,t

)
+

(
1− θ1t

)
θ2t

(
S + η1C,t − η2D,t

)
+

(
1− θ1t

) (
1− θ2t

) (
P + η1D,t − η2D,t

) ))
=Γ[0,1]

(
θ2t +∆2

t

)
,

(8)

where its policy update ∆2
t is

∆2
t :=

α

1− γ
[(R+ P − T − S) θ1t+η1C,t−η1D,t+S−P ]. (9)

Similarly, for agent 1:

θ1t+1 = Γ[0,1]

(
θ1t +∆1

t

)
(10)

∆1
t :=

α

1− γ
[(R+ P − T − S) θ2t + η2C,t − η2D,t + S − P ].

(11)
The update of incentives with learning rate β provided by

agent 1 based on the new rewards is:



η1t+1 =Γ[0,T−S]

(
η1t + β∇η1

t

1

1− γ
pTt+1r

1
t

)
=Γ[0,T−S]

(
η1t +

β

1− γ
∇η1

t

[
θ1t+1

(
θ2t +∆2

t

)
×
(
R+ η2C,t − η1C,t

)
+θ1t+1

(
1− θ2t −∆2

t

) (
S + η2C,t − η1D,t

)
+
(
1− θ1t+1

) (
θ2t +∆2

t

) (
T + η2D,t − η1C,t

)
+
(
1− θ1t+1

) (
1− θ2t −∆2

t

) (
P + η2D,t − η1D,t

)] )
=Γ[0,T−S]

(
η1t +

β

1− γ
∇η1

t

[
θ1t+1∆

2
t (R+ P − T − S)

+∆2
t (T − P ) + θ2t (η

1
D,t − η1C,t)

+∆2
t (η

1
D,t − η1C,t)− η1D,t

] )
=Γ[0,T−S]

(
η1t +

β

1− γ
∇η1

t

[
θ1t+1∆

2
t (R+ P − T − S)

+∆2
t (T − P ) + θ2t+1(η

1
D,t − η1C,t)− η1D,t

] )
=Γ[0,T−S]

(
η1t +

β

1− γ

[
r1C,t

r1D,t

])
,

(12)
where riC,t and riD,t are given by

r1C,t =
α

1− γ
[θ1t+1(R+P − T −S) + (T −P )]− θ2t+1 (13)

and

r1D,t =−
α

1− γ
[θ1t+1(R+ P − T − S) + (T − P )]

+ θ2t+1 − 1

=− r1C,t − 1.

(14)

Likewise, the incentive update for agent 2 is

η2t+1 =Γ[0,T−S]

(
η2t + β∇η2

t

1

1− γ
pTt r

2
t

)
=Γ[0,T−S]

(
η2t +

β

1− γ

[
r2C,t

r2D,t

])
,

(15)

where

r2C,t =
α

1− γ
[θ2t+1(R+P −T −S)+ (T −P )]− θ1t+1, (16)

and

r2D,t =−
α

1− γ
[θ2t+1(R+ P − T − S) + (T − P )]

+ θ1t+1 − 1

=− r2C,t − 1.

(17)

We are now ready to define the IPD with paid incentives
with these definitions in place.

Definition 3. An IPD game with paid incentives is an IPD
game with incentives satisfying the following specifications:

• The theoretical profits an agent could receive is the
sum of the predefined payoff in the PD game (Fig.1)
and the incentives provided by its opponent, minus the

incentives provided by itself for corresponding actions in
each iteration.

• The set of feasible incentives for agent i is Hi = [0, T −
S]2 ⊂ R2 for i ∈ {1, 2}.1

• In each iteration, agents update the probability of coop-
eration using (8) and (10), updating the incentives using
(12) and (15).

Algorithm 1 implements an IPD with paid incentives.

Algorithm 1 IPD game with paid incentives
Inputs:

S,R, P, T satisfying (1) and (2)
discount factor: γ; learning rates: α, β
maximum time-step: tmax

Initialize:
t← 0
Assign random values θit ∈ [0, 1] and
ηit ∈ [0, T − S]2, i = 1, 2

for t < tmax do
Generate the set pt following (3)
Generate the sets rit of rewards for two agents using (4)

and (5)
Compute the value function according to (6)
Update θit+1 using (8) and (10)
Update ηit+1 using (12) and (15)
θit ← θit+1, ηit ← ηit+1, t← t+ 1

end for

We now want to establish sufficient conditions for stable
cooperation, or lack thereof, in the IPD with paid incentives. In
Lemma 1 we prove that incentives for betrayal always decrease
to zero regardless of their initial values.

Lemma 1. In an IPD with paid incentives, the incentives
for defection are guaranteed to reach 0 after at most K1 :=

⌈ (T−S)(1−γ)2

αβ·kmin
⌉ steps.

Proof. We show the statement by deriving an upper bound for
the agents’ incentive updates for defection riD,t for i ∈ {1, 2}.
This upper bound is negative, ensuring that the incentive for
defection reaches 0 in a finite amount of steps. Define the
function f : [0, 1]→ R, x 7→ (R+P − T − S)x+ T −P . As
f is linear on a compact interval, we have

min
x∈[0,1]

f(x) = min{f(0), f(1)}

= min{T − P,R− S} =: kmin.

Note that kmin > 0 due to (1). Furthermore, define g :
[0, 1]2 → R, (x, y) 7→ − α

1−γ f(x) + y − 1. Then it holds that
g(θ1t+1, θ

2
t+1) = r2D,t and g(θ2t+1, θ

1
t+1) = r1D,t. As g is linear

in each argument, we see that an upper bound is given by

riD,t ≤ max
(x,y)∈[0,1]2

g(x, y) ≤ − α

1− γ
kmin,

1Without considering incentives, a defector could get the maximum fixed
benefit in the case of (DC). The maximum value of the incentive provided is
set not to exceed the difference between T and S.



for i ∈ {1, 2} and all t ≥ 0. Therefore, player i’s incentive for
defection ηiD,t ∈ [0, T − S] decreases by at least αβ

(1−γ)2 kmin

in every step. That results in ηiD,t = 0 for t ≥ ⌈ (T−S)(1−γ)2

αβ·kmin
⌉.

Compared to the monotonically decreasing ηiD,t, η
i
C,t may

increase or decrease under different conditions. When the
opponent has shown a high willingness to cooperate, an
appropriate reduction in the cooperative incentive value can be
expected, which could help to maximize the agent’s benefit.
The conditions under which stable two-way cooperation can
be achieved are discussed below. To simplify the analysis, we
make the following assumption.

Assumption 1. Both players have the same initial values
for the probability of cooperation (θ10 = θ20) and value of
incentives (η10 = η20).

We denote an IPD where Assumption 1 holds as symmetric
IPD. According to Lemma 1, the defective incentive ηiD,t

decreases monotonically to zero after finite time steps and
only affects the time when cooperation occurs, thus it can be
regarded as zero in the following analysis.

Theorem 2. Consider a symmetric IPD with paid incentives.
Then, sustained mutual cooperation is guaranteed to occur if
α

1−γ (R − S) − 1 ≥ 0. Furthermore, if α
1−γ (R − S) − 1 < 0,

the probability of cooperation does not converge towards 1.

Proof. Due to Assumption 1, the incentives and strategies of
both players are identical. Therefore, it holds that η1t = η2t =:
η̃t and θ1t = θ2t =: θ̃t for every t ≥ 0. Define the update for
the incentive to cooperate r1C,t = r2C,t as function

h(x) =

(
α

1− γ
(R+ P − T − S)− 1

)
x+

α

1− γ
(T − P ).

(18)

The function h is linear, connecting the two points

{h(0), h(1)} =
{

α

1− γ
(T − P ),

α

1− γ
(R− S)− 1

}
.

a) Case 1: α
1−γ (R − S) − 1 ≥ 0: In this case, it holds

that h(x) ≥ 0 for all x ∈ [0, 1]. Therefore, the sequence
{η̃C,t}t≥0 is monotonically increasing. We conduct a proof
by contradiction. Suppose the sequence {θ̃t}t≥0 does not
converge to 1. Then, there exists an ϵ0 > 0 such that for
any k ∈ N, there exists a t̃ ≥ k such that θ̃t̃ < 1− ϵ0. For any
such t̃, η̃C,t̃ increases by at least h(1 − ϵ0) > 0. Therefore,
η̃C,t → T − S. However, that means there exists an ϵ1 > 0
and a k2 ∈ N such that θ̃t increases by at least

∆i
t ≥

α

1− γ
min{T − P,R− S} − ϵ1 > 0

for every t ≥ k2 and i ∈ {1, 2}. This results in θ̃t → 1, a
contradiction. Therefore, θ̃t → 1.

b) Case 2: α
1−γ (R−S)− 1 < 0: We show that θ̃t ↛ 1.

It is sufficient to show that there exists an ϵ2 > 0 such that
for any t with θ̃t ∈ (1 − ϵ2, 1], there exists a kϵ2 ∈ N such
that θ̃t+kϵ2

< 1− ϵ2. As minx∈[0,1] h(x) = h(1) = α
1−γ (R −

S) − 1 < 0, there exists an ϵ3 > 0 such that h(1 − ϵ3) < 0.
We choose ϵ2 := min{ϵ3, |max{R− T, S − P}|}. If θ̃t+l is
smaller than 1 − ϵ2 for 1 ≤ l ≤ ⌈(T − S)/h(1 − ϵ2)⌉, we
are done. Otherwise, the incentive for cooperation decreases
by at least h(1 − ϵ2) in every step. Leading to η̃C,t+l = 0
for some l ≤ ⌈(T − S)/h(1 − ϵ2)⌉. However, that means
∆(θ̃t+l) ≤ max{R− T, S − P} < −ϵ2. By the choice of ϵ2,
there exists a kϵ2 ≤ l + 1 such that θ̃t+kϵ2

< 1 − ϵ2, which
gives us the statement.

IV. EXPERIMENTAL RESULTS

In order to demonstrate this conclusion empirically, Fig. 2
compares the impact of different learning rates on the results
using a numerical example, wherein θ10 = θ20 = 0.5, R =

−1, T = 0, S = −3, P = −2, η10 = η20 = [0, 0]
T

to simplify
the analysis and comparison. Since both players have the same
initial probability of cooperation, i.e. the game is symmetric. If
we set γ = 0.99, α needs to be greater than or equal to 0.005
to fulfill the condition for mutual cooperation in Theorem 2.

V. SUMMARY AND FURTHER WORK

On the basis of the incentivizing concept of [18], we give
players the ability to trade incentives in the above-defined
IPD. Furthermore, the conditions that need to be satisfied to
achieve stable two-way cooperation when players need to pay
incentives to their opponents are discussed in Theorem 2. The
restriction on the factors in Theorem 2 is mainly to balance the
negative effect of the opponent’s cooperation probability on the
incentive increase. Incentive reduction should be avoided when
a player just demonstrates a very low probability of cooper-
ation, otherwise, it will further cause the player’s willingness
to cooperate to decrease.

Specialized assumptions are made to simplify the analysis
in the system, such as the symmetry of two players and zero
incentive for betrayal. As the results above suggest that the
incentive for betrayal in IPD games is continuously falling,
it only affects the time it takes for players to switch to a
cooperative strategy but does not affect the emergence and
development of cooperative trends. The payoff matrices can
influence the rate of incentive renewal, further altering the
timing of the emergence of stable two-way cooperation.

In an IPD game, when the value of S is very small, it
is risky for the players to choose to cooperate in each round.
Matthias Blonski and Giancarlo Spagnolo suggest that the less
risky cooperation is, the more tolerant and forgiving agents
could be in the face of betrayers [16]. But in an incentivized
environment, the smaller the value of S, the faster the increase
in the incentives. The high risk that one player’s choice to
betray poses to another player makes them inclined to offer
more incentives for avoiding being defected.

This paper only considers changes to the strategies in an
ideal theoretical situation, but in general, mutations cannot be



(a) α = 0.004 (b) α = 0.004 (c) α = 0.005 (d) α = 0.005 (e) α = 0.006 (f) α = 0.006

Fig. 2. Three scenarios of earning behaviors and vector fields in a symmetric IPD with paid incentives. The scenarios correspond to the three different cases
α

1−γ
(R− S)− 1(<), (=), (>)0 following the condition for convergence in Theorem 2. We set θ10 = θ20 = 0.5, R = −1, T = 0, S = −3, P = −2, η10 =

η20 = [0, 0]
T

, and γ = 0.99 for all cases.
Case (> 0) with α = 0.004: Fig. 2a, does not show convergence to cooperation as predicted by Theorem 2. Instead, the value for cooperation rises with a
high incentive for cooperation. However, the vector field in Fig. 2b shows that the incentive to cooperate sinks for a high probability of cooperation, leading
to an oscillating dynamic for both values.
Cases (= 0) with α = 0.005: Sustained cooperation arises quickly. The incentive to cooperate remains at 2.5 (see Fig. 2c), as the probability of cooperating
is already at 1 and the incentive to cooperate is no longer increasing (see Fig. 2d).
Case (> 0) with α = 0.006: Sustained cooperation arises quickly. The incentive to cooperate rises to the maximum value T − S = 3 (see Fig. 2e). That is
due to the incentive to cooperate rising for any value of θ, which can be seen in the vector field of Fig. 2f.

Fig. 3. α = 0.007, β = 0.001, γ = 0.9, θ10 = θ20 = 0.5, R = −1, T =

0, S = −2.5, P = −2, η10 = [0.5, 0]
T
, η20 = [0, 0]

T
. The probability of

cooperation is maintained at a fixed value after around 300 time-steps.

neglected because collectively optimal strategies are fragile
and unstable [20]. In cases of IPD with incentives, a selfish
mutant could have a short-term impact on the process but no
consequential change to the final state.

Further Work Referring to the update function of incen-
tives, in some particular where Theorem 2 does not hold, it
can be observed that the probability of the agents cooperating
is stable at a value other than 1 (Fig. 3), rather than fluctuating
all the time. It makes sense to consider the circumstances
under which two players can achieve a stable state, except for
100% cooperation, and under what conditions the probability
of their cooperation will fluctuate in what range. In addition,
this paper sets the initial cooperation probability values and the
incentive values to be the same for both players, enabling them
to behave consistently throughout the process. If the individual
variables of the two players do not correspond equally, the
analysis will be more complex and may yield different results.
If the maximum value of incentives is restricted differently,
the results obtained may also be different from here. If the
incentivizing approach is applied to other matrix games, the
betrayal incentive may also fluctuate rather than be mono-
tonically decreasing. Moreover, we also make the proof that
the probability of cooperation converges towards 1 in finitely
many steps in case of α

1−γ (R − S) − 1 > 0, which is not
included in this paper due to space limitations.
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