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Abstract
Dynamic Epistemic Logic is a multi-modal logic for reasoning about the change of knowledge in multi-agent
systems. It extends epistemic logic by a modal operator for actions which announce logical formulas to other
agents. In Hilbert-style proof calculi for Dynamic Epistemic Logic modal action formulas are reduced to epistemic
logic, whereas current sequent calculi for Dynamic Epistemic Logic are labelled systems which internalise the
semantic accessibility relation of the modal operators as well as the accessibility relation underlying the semantics
of the actions. We present a novel cut-free ordinary sequent calculus, called G4P,A[], for propositional Dynamic
Epistemic Logic. In contrast to the known sequent calculi, our calculus does not internalise the accessibility
relations, but — similar to Hilbert style proof calculi — action formulas are reduced to epistemic formulas. Since
no ordinary sequent calculus for full S5 modal logic is known, the proof rules for the knowledge operator and the
Boolean operators are those of an underlying S4 modal calculus. We show the soundness and completeness of
G4P,A[] and prove also the admissibility of the cut-rule and of several other rules for introducing the action modality.

Keywords: Dynamic Epistemic Logic; Sequent Calculus; Cut Elimination

1 Introduction
Dynamic Epistemic Logic (DEL) is a framework for reasoning about the change of knowledge in multi-agent
systems. It is based on epistemic logic, a multi-modal logic in which the modal operators express the knowledge
and the belief of the agents. The main additional feature of DEL is the communication of epistemic information.
Using so-called (epistemic) actions, agents can send public, private, and semi-private announcements to one or
more agents. In the logic this is expressed by a modal operator [u] for epistemic actions u and formulæ of the form
[u]ψ with the meaning that always after executing the action u, the formula ψ holds. Public Announcement Logic
(PAL), a simplified variant of DEL, restricts actions to public announcements.

There exist several proof calculi for DEL and PAL. Sound and complete Hilbert-style axiomatisations are given
for PAL by Plaza [1, 2] and for DEL by Baltag, Moss, and Solecki [3] and Gerbrandy [4] (see [5] for an overview).
These proof systems are based on Hilbert calculi for epistemic logic and translate modal formulæ of the form [u]ψ
into pure epistemic logic formulæ without announcement actions. For PAL and DEL also tableaux and display
calculi have been developed (Balbiani et al. [6], Hansen [7], Aucher et al. [8], Frittella et al. [9], for a comparison with
other proof systems see Frittella et al. [10]). A first sequent calculus for DEL has been presented by Baltag et al. [11].
Actions enjoy a quantal structure; propositions, actions, and agents are resource-sensitive. The calculus is sound
and complete but does not admit the elimination of cuts. Dyckhoff and Sadrzadeh [12] refine this proof calculus to
a cut-free calculus. However, this calculus does not use ordinary sequents but more complex nested sequents.

This is similar to the situation in modal logic. Only for modal logic systems S4 or smaller, ordinary sequent
calculi are known which are sound, complete, and cut-free. For modal logic S5, such proof systems need global
side conditions (as in Braüner [13] or extend the sequence format by additional structure such as hypersequents (see,
e. g., Poggiolesi [14]) and display systems (see, e. g., Dosen [15]); for an overview cf. Wansing [16] and Negri [17].
Labelled sequent systems internalise the Kripke semantics of modal logic into the syntax of the proof system.
Such calculi are ordinary sequent systems which not only contain modalities but also variables and the semantic
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accessibility relation (see, e. g., Brünnler [18]). Negri [19] presents a general method for generating contraction-
and cut-free ordinary sequent calculi for a large family of normal modal logics. Her method has been applied by
several authors for constructing labelled cut-free sequent calculi for public announcement logic (see Maffezioli and
Negri [20], Negri [17], Balbiani et al. [21], Nomura et al. [22], and Balbiani and Galmiche [23]). The cut-free
sequent calculus of Nomura et al. [24, 25] for full DEL internalises the semantic accessibility relation of the modal
operators as well as the accessibility relation underlying the semantics of the actions.

We present a novel cut-free sequent calculus, called G4P,A[], for propositional Dynamic Epistemic Logic. In
contrast to the labelled sequent calculi, our calculus does not internalise the accessibility relations nor does it contain
labels, instead the rules for epistemic actions mirror the reduction rules of [5, 26]; these rules are invertible, but do
not enjoy the subterm property. As underlying modal system we choose an S4 calculus, since no ordinary sequent
calculus for full S5 modal logic is not known. We show the soundness and completeness of G4P,A[] and prove also
the admissibility of the cut-rule and of several rules for introducing the action modality. Neither for completeness
nor for the cut we apply the well-known translation of [5], instead we give direct proofs of the admissibility of cut
and of all axioms and rules of the Hilbert calculus for DS4P,A. Closely related to our work is the independently
developed labelled sequent calculus of Wu et al. [27] for PAL. Similar to our approach, the proof rules of [27]
follow the structure of the goal and reduce (PAL) formulas to basic epistemic logic formulas. But in contrast to us,
the semantic accessibility relation is internalised and the proofs of completeness and admissibility of cut use the
translation to epistemic logic.

The paper is organised as follows: In Sect. 2 we recap the basics of epistemic logic and present the sequent
calculus G4P,A together with some derived rules and the main theorems for soundness, completeness, and
admissibility of cut. Section 3 contains the main results: We present the ordinary sequent calculus G4P,A[] for DEL,
show some derived rules including a particular kind of necessitation for dynamic modalities, and prove soundness
and completeness of G4P,A[] and the admissibility of cuts. Section 4 concludes with an outlook to future work.

Personal note. John, Martin, and Alexander have known each other for many years. Alexander met John for the
first time at the end of the 1990s in the Research Training Group “Logic in Computer Science”1 when he was a PhD
student in the group and John a guest researcher. Martin and John had met much earlier, in 1975 at a garden party of
Martin’s doctoral supervisor Kurt Schütte. The day after the party, John, Martin and the logician Peter Päppinghaus
drove together in Martin’s car to the “Colloque International de Logique” in Clermont-Ferrand. They became
good friends, though communication was difficult. Although each of the three spoke two languages, there was no
common language: John spoke English and French, Martin German and French, and Peter German and English.

About 10 years later, a close collaboration developed between John and Martin. John visited Martin regularly
in Passau and later in Munich, Martin was twice in Melbourne with John in the late 1990s. Together with their
students, they worked on two research topics, the development of constrained λ-calculi and program extraction from
structured specifications. Four papers [28, 29, 30, 31] were written on the first topic, as well as the dissertations of
Luis Mandel [32] and Matthias Hölzl [33]. Luis and Matthias were also jointly supervised by Martin and John.
On the second topic, John and Martin wrote three papers [34, 35, 36] together with Hannes Peterreins and Iman
Poernomo, a doctoral student of John. An important part of the joint monograph [37] also deals with this topic. At
that time, Alexander worked on other topics including the semantics of Java [38] and formal approaches to mobile
systems [39] and object-oriented software development [40].

Working and discussing with John is a very pleasant experience. He is not only an outstanding scientist; he is also
a warm-hearted and kind friend and colleague. We are looking forward to many further inspiring exchanges with him.

2 Epistemic Logic
Propositional epistemic logic is a multi-modal logic. We briefly recall some basic definitions and results about
Gentzen type proof systems.

An epistemic signature (P,A) consists of a set P of propositions and a set A of agents. The set ΦP,A of
epistemic formulæ ϕ over (P,A) is defined by the following grammar:

ϕ ::= p | false | ϕ1 ⊃ ϕ2 | Ka ϕ

where p ∈ P and a ∈ A. The epistemic formula Ka ϕ is to be read as “agent a knows ϕ”. The usual propositional
connectives can be added by defining ¬ϕ ≡ ϕ ⊃ false, ϕ1 ∨ ϕ2 ≡ (¬ϕ1) ⊃ ϕ2, ϕ1 ∧ ϕ2 ≡ ¬(ϕ ⊃ ¬ϕ2), and
ϕ1 ↔ ϕ2 ≡ (ϕ1 ⊃ ϕ2) ∧ (ϕ2 ⊃ ϕ1).

An epistemic (S4) structure K = (W,E,L) over (P,A) consists of a setW of worlds, an A-indexed family
E = (Ea ⊆W ×W )a∈A of epistemic accessibility relations, and a labelling L : W → P(P ) which determines

1https://gepris.dfg.de/gepris/projekt/271709?language=en
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(taut) propositional tautologies (K) Ka(ϕ1 ⊃ ϕ2) ⊃ (Ka ϕ1 ⊃ Ka ϕ2)

(T) Ka ϕ ⊃ ϕ (4) Ka ϕ ⊃ Ka Ka ϕ

(MP)
ϕ1 ϕ1 ⊃ ϕ2

ϕ2

(GK)
ϕ

Ka ϕ

Table 1: Hilbert-style axiomatisation of S4P,A

(pA)
p,Γ⇒ p,∆

(Lfalse)
false,Γ⇒ ∆

(L⊃)
Γ⇒ ϕ1,∆ ϕ2,Γ⇒ ∆

ϕ1 ⊃ ϕ2,Γ⇒ ∆
(R⊃)

ϕ1,Γ⇒ ϕ2,∆

Γ⇒ ϕ1 ⊃ ϕ2,∆

(LT)
ϕ,Γ⇒ ∆

Ka ϕ,Γ⇒ ∆
(RK)

Ka Γ⇒ ϕ

Ka Γ,Γ′ ⇒ Ka ϕ,∆
′

Table 2: Modal Gentzen system G4P,A for epistemic logic S4P,A

(Weak)
Γ⇒ ∆

Γ,Γ′ ⇒ ∆,∆′
(Contr)

Γ,Γ,Γ′ ⇒ ∆,∆,∆′

Γ,Γ′ ⇒ ∆,∆′

(Cut)
Γ⇒ ∆, ϕ ϕ,Γ⇒ ∆

Γ⇒ ∆

Table 3: Structural rules and cut

for each world w ∈ W the set of propositions valid in w. The accessibility relations of epistemic structures are
assumed to be reflexive and transitive (but not necessarily symmetric as in S5). For any a ∈ A, (w,w′) ∈ Ea

models that agent a cannot distinguish the two worlds w and w′. An epistemic (S4) state over (P,A) is a pointed
epistemic structure K = (K,w) where w ∈W determines an actual world.

For any epistemic signature (P,A) and epistemic structureK = (W,E,L) over (P,A) the satisfaction of an
epistemic formula ϕ ∈ ΦP,A byK at a world w ∈W , writtenK,w |= ϕ, is inductively defined as follows for any
a ∈ A, p ∈ P , and ϕ,ϕ1, ϕ2 ∈ ΦP,A:

K,w |= p ⇐⇒ p ∈ L(w)

K,w 6|= false

K,w |= ϕ1 ⊃ ϕ2 ⇐⇒ K,w 6|= ϕ1 orK,w |= ϕ2

K,w |= Ka ϕ ⇐⇒ K,w′ |= ϕ for all w′ ∈W with (w,w′) ∈ Ea

Hence, an agent a knows ϕ at world w if ϕ holds in all worlds w′ which a cannot distinguish from w. For an
epistemic state K = (K,w) and for ϕ ∈ ΦP,A, K |= ϕ meansK,w |= ϕ.

The epistemic logic S4P,A consists of all epistemic formulæ ϕ ∈ ΦP,A such thatK,w |= ϕ for all epistemic
structuresK = (W,E,L) and all their states w ∈W . This logic can be axiomatised in a Hilbert-calculus by the
axioms and derivation rules of Tab. 1 (see, e. g., [5]) where axiom (T), called truth, reflects the reflexivity of the
accessibility relations and axiom (4), called positive introspection, their transitivity.

We use the modal Gentzen system G4P,A in Tab. 2 for the epistemic logic S4P,A. Our system builds on
G3nK for basic modal logic (Hakli and Negri [41]), and for the extension to S4 on the system S4∗ (Ohnishi and
Matsumoto [42]) and the system GS4 (Ono [43]). In our rules, ϕ,ϕ1, ϕ2 range over the formulæ in ΦP,A, p over
the propositions in P , a over the agents in A, and Γ,Γ′,∆,∆′ over the multisets of formulæ in ΦP,A. In particular,
Γ can be empty in (RK), i. e., this multiset can be dropped; then (RK) is a direct generalisation of (GK).

Lemma 1. All sequents of the form ϕ,Γ⇒ ∆, ϕ are derivable in G4P,A.

Proof. By structural induction over ϕ, see, e. g., [41].

The structural rules, see Tab. 3, of weakening and contraction are admissible, and so is cut.
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(L¬)
Γ⇒ ϕ,∆

¬ϕ,Γ⇒ ∆
(R¬)

ϕ,Γ⇒ ∆

Γ⇒ ¬ϕ,∆

(L∨)
ϕ1,Γ⇒ ∆ ϕ2,Γ⇒ ∆

ϕ1 ∨ ϕ2,Γ⇒ ∆
(R∨)

Γ⇒ ϕ1, ϕ2,∆

Γ⇒ ϕ1 ∨ ϕ2,∆

(L∧)
ϕ1, ϕ2,Γ⇒ ∆

ϕ1 ∧ ϕ2,Γ⇒ ∆
(R∧)

Γ⇒ ϕ1,∆ Γ⇒ ϕ2,∆

Γ⇒ ϕ1 ∧ ϕ2,∆

(L↔)
ϕ1, ϕ2,Γ⇒ ∆ Γ⇒ ϕ1, ϕ2,∆

ϕ1 ↔ ϕ2,Γ⇒ ∆
(R↔)

ϕ1,Γ⇒ ϕ2,∆ ϕ2,Γ⇒ ϕ1,∆

Γ⇒ ϕ1 ↔ ϕ2,∆

(RT)
Γ⇒ Ka ϕ,∆

Γ⇒ ϕ,∆

(LK2)
Ka Ka ϕ,Γ⇒ ∆

Ka ϕ,Γ⇒ ∆
(RK2)

Γ⇒ Ka ϕ,∆

Γ⇒ Ka Ka ϕ,∆

(LRK)
Γ⇒ ϕ

Ka Γ,Γ′ ⇒ Ka ϕ,∆
′

Table 4: Additional rules for G4P,A

Lemma 2. (Weak) and (Contr) are height-preservingly admissible for G4P,A.

Proof. By induction on the height of the derivation (as in, e. g., [44]).

Theorem 1. (Cut) is admissible for G4P,A.

Proof. As in, e. g., [43].

Theorem 2. G4P,A is sound and complete for S4, i. e., for any ϕ ∈ ΦP,A, `G4P,A
⇒ ϕ if, and only if, K |= ϕ in

all epistemic S4 states K over (P,A).

Proof. For soundness, it suffices to check that each rule of G4P,A is valid in S4P,A; for completeness, that each
axiom of the Hilbert-style axiomatisation in Tab. 1 is derivable in G4P,A and that each rule is admissible.

Table 4 contains derived rules for the other propositional connectives. Additionally, it shows admissible rules
for truth, (RT), and positive introspection, (LK2), and (RK2):

Lemma 3. For all a ∈ A, all ϕ ∈ ΦP,A, and all multisets Γ,∆ of formulæ the following statements hold:
(a) If `G4P,A

Γ⇒ Ka ϕ,∆, then `G4P,A
Γ⇒ ϕ,∆.

(b) If `G4P,A
Ka Ka ϕ,Γ⇒ ∆, then `G4P,A

Ka ϕ,Γ⇒ ∆.
(c) If `G4P,A

Γ⇒ Ka ϕ,∆, then `G4P,A
Γ⇒ Ka Ka ϕ,∆.

Proof. For all claims we proceed by induction over the derivation of the premiss and consider the last rule applied.
The cases (pA), (Lfalse), (L⊃), (R⊃) are immediate since neither Ka ϕ in the succedent nor Ka Ka ϕ in the
antecedent is principal in these rules; the same holds for (a) and (c) with (LT), where Ka ϕ is in the succedent.
(a) We only consider (RK). Then Γ = Ka′ Γ′,Γ′′ and Ka ϕ,∆ = Ka′ ϕ′,∆′ for some a′,Γ′,Γ′′, ϕ′,∆′, and
`G4P,A

Ka′ Γ′ ⇒ ϕ′. If Ka ϕ is principal, i. e., Ka ϕ = Ka′ ϕ′ and ∆ = ∆′, then `G4P,A
Γ⇒ ϕ,∆ follows from

weakening `G4P,A
Ka Γ′ ⇒ ϕ. If Ka ϕ is not principal, i. e., ∆ = Ka′ ϕ′,∆′′, then `G4P,A

Ka′ Γ′,Γ′′ ⇒ Ka′ ϕ′,
ϕ,∆′′ by applying (RK) with premiss Ka′ Γ′ ⇒ ϕ′, that is, `G4P,A

Γ⇒ ϕ,∆.
(b) We only consider (LT) and (RK).
Case (LT): Then immediately `G4P,A

Ka ϕ,Γ⇒ ∆.
Case (RK): Then Ka Ka ϕ,Γ = Ka′ Γ′,Γ′′ and ∆ = Ka′ ϕ′,∆′ for some a′,Γ′,Γ′′, ϕ′,∆′. If a = a′, then
`G4P,A

Ka Ka ϕ,Ka Γ′ ⇒ ϕ′, thus `G4P,A
Ka ϕ,Ka Γ′ ⇒ ϕ′ by the induction hypothesis, and hence `G4P,A

Ka ϕ,
Ka Γ′, Γ′′ ⇒ Ka ϕ

′,∆′ using (RK). If a 6= a′, then `G4P,A
Ka′ Γ′ ⇒ ϕ′ and thus `G4P,A

Ka ϕ,Ka Γ′, Γ′′ ⇒
Ka ϕ

′,∆′ again by (RK).
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(c) We only consider (RK). Then Γ = Ka′ Γ′,Γ′′ and Ka ϕ,∆ = Ka′ ϕ′,∆′ for some a′,Γ′,Γ′′, ϕ′,∆′, and
`G4P,A

Ka′ Γ′ ⇒ ϕ′. If Ka ϕ is principal, i. e., Ka ϕ = Ka′ ϕ′ and ∆ = ∆′, then `G4P,A
Ka Γ′ ⇒ ϕ, such that

`G4P,A
Ka Γ′ ⇒ Ka Ka ϕ by applying (RK) twice, which yields `G4P,A

Γ⇒ Ka Ka ϕ,∆ by weakening. If Ka ϕ
is not principal, i. e., ∆ = Ka′ ϕ′,∆′′ for some ∆′′, then `G4P,A

Ka′ Γ′,Γ′′ ⇒ Ka′ ϕ′,Ka Ka ϕ,∆
′ by applying

(RK) with premiss Ka′ Γ′ ⇒ ϕ′, that is, `G4P,A
Γ⇒ Ka Ka ϕ,∆.

The asymmetric rule (RK) may be replaced by a more symmetric variant (LRK) if not only the truth rule (LT)
but also the positive introspection rule (LK2) is present:

Lemma 4. If `G4P,A
Γ⇒ ϕ, then `G4P,A

Ka Γ,Γ′ ⇒ Ka ϕ,∆
′. Conversely, replace (RK) by (LRK) and call the

resulting system G4′P,A: If `G4′P,A
Ka Γ⇒ ϕ, then `G4′P,A

Ka Γ,Γ′ ⇒ Ka ϕ,∆
′.

Proof. In G4P,A we have the following derivation to the left, for the converse direction using G4′P,A the derivation
to the right, where (LT)∗ and (LK2)∗ mean an iterated rule application (including zero iterations):

....
Γ⇒ ϕ

Ka Γ⇒ ϕ
(LT)∗

Ka Γ,Γ′ ⇒ Ka ϕ,∆
′ (RK)

....
Ka Γ⇒ ϕ

Ka Ka Γ,Γ′ ⇒ Ka ϕ,∆
′ (LRK)

Ka Γ,Γ′ ⇒ Ka ϕ,∆
′ (LK2)∗

3 Dynamic Epistemic Logic
We briefly summarise epistemic actions and dynamic epistemic logic following van Ditmarsch et al. [5]. Based on
this we present our calculus G4P,A[] and prove the admissibility of cut as well as its soundness and completeness.

An epistemic action structure U = (Q,F, pre) over (P,A) and some logical language L consists of a finite set
of action points Q, an A-indexed family of epistemic action accessibility relations F = (Fa ⊆ Q×Q)a∈A, and a
precondition function pre : Q → L. We assume that the accessibility relations are reflexive and transitive. For
any agent a, (q, q′) ∈ Fa models that agent a cannot distinguish between occurrences of q and q′. For q ∈ Q, the
epistemic formula pre(q) determines a condition under which q can happen. An epistemic action u = (U, q) over
(P,A) and L is given by the epistemic action structure U = (Q,F, pre) and a designated point q ∈ Q.

The set ΨP,A of dynamic epistemic formulæ over (P,A) is defined as
⋃

n∈N Ψ
(n)
P,A where Ψ

(n)
P,A are the dynamic

epistemic formulæ of depth n; the set UP,A of epistemic actions over (P,A) is defined as
⋃

n∈N U
(n)
P,A where U(n)

P,A

are the epistemic actions of depth n. The families (Ψ
(n)
P,A)n∈N and (U

(n)
P,A)n∈N are mutually recursively defined as

follows: Ψ
(0)
P,A is just ΦP,A and the dynamic epistemic formulæ Ψ

(n+1)
P,A are defined by the following grammar:

ψ ::= false | ψ1 ⊃ ψ2 | Ka ψ | [u]ψ

where u ∈ U
(n)
P,A; and U

(n)
P,A comprises the epistemic actions over (P,A) and Ψ

(n)
P,A. The formula [u]ψ is to be read

as “the execution of the epistemic action u in the current epistemic state leads to an epistemic state where the
formula ψ holds”. In the following ψ (and its adorned variants) always ranges over ΨP,A and u over UP,A.

The product update of an epistemic structure K = (W,E,L) over (P,A) and an epistemic action structure
U = (Q,F, pre) over (P,A) is the epistemic structureK � U = (W ′, E′, L′) over (P,A) with

W ′ = {(w, q) ∈W ×Q | K,w |= pre(q)} ,
E′a = {((w, q), (w′, q′)) ∈W ′ ×W ′ | (w,w′) ∈ Ea, (q, q′) ∈ Fa} for all a ∈ A,
L′(w, q) = L(w) for all (w, q) ∈W ′.

The product update for epistemic structures is well-defined, since the relations E′a are again reflexive and transitive.
E′a reflects that the uncertainty of an agent a in a world (w, q) is determined by the uncertainty of a about world
w and its uncertainty about the occurrence of q. The product update of an epistemic state K and an epistemic
action u = (U, q) over (P,A) is defined by the epistemic state (K,w) � (U, q) = (K � U, (w, q)), provided that
K,w |= pre(q). Note that all epistemic actions are deterministic.

Example 1. (see, e. g., [25]) Let P = {p} and A = {1, 2}. For the current epistemic state assume that neither
agent 1 nor agent 2 know whether proposition p holds. This situation can be represented by K = ((W,E,L), w0)
withW = {w0, w1}, E1 = W 2 = E2, and L(w0) = {p}, L(w1) = ∅, as depicted below:
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{p}
w0

∅
w1

1, 2
1, 2

1, 2

(Both accessiblity relations are symmetric, as indicated by the arrows, but this is not required in S4). Now assume
that only 1 reads a letter telling that p, such that 1 consequently knows p, but 2 does not. This reading is modelled
by rd = ((Q,F, pre), p) with Q = {p, n}, F1 = {(p, p), (n, n)}, F2 = Q2, pre(p) = p, and pre(n) = ¬p,
graphically shown below:

p

p

¬p

n

1, 2
2

1, 2

The epistemic state resulting from executing rd in K, depicted below, is K � rd = ((W ′, E′, L′), (w0, p)) with
W ′ = {(w0, p), (w1, n)}, E′1 = {((w0, p), (w0, p)), ((w1, n), (w1, n))}, E′2 = W ′

2, L′(w0, p) = {p}, and
L′(w1, n) = ∅:

{p}
(w0, p)

∅
(w1, n)

1, 2
2

1, 2

Indeed, in this epistemic state K� rd agent 1 knows p.

The syntactic composition U1;U2 of two epistemic action structures Ui = (Qi, Fi, prei), 1 ≤ i ≤ 2 is given by
(Q,F, pre) with

Q = Q1 ×Q2 ,
Fa = {((q1, q2), (q′1, q

′
2)) | (q1, q′1) ∈ F1,a, (q2, q

′
2) ∈ F2,a} ,

pre(q1, q2) = pre1(q1) ∧ [(U1, q1)]pre2(q2) .

The syntactic composition u1; u2 of two epistemic actions ui = (Ui, qi), 1 ≤ i ≤ 2, is given by (U1;U2, (q1, q2)).
The syntactic composition of epistemic actions is associative up to isomorphism [5, Prop. 6.9], i. e., it holds for all
u1, u2, u3 ∈ UP,A that

(A1) u1; (u2; u3) ∼= (u1; u2); u3

In the following we will identify isomorphic epistemic actions.
For an epistemic action u = ((Q,F, pre), q) we write Q(u) for Q, F (u)a for {q′ | (q, q′) ∈ Fa}, ·u for pre(q),

q(u) for q, and u · q′ for ((Q,F, pre), q′) whenever q′ ∈ Q. It holds for all a ∈ A, u1, u2 ∈ UP,A, and qi ∈ Q(ui),
1 ≤ i ≤ 2, that

F (u1; u2)a = F (u1)a × F (u2)a(A2)
(u1; u2) · (q1, q2) = (u1 · q1); (u2 · q2)(A3)
·(u1; u2) = ·u1 ∧ [u1]·u2(A4)

The satisfaction of a dynamic epistemic formula ψ in an epistemic state K over the same epistemic signature
(P,A), written K |= ψ, extends the respective satisfaction of (pure) epistemic formulæ by

K |= [u]ψ ⇐⇒ K |= ·u implies K� u |= ψ .

The dynamic epistemic logic DS4P,A consists of all dynamic epistemic formulæ ψ ∈ ΨP,A such that K |= ψ
for all epistemic states K. This logic can be axiomatised in a Hilbert-calculus by the axioms and derivation rules for
S4P,A, see Tab. 1, together with the reduction axioms in Tab. 5, where

∧
abbreviates iterated conjunction.

(redp) [u]p↔ ·u ⊃ p (redfalse) [u]false↔ ¬ ·u

(red⊃) [u](ψ1 ⊃ ψ2)↔ [u]ψ1 ⊃ [u]ψ2 (redK) [u]Ka ψ ↔ ·u ⊃
∧

q∈F (u)a
Ka[u · q]ψ

(red[]) [u1][u2]ψ ↔ [u1; u2]ψ

Table 5: Reduction axioms for DS4P,A

Our Gentzen-style calculus G4P,A[] for epistemic dynamic logic extends the epistemic rules in Tab. 2 with the
action rules in Tab. 6 where now Γ and ∆ always range over ΨP,A. Table 7 comprises some additional rules: On
the one hand, the additional propositional connectives can be directly handled by corresponding derived rules; on
the other hand, some admissible rules for handling actions are offered (see Lem. 9 and Lem. 10).
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(L[]p)
Γ⇒ ·u,∆ Γ, p⇒ ∆

[u]p,Γ⇒ ∆
(R[]p)

·u,Γ⇒ p,∆

Γ⇒ [u]p,∆

(L[]false)
Γ⇒ ·u,∆

[u]false,Γ⇒ ∆
(R[]false)

·u,Γ⇒ ∆

Γ⇒ [u]false,∆

(L[]⊃)
Γ⇒ [u]ψ1,∆ [u]ψ2,Γ⇒ ∆

[u](ψ1 ⊃ ψ2),Γ⇒ ∆
(R[]⊃)

[u]ψ1,Γ⇒ [u]ψ2,∆

Γ⇒ [u](ψ1 ⊃ ψ2),∆

(L[]K)
Γ⇒ ·u,∆ (Ka[u · q′]ψ)q′∈F (u)a ,Γ⇒ ∆

[u]Ka ψ,Γ⇒ ∆
(R[]K)

(·u,Γ⇒ Ka[u · q′]ψ,∆)q′∈F (u)a

Γ⇒ [u]Ka ψ,∆

(L[][])
[u1; u2]ψ,Γ⇒ ∆

[u1][u2]ψ,Γ⇒ ∆
(R[][])

Γ⇒ [u1; u2]ψ,∆

Γ⇒ [u1][u2]ψ,∆

Table 6: Modal Gentzen system G4P,A[] for dynamic epistemic logic

(L[]¬)
Γ⇒ ·u,∆ Γ⇒ [u]ψ,∆

[u]¬ψ,Γ⇒ ∆
(R[]¬)

·u, [u]ψ,Γ⇒ ∆

Γ⇒ [u]¬ψ,∆

(L[]∧)
[u]ψ1, [u]ψ2,Γ⇒ ∆

[u](ψ1 ∧ ψ2),Γ⇒ ∆
(R[]∧)

Γ⇒ [u]ψ1,∆ Γ⇒ [u]ψ2,∆

Γ⇒ [u](ψ1 ∧ ψ2),∆

(L[]∨)
[u]ψ1,Γ⇒ ∆ [u]ψ2,Γ⇒ ∆

[u](ψ1 ∨ ψ2),Γ⇒ ∆
(R[]∨)

Γ⇒ [u]ψ1, [u]ψ2,∆

Γ⇒ [u](ψ1 ∨ ψ2),∆

(LK[][])
Ka[u1; u2]ψ,Γ⇒ ∆

Ka[u1][u2]ψ,Γ⇒ ∆
(RK[][])

Γ⇒ Ka[u1; u2]ψ,∆

Γ⇒ Ka[u1][u2]ψ,∆

(LR[])
Γ⇒ ∆

·u, [u]Γ,Γ′ ⇒ [u]∆,∆′

Table 7: Additional rules for G4P,A[]

Example 2. Consider the reading action of rd as introduced in Ex. 1:

...
¬p⇒ ¬p

...
¬p,p⇒

¬p, [rd · n]p⇒
(L[]p)

⇒ [rd · n]¬p
(R[]¬)

¬p⇒ [rd · n]K1 p,K1[rd · n]¬p
(RK)

⇒ [rd · n]K1 p, [rd · n]K1 ¬p
(R[]K)

⇒ [rd · n](K1 p ∨ K1 ¬p)
(R[]∨)

p⇒ K2[rd · n](K1 p ∨ K1 ¬p)
(RK)

...
p⇒ K2[rd · p](K1 p ∨ K1 ¬p)

⇒ [rd]K2(K1 p ∨ K1 ¬p)
(R[]K)

The rank of a formula ψ and an action u is inductively defined as follows (see [5, Def. 7.38]):

rk(false) = 1

rk(p) = 1

rk(ψ1 ⊃ ψ2) = 1 + max{rk(ψ1), rk(ψ2)}
rk(Ka ψ) = 1 + rk(ψ)

rk([u]ψ) = (4 + rk(u)) · rk(ψ)

rk(u) = max{rk(·(u · q)) | q ∈ Q(u)}
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It holds that rk([u]Ka ψ) > rk([u]ψ), rk([u]ψ) > rk(·u), rk([u]ψ) > rk(ψ), rk([u]Ka ψ) > rk(Ka[u · q]ψ) for
all q ∈ Q(u), and rk([u1][u2]ψ) > rk([u1; u2]ψ).

The following lemmata hold for all ψ ∈ ΨP,A, u, u1, u2 ∈ UP,A, a ∈ A, and ΨP,A-multisets Γ and ∆. We first
show that Lem. 1 generalising the axiom rule (pA) to arbitrary formulæ carries over from G4P,A.

Lemma 5. `G4P,A[] ψ,Γ⇒ ∆, ψ.

Proof. We proceed by induction on the rank of ψ. For ψ ∈ ΦP,A the claim already holds in G4P,A by Lem. 1. We
only consider ψ = [u]p and ψ = [u]Ka ψ

′, the remaining cases are analogous.
Case ψ = [u]p: We have

.... I. H.
·u,Γ⇒ ·u, p,∆

.... I. H.
·u, p,Γ⇒ p,∆

·u, [u]p,Γ⇒ p,∆
(L[]p)

[u]p,Γ⇒ [u]p,∆
(R[]p)

Case ψ = [u]Ka ψ
′: We have

.... I. H.
(·u,Γ⇒ ·u, [u · q′]Ka ψ

′,∆)q′∈F (u)a

.... I. H.
(·u, ([u · q′′]Ka ψ

′)q′′∈F (u),Γ⇒ [u · q′]Ka ψ
′,∆)q′∈F (u)a

(·u, [u]Ka ψ
′,Γ⇒ [u · q′]Ka ψ

′,∆)q′∈F (u)a

(L[]K)

[u]Ka ψ
′,Γ⇒ [u]Ka ψ

′,∆
(R[]K)

Also, Lem. 2 showing the admissibility of (Weak) and (Contr) carries over from G4P,A.

Lemma 6. (Weak) and (Contr) are height-preservingly admissible for G4P,A[].

Proof. By induction on the height of the derivation.

Lemma 7. If `G4P,A[]
·u,Γ⇒ [u]ψ,∆, then `G4P,A[] Γ⇒ [u]ψ,∆.

Proof. We proceed by induction over the derivation of `G4P,A[]
·u,Γ⇒ [u]ψ,∆ and consider the last rule applied.

If therein [u]ψ is principal and ·u is added in the antecedent — as in (R[]p), (R[]false), and (R[]K) —, then (Contr)
is applied. If, e. g., (R[]p) is the last rule, then ψ = p and `G4P,A[]

·u, ·u,Γ⇒ p,∆, and

·u, ·u,Γ⇒ p,∆
·u,Γ⇒ p,∆

(Contr)

Γ⇒ [u]p,∆
(R[]p)

If [u]ψ is principal, but ·u is not added in the antecedent — as in (R[]⊃) and (R[][]) —, then the claim follows
directly from the induction hypothesis.

If [u]ψ is not principal and the rule for [u]ψ in the succedent adds ·u to the antecedent, we first (from bottom to
top) duplicate [u]ψ in the succedent by (Contr), then apply the “box”-rule matching ψ for adding ·u, and finally
apply (Weak):

. . .

·u,Γ⇒ [u]ψ,∆
·u,Γ,Γ′ ⇒ [u]ψ,∆′,∆

(Weak)

Γ⇒ [u]ψ, [u]ψ,∆
R[] . . .

Γ⇒ [u]ψ,∆
(Contr)

If [u]ψ is not principal and ·u is not added to the antecedent by the “box”-rule matching ψ, then the claim follows
directly from the induction hypothesis.

Lemma 8. All of the “box” rules in G4P,A[] are invertible, i. e.: if `G4P,A[] [u]p,Γ⇒ ∆, then `G4P,A[] Γ⇒ ·u,∆
and `G4P,A[] Γ, p⇒ ∆, &c.

Proof. Only a single rule applies to each possible form of [u]ψ in the antecedent and the succedent.

We append −1 to a rule name when applying it invertedly. The rules (LK[][]) and (RK[][]) for treating sequential
composition of epistemic actions and repeated boxes equally are both admissible and invertible:
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Lemma 9. (a) `G4P,A[] Ka[u1; u2]ψ,Γ⇒ ∆ if, and only if, `G4P,A[] Ka[u1][u2]ψ,Γ⇒ ∆.
(b) `G4P,A[] Γ⇒ Ka[u1; u2]ψ,∆ if, and only if, `G4P,A[] Γ⇒ Ka[u1][u2]ψ,∆.

Proof. (a) The only applicable rule with Ka[u1; u2]ψ and Ka[u1][u2]ψ principal is (LT) where the claim follows
immediately by (L[][]) or (L[][])−1.
(b) Only (RK) showsKa[u1; u2]ψ orKa[u1][u2]ψ principally. If the last rule for obtaining`G4P,A[] Γ⇒ Ka[u1; u2]ψ,
∆ has been (RK), then Γ = Ka Γ′,Γ′′ for some Γ′,Γ′′, and `G4P,A[] Ka Γ′ ⇒ [u1; u2]ψ. We thus have

Ka Γ′ ⇒ [u1; u2]ψ

Ka Γ′ ⇒ [u1][u2]ψ
(R[][])

Ka Γ′,Γ′′ ⇒ Ka[u1][u2]ψ,∆
(RK)

The reverse direction uses (R[][])−1.

We show that the rule (LR[]) is admissible. The rule always assumes the precondition of the contextual epistemic
action to hold; without this precondition, the rule would not apply to an empty succedent (see Lem. 7): The sequent
false⇒ is derivable, but [ff]false⇒ with ·ff = false must not be.

Lemma 10. If `G4P,A[] Γ⇒ ∆, then `G4P,A[]
·u, [u]Γ,Γ′ ⇒ [u]∆,∆′ for all u, Γ′, and ∆′.

Proof. We proceed by induction over the derivation of `G4P,A[] Γ⇒ ∆ and consider the last rule applied.
Case (pA): Then Γ = p,Γ′ and ∆ = p,∆′ for some p,Γ′,∆′. We have

.... Lem. 5
·u, ·u, [u]Γ′,Γ′′ ⇒ ·u, [u]∆′,∆′′ ·u, ·u, p, [u]Γ′,Γ′′ ⇒ p, [u]∆′,∆′′

(pA)

·u, ·u, [u]p, [u]Γ′,Γ′′ ⇒ p, [u]∆′,∆′′
(L[]p)

·u, [u]p, [u]Γ′,Γ′′ ⇒ [u]p, [u]∆′,∆′′
(R[]p)

Case (Lfalse): Then Γ = false,Γ′ for some Γ′. We have
.... Lem. 5

·u, [u]Γ′,Γ′′ ⇒ ·u, [u]∆′,∆′′

·u, [u]false, [u]Γ′,Γ′′ ⇒ [u]∆,∆′
(L[]false)

Case (L⊃): Then Γ = ψ1 ⊃ ψ2,Γ
′ for some ψ1, ψ2,Γ

′, and `G4P,A[] Γ′ ⇒ ψ1,∆ as well as `G4P,A[] ψ2,Γ
′ ⇒ ∆.

We have
.... I. H.

·u, [u]Γ′,Γ′′ ⇒ [u]ψ1, [u]∆,∆′

.... I. H.
·u, [u]ψ2, [u]Γ′,Γ′′ ⇒ [u]∆,∆′

·u, [u]ψ1 ⊃ ψ2, [u]Γ′,Γ′′ ⇒ [u]∆,∆′
(L[]⊃)

Case (R⊃): Then ∆ = ψ1 ⊃ ψ2,∆
′, for some ψ1, ψ2,∆

′, and `G4P,A[] ψ1,Γ⇒ ψ2,∆
′. We have

.... I. H.
·u, [u]ψ1, [u]Γ,Γ′ ⇒ [u]ψ2, [u]∆′,∆′′

·u, [u]Γ,Γ′ ⇒ [u]ψ1 ⊃ ψ2, [u]∆′,∆′′
(R[]⊃)

Case (LT): Then Γ = Ka ψ,Γ
′ for some a, ψ,Γ′, and `G4P,A[] ψ,Γ

′ ⇒ ∆. We have

.... Lem. 5
·u, [u]Γ′,Γ′′ ⇒ ·u, [u]∆,∆′

.... I. H.
·u, [u]ψ, [u]Γ′,Γ′′ ⇒ [u]∆,∆′

·u,Ka[u]ψ, [u]Γ′,Γ′′ ⇒ [u]∆,∆′
(LT)

·u, (Ka[u · q′]ψ)q′∈F (u)a , [u]Γ′,Γ′′ ⇒ [u]∆,∆′
(Weak)

·u, [u]Ka ψ, [u]Γ′,Γ′′ ⇒ [u]∆,∆′
(L[]K)

where the step (Weak) is possible since q(u) ∈ F (u)a by the reflexivity of F (u) and u · q(u) = u.
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Case (RK): Then Γ = Ka Γ′,Γ′′ and ∆ = Ka ψ,∆
′ for some a,Γ′,Γ′′, ψ,∆′, and `G4P,A[] Ka Γ′ ⇒ ψ. We have

.... Lem. 5
·u, [u]Γ′′,Γ′′′ ⇒

·u, [u]Ka ψ, [u]∆′,∆′′

.... I. H.
·(u · q′),

(
[u · q′]Ka Γ′ ⇒ [u · q′]ψ

)
q′∈F (u)a(

[u · q′]Ka Γ′ ⇒ [u · q′]ψ
)
q′∈F (u)a

Lem. 7(
(Ka[(u · q′) · q′′]Γ′)q′∈F (u)a,q′′∈F (u·q′)a ⇒ [u · q′]ψ

)
q′∈F (u)a

(L[]K)−1(
(Ka[u · q′′]Γ′)q′′∈F (u)a ⇒ [u · q′]ψ

)
q′∈F (u)a

(Contr)(·u, (Ka[u · q′]Γ′)q′′∈F (u)a , [u]Γ′′,Γ′′′ ⇒ Ka[u · q′]ψ, [u]∆′,∆′′
)
q′∈F (u)a

(RK)

·u, (Ka[u · q′′]Γ′)q′′∈F (u)a , [u]Γ′′,Γ′′′ ⇒ [u]Ka ψ, [u]∆′,∆′′
(R[]K)

·u, [u]Ka Γ′, [u]Γ′′,Γ′′′ ⇒ [u]Ka ψ, [u]∆′,∆′′
(L[]K)

where
(
(u · q′) · q′′

)
q′∈F (u)a,q′′∈F (u·q′)a

= (u · q′)q′∈F (u)a up to contraction by transitivity and reflexivity.

Case (L[]p): Then Γ = [u′]p,Γ′ for some u′, p,Γ′, and `G4P,A[] Γ′ ⇒ ·u′,∆ as well as `G4P,A[] Γ′, p⇒ ∆.

....∗0
·u, [u]Γ′,Γ′′ ⇒ ·(u; u′), [u]∆,∆′

.... I. H.
·u, [u]p, [u]Γ′,Γ′′ ⇒ [u]∆,∆′

·u, p, [u]Γ′,Γ′′ ⇒ [u]∆,∆′
(L[]p)−1

·u, [u; u′]p, [u]Γ′,Γ′′ ⇒ [u]∆,∆′
(L[]p)

·u, [u][u′]p, [u]Γ′,Γ′′ ⇒ [u]∆,∆′
(L[][])

where the derivation ∗0 is
.... Lem. 5

·u, [u]Γ′,Γ′′ ⇒ ·u, [u]∆,∆′

.... I. H.
·u, [u]Γ′,Γ′′ ⇒ [u]·u′, [u]∆,∆′

·u, [u]Γ′,Γ′′ ⇒ ·(u; u′), [u]∆,∆′
(R∧)

Case (R[]p): Then ∆ = [u′]p,∆′ for some u′, p,∆′, and `G4P,A[]
·u′,Γ⇒ p,∆′.

.... I. H.
·u, [u]·u′, [u]Γ,Γ′ ⇒ [u]p, [u]∆′,∆′′

·u, ·u, [u]·u′, [u]Γ,Γ′ ⇒ p, [u]∆′,∆′′
(R[]p)−1

·u, ·(u; u′), [u]Γ,Γ′ ⇒ p, [u]∆′,∆′′
(L∧)

·u, [u]Γ,Γ′ ⇒ [u; u′]p, [u]∆′,∆′′
(R[]p)

·u, [u]Γ,Γ′ ⇒ [u][u′]p, [u]∆′,∆′′
(R[][])

Case (L[]false): Then Γ = [u′]false,Γ′ for some u′,Γ′, and `G4P,A[] Γ′ ⇒ ·u′,∆. We have
....∗0

·u, [u]Γ′,Γ′′ ⇒ ·(u; u′), [u]∆,∆′

·u, [u; u′]false, [u]Γ′,Γ′′ ⇒ [u]∆,∆′
(L[]false)

·u, [u][u′]false, [u]Γ′,Γ′′ ⇒ [u]∆,∆′
(L[][])

where the derivation ∗0 is as in (L[]p).
Case (R[]false): Analogous to (L[]false).
Case (L[]⊃): Then Γ = [u′]ψ1 ⊃ ψ2,Γ

′ for some u′, ψ1, ψ2,Γ
′, and `G4P,A[] Γ′ ⇒ [u′]ψ1, ∆ as well as

`G4P,A[] [u′]ψ2,Γ
′ ⇒ ∆. We have

.... I. H.
·u, [u]Γ′,Γ′′ ⇒ [u][u′]ψ1, [u]∆,∆′

·u, [u]Γ′,Γ′′ ⇒ [u; u′]ψ1, [u]∆,∆′
(R[][])−1

.... I. H.
·u, [u][u′]ψ2, [u]Γ′,Γ′′ ⇒ [u]∆,∆′

·u, [u; u′]ψ2, [u]Γ′,Γ′′ ⇒ [u]∆,∆′
(L[][])−1

·u, [u; u′](ψ1 ⊃ ψ2), [u]Γ′,Γ′′ ⇒ [u]∆,∆′
(L[]⊃)

·u, [u][u′](ψ1 ⊃ ψ2), [u]Γ′,Γ′′ ⇒ [u]∆,∆′
(L[][])
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Case (R[]⊃): Analogous to (L[]⊃).
Case (L[]K): Then Γ = [u′]Ka ψ,Γ

′ for some u′, a, ψ,Γ′, and `G4P,A[] Γ′ ⇒ ·u′, ∆ as well as `G4P,A[]

(Ka[u′ · q′]ψ)q′∈F (u′)a ,Γ
′ ⇒ ∆. We have

....∗0
·u, [u]Γ′,Γ′′ ⇒ ·(u; u′), [u]∆,∆′

....∗1
·u, (Ka[(u; u′) · q′′]ψ)q′′∈F (u;u′)a , [u]Γ′,Γ′′ ⇒ [u]∆,∆′

·u, [u; u′]Ka ψ, [u]Γ′,Γ′′ ⇒ [u]∆,∆′
(L[]K)

·u, [u][u′]Ka ψ, [u]Γ′,Γ′′ ⇒ [u]∆,∆′
(L[][])

where the derivation ∗0 is as in the case of (L[]p) and and the derivation ∗1 is
.... I. H.

·u, ([u]Ka[u′ · q′]ψ)q′∈F (u′)a , [u]Γ′,Γ′′ ⇒ [u]∆,∆′

·u, (Ka[u · q][u′ · q′]ψ)q∈F (u)a,q′∈F (u′)a , [u]Γ′,Γ′′ ⇒ [u]∆,∆′
(L[]K)−1

·u, (Ka[(u; u′) · q′′]ψ)q′′∈F (u;u′)a , [u]Γ′,Γ′′ ⇒ [u]∆,∆′
(LK[][])−1

Case (R[]K): Analogous to (L[]K).
Case (L[][]): Then Γ = [u1][u2]Ka ψ,Γ

′ for some u1, u2, a, ψ, and `G4P,A[] [u1; u2]ψ,Γ′ ⇒ ∆. We have

.... I. H.
·u, [u][u1; u2]ψ, [u]Γ′,Γ′′ ⇒ [u]∆,∆′

·u, [u; (u1; u2)]ψ, [u]Γ′,Γ′′ ⇒ [u]∆,∆′
(L[][])−1

·u, [(u; u1); u2]ψ, [u]Γ′,Γ′′ ⇒ [u]∆,∆′
(A1)

·u, [u; u1][u2]ψ, [u]Γ′,Γ′′ ⇒ [u]∆,∆′
(L[][])

·u, [u][u1][u2]ψ, [u]Γ′,Γ′′ ⇒ [u]∆,∆′
(L[][])

Case (R[][]): Analogous to (L[][]).

We finally show that (Cut) is admissible for G4P,A[]. First, we prove the admissibility of the cut rule for
independent contexts Γ1,∆1 and Γ2,∆2:

Lemma 11. For any ψ ∈ ΨP,A and any multisets Γ1,Γ2,∆1,∆2 of ΨP,A-formulæ it holds that `G4P,A[] Γ1 ⇒
∆1, ψ and `G4P,A[] ψ,Γ2 ⇒ ∆2 implies `G4P,A[] Γ1,Γ2 ⇒ ∆1,∆2.

Proof. We proceed by a double induction over the rank rk(ψ) of ψ and the height of a deduction.
Case 1: At least one of the sequents of the hypothesis of the claim is an axiom. A proof of the form

p,Γ1 ⇒ ∆1, p
(pA)

....h
p,Γ2 ⇒ ∆2

p,Γ1,Γ2 ⇒ ∆1,∆2
(Cut)

is transformed into
....h

p,Γ2 ⇒ ∆2

p,Γ1,Γ2 ⇒ ∆1,∆2
(Weak)

Case 2: The cut-formula is a side formula ψ. We only give some illustrative cases, the transformations for all the
other rules is analogous.
Case 2–(RK): Then

....h1
Ka Γ′ ⇒ ψ′

Ka Γ′,Γ1 ⇒ Ka ψ
′,∆1, ψ

(RK)

....h2
ψ,Γ2 ⇒ ∆2

Ka Γ′,Γ1,Γ2 ⇒ Ka ψ
′,∆1,∆2

(Cut)
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is transformed into
....h1

Ka Γ′ ⇒ ψ′

Ka Γ′,Γ1,Γ2 ⇒ Ka ψ
′,∆1,∆2

(RK)

Case 2–(R⊃): Then
....h1

ψ′1,Γ1 ⇒ ψ′2,∆1, ψ

Γ1 ⇒ ψ′1 ⊃ ψ′2,∆1, ψ
(R⊃)

....h2
ψ,Γ2 ⇒ ∆2

Γ1,Γ2 ⇒ ψ′1 ⊃ ψ′2,∆1,∆2
(Cut)

is transformed into
....h1

ψ′1,Γ1 ⇒ ψ′2,∆1, ψ

....h2
ψ,Γ2 ⇒ ∆2

ψ′1,Γ1,Γ2 ⇒ ψ′2,∆1,∆2
(Cut)

Γ1,Γ2 ⇒ ψ′1 ⊃ ψ′2,∆1,∆2
(R⊃)

Case 2–(L[]K): Then
....h11

Γ1 ⇒ ·u,∆1, ψ

....h12
(Ka[u · q′]ψ′)q′∈F (u)a ,Γ1 ⇒ ∆1, ψ

[u]Ka ψ
′,Γ1 ⇒ ∆1, ψ

(L[]K)

....h2
ψ,Γ2 ⇒ ∆2

[u]Ka ψ
′,Γ1,Γ2 ⇒ ∆1,∆2

(Cut)

is transformed into
....h11

Γ1 ⇒ ·u,∆1, ψ

....h2
ψ,Γ2 ⇒ ∆2

Γ1,Γ2 ⇒ ·u,∆1,∆2
(Cut)

....h12
(Ka[u · q′]ψ′)q′∈F (u)a ,Γ1 ⇒ ∆1, ψ

....h2
ψ,Γ2 ⇒ ∆2

(Ka[u · q′]ψ′)q′∈F (u)a ,Γ1,Γ2 ⇒ ∆1,∆2
(Cut)

[u]Ka ψ
′,Γ1,Γ2 ⇒ ∆1,∆2

(L[]K)

Case 3: In the sequents of both premisses the cut-formula ψ is principal.
Case 3–S4: as for G4P,A, see Thm. 1
Case 3–(L[]p)–(R[]p): Then

....h1
·u,Γ1 ⇒ p,∆1

Γ1 ⇒ ∆1, [u]p
(R[]p)

....h21
Γ2 ⇒ ·u,∆2

....h22
p,Γ2 ⇒ ∆2

[u]p,Γ2 ⇒ ∆2
(L[]p)

Γ1,Γ2 ⇒ ∆1,∆2
(Cut)

is transformed into
....h1

·u,Γ1 ⇒ p,∆1

....h21
Γ2 ⇒ ·u,∆2

Γ1,Γ2 ⇒ ∆1,∆2, p
(Cut)

....h22
p,Γ2 ⇒ ∆2

Γ1,Γ2,Γ2 ⇒ ∆1,∆2,∆2
(Cut)

Γ1,Γ2 ⇒ ∆1,∆2
(Contr)

where rk(·u) ≤ rk(u) < rk([u]p) and rk(p) = 1 < rk([u]p).
Case 3–(L[]⊃)–(R[]⊃): Then

....h1
[u]ψ1,Γ1 ⇒ [u]ψ2,∆1

Γ1 ⇒ ∆1, [u](ψ1 ⊃ ψ2)
(R[]⊃)

....h21
Γ2 ⇒ [u]ψ1,∆2

....h22
[u]ψ2,Γ2 ⇒ ∆2

[u](ψ1 ⊃ ψ2),Γ2 ⇒ ∆2
(L[]⊃)

Γ1,Γ2 ⇒ ∆1,∆2
(Cut)
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is transformed into
....h21

Γ2 ⇒ [u]ψ1,∆2

....h1
Γ1, [u]ψ1 ⇒ ∆1, [u]ψ2

Γ1,Γ2 ⇒ ∆1,∆2, [u]ψ2
(Cut)

....h22
[u]ψ2,Γ2 ⇒ ∆2

Γ1,Γ2,Γ2 ⇒ ∆1,∆2,∆2
(Cut)

Γ1,Γ2 ⇒ ∆1,∆2
(Contr)

where rk(·u) ≤ rk(u) < rk([u](ψ1 ⊃ ψ2)) = (4+rk(u))·(1+max{rk(ψ1), rk(ψ2)}) and rk([u]ψ1), rk([u]ψ2) <
rk([u](ψ1 ⊃ ψ2)).
Case 3–(L[]K)–(R[]K): Then

....h1q′
(·u,Γ1 ⇒ Ka[u · q′]ψ,∆1)q′∈F (u)a

Γ1 ⇒ ∆1, [u]Ka ψ
(R[]K)

....h21
Γ2 ⇒ ·u,∆2

....h22
(Ka[u · q′]ψ)q′∈F (u)a ,Γ2 ⇒ ∆2

[u]Ka ψ,Γ2 ⇒ ∆2
(L[]K)

Γ1,Γ2 ⇒ ∆1,∆2
(Cut)

is transformed into

....h21

Γ2 ⇒ ∆2,
·u

....h1q′1
·u,Γ1 ⇒ ∆1,Ka[u · q′1]ψ

....h1q′2
·u,Γ1 ⇒ ∆1,Ka[u · q′2]ψ

....h22

(Ka[u · q′]ψ)q′∈F (u)a ,Γ2 ⇒ ∆2.... (Contr), (Cut),h1q′

(Ka[u · q′i]ψ)i∈{1,2},
·u,Γ1,Γ2 ⇒ ∆1,∆2

Ka[u · q′1]ψ, ·u,Γ1,
·u,Γ1,Γ2 ⇒ ∆1,∆1,∆2

(Cut)

Ka[u · q′1]ψ, ·u,Γ1,Γ2 ⇒ ∆1,∆2

(Contr)

·u,Γ1,
·u,Γ1,Γ2 ⇒ ∆1,∆1,∆2

(Cut)

·u,Γ1,Γ2 ⇒ ∆1,∆2

(Contr)

Γ1,Γ2,Γ2 ⇒ ∆1,∆2,∆2
(Cut)

Γ1,Γ2 ⇒ ∆1,∆2
(Contr)

where the reasoning for h1q′ is iterated over all q′ ∈ F (u)a as exemplified for h1q′1 and h1q′2 . It holds that rk(·u) ≤
rk(u) < rk([u]Ka ψ) = (4 + rk(u)) · (1 + rk(ψ)) and rk(Ka[u · q′]ψ) = 1 + (4 + rk(u)) · rk(ψ) < rk([u]Ka ψ).
Case 3–(L[][])–(R[][]): Then

....h1
Γ1 ⇒ ∆1, [u1; u2]ψ

Γ1 ⇒ ∆1, [u1][u2]ψ
(R[][])

....h2
[u1; u2]ψ,Γ2 ⇒ ∆2

[u1][u2]ψ,Γ2 ⇒ ∆2
(L[][])

Γ1,Γ2 ⇒ ∆1,∆2
(Cut)

is transformed into
....h1

Γ1 ⇒ ∆1, [u1; u2]ψ

....h2
[u1; u2]ψ,Γ2 ⇒ ∆2

Γ1,Γ2 ⇒ ∆1,∆2
(Cut)

where rk([u1; u2]ψ) < rk([u1][u2]ψ).

By admissibility of (Contr), see Lem. 6, the admissibility of (Cut) is a direct consequence of Lem. 11:

Theorem 3. (Cut) is admissible for G4P,A[].

Proof. We obtain `G4P,A[] Γ⇒ ∆ from `G4P,A[] Γ⇒ ∆, ψ and `G4P,A[] ψ,Γ⇒ ∆ as follows:

Γ⇒ ∆, ψ ψ,Γ⇒ ∆

Γ,Γ⇒ ∆,∆
Lem. 11

Γ⇒ ∆
(Contr)

Theorem 4. G4P,A[] is sound and complete for DS4P,A.
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Proof. For soundness, it suffices to check that each rule of G4P,A[] is valid in DS4P,A; for completeness, that each
axiom of the Hilbert-style axiomatisation Tab. 5 is derivable in G4P,A[] and that each rule is admissible. Modus
ponens (MP) follows from Thm. 3. For the axioms we only show the derivations of (red⊃) and (redK); all other
case are analogous.
Case (red⊃): We have

.... Lem. 5
ψ1 ⇒ ψ1, ψ2

.... Lem. 5
ψ1, ψ2 ⇒ ψ2

ψ1 ⊃ ψ2, ψ1 ⇒ ψ2
(L⊃)

[u](ψ1 ⊃ ψ2), [u]ψ1 ⇒ [u]ψ2
(LR[]),Lem. 7

[u](ψ1 ⊃ ψ2)⇒ [u]ψ1 ⊃ [u]ψ2
(R⊃)

.... Lem. 5
[u]ψ1 ⇒ [u]ψ1, [u]ψ2

.... Lem. 5
[u]ψ1, [u]ψ2 ⇒ [u]ψ2

[u]ψ1, [u]ψ1 ⊃ [u]ψ2 ⇒ [u]ψ2
(L⊃)

[u]ψ1 ⊃ [u]ψ2 ⇒ [u](ψ1 ⊃ ψ2)
(R[]⊃)

⇒ [u](ψ1 ⊃ ψ2)↔ ([u]ψ1 ⊃ [u]ψ2)
(R↔)

Case (redK): We have
....∗1

[u]Ka ψ ⇒ ·u ⊃
∧

q′∈F (u)a
Ka[u · q′]ψ

....∗2
·u ⊃

∧
q′∈F (u)a

Ka[u · q′]ψ ⇒ [u]Ka ψ

⇒ [u]Ka ψ ↔ ·u ⊃
∧

q′∈F (u)a
Ka[u · q′]ψ

(R↔)

with ∗1 given by

.... Lem. 5
·u⇒ ·u,

∧
q′∈F (u)a

Ka[u · q′]ψ

.... Lem. 5(·u, (Ka[u · q′]ψ)q′∈F (u)a ⇒ Ka[u · q]ψ
)
q∈F (u)a

·u, (Ka[u · q′]ψ)q′∈F (u)a ⇒
∧

q′∈F (u)a
Ka[u · q′]ψ (R∧)+

·u, [u]Ka ψ ⇒
∧

q′∈F (u)a
Ka[u · q′]ψ

(L[]K)

[u]Ka ψ ⇒ ·u ⊃
∧

q′∈F (u)a
Ka[u · q′]ψ

(R⊃)

where (R∧)+ denotes iterated application of (R∧), and ∗2 is given by

.... Lem. 5(·u⇒ ·u,Ka[u · q]ψ
)
q∈F (u)a

.... Lem. 5(·u, (Ka[u · q′]ψ)q′∈F (u)a ⇒ Ka[u · q]ψ
)
q∈F (u)a(·u,∧q′∈F (u)a

Ka[u · q′]ψ ⇒ Ka[u · q]ψ
)
q∈F (u)a

(L∧)+(·u, ·u ⊃ ∧q′∈F (u)a
Ka[u · q′]ψ ⇒ Ka[u · q]ψ

)
q∈F (u)a

(L⊃)

·u ⊃
∧

q′∈F (u)a
Ka[u · q′]ψ ⇒ [u]Ka ψ

(R[]K)

where (L∧)+ denotes iterated application of (L∧).

4 Conclusions
We presented the novel ordinary Gentzen-type calculus G4P,A[] for Dynamic Epistemic Logic. The special feature
of G4P,A[] is that — instead of internalising the accessibility relation — the rules for the action modality correspond
to the reduction rules in [26, 5]. The main results of this work are the admissibility of the cut rule and the
completeness of the calculus.

Currently, G4P,A[] is based on S4 modal logic. In the future, we want to extend our calculus to S5 and to
include rules for general knowledge and with further action combinators like selection and iteration. We also want
to integrate the calculus into a systematic software development approach for collective adaptive systems [45].

Acknowledgements. We thank the anonymous reviewers for their critical evaluations and their constructive
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rules. We also thank Rolf Hennicker for constructive and helpful discussions on dynamic epistemic logic.
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Lemma 12. For all p ∈ P , ψ,ψ1, ψ2 ∈ ΨP,A, u, u1, u2 ∈ UP,A, and q ∈ Q(u) it holds that

1. rk([u]p) > rk(·u ⊃ p)
2. rk([u](ψ1 ⊃ ψ2)) > rk([u]ψ1 ⊃ [u]ψ2)

3. rk([u]Ka ψ) > rk(·u ⊃ Ka[u]ψ)

4. rk([u]Ka ψ) > Ka[u · q]ψ
5. rk([u1][u2]ψ) > rk([u1; u2]ψ)

Proof. (1) rk([u]p) = (4 + rk(u)) · rk(p) = 4 + rk(u) >

1 + rk(·u) = 1 + max{rk(·u), rk(p)} = rk(·u ⊃ p)

(2) rk([u](ψ1 ⊃ ψ2)) = (4 + rk(u)) · rk(ψ1 ⊃ ψ2) = (4 + rk(u)) · (1 + max{rk(ψ1), rk(ψ2)}) >
1 + max{(4 + rk(u)) · rk(ψ1), (4 + rk(u)) · rk(ψ2)} = 1 + max{rk([u]ψ1), rk([u]ψ2)} =

rk([u]ψ1 ⊃ [u]ψ2)

(3) rk([u]Ka ψ) = (4 + rk(u)) · rk(Ka ψ) = (4 + rk(u)) · (1 + rk(ψ)) >

1 + max{rk(·u), 1 + (4 + rk(u)) · rk(ψ)} = 1 + max{rk(·u), 1 + rk([u]ψ)} =

1 + max{rk(·u), rk(Ka[u]ψ)} = rk(·u ⊃ Ka[u]ψ)

(4) rk([u]Ka ψ) = (4 + rk(u)) · rk(Ka ψ) = (4 + rk(u)) · (1 + rk(ψ)) >

1 + (4 + rk(u · q)) · rk(ψ) = 1 + rk([u · q]ψ) = rk(Ka[u · q]ψ)

(5) rk([u1][u2]ψ) = (4 + rk(u1)) · rk([u2]ψ) = (4 + rk(u1)) · (4 + rk(u2)) · rk(ψ) >

(4 + 1 + max{rk(u1), (4 + rk(u1)) · rk(u2)}) · rk(ψ) =

(4 + 1 + max
(
{rk(·(u1 · q1)) | q1 ∈ Q(u1)} ∪
{(4 + rk(u1 · q1)) · rk(·(u2 · q2))} | q1 ∈ Q(u1), q2 ∈ Q(u2)}

)
) · rk(ψ) =

(4 + max{1 + max{rk(·(u1 · q1)),
(4 + rk(u1 · q1)) · rk(·(u2 · q2))} | q1 ∈ Q(u1), q2 ∈ Q(u2)}) · rk(ψ) =

(4 + max{1 + max{rk(·(u1 · q1)), rk([u1 · q1]·(u2 · q2))} | q1 ∈ Q(u1), q2 ∈ Q(u2)}) · rk(ψ) =

(4 + max{rk(·(u1 · q1) ∧ [u1 · q1]·(u2 · q2)) | q1 ∈ Q(u1), q2 ∈ Q(u2)}) · rk(ψ) =

(4 + max{rk(·
(
(u1 · q1); (u2 · q2)

)
) | q1 ∈ Q(u1), q2 ∈ Q(u2)}) · rk(ψ) =

(4 + max{rk(·
(
(u1; u2) · (q1, q2)

)
) | (q1, q2) ∈ Q(u1; u2)}) · rk(ψ) =

(4 + rk(u1; u2)) · rk(ψ) = rk([u1; u2]ψ)
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