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Abstract. Large language models such as OpenAI’s GPT and Google’s
Bard offer new opportunities for supporting software engineering pro-
cesses. Large language model assisted software engineering promises to
support developers in a conversational way with expert knowledge over
the whole software lifecycle. Current applications range from require-
ments extraction, ambiguity resolution, code and test case generation,
code review and translation to verification and repair of software vulner-
abilities. In this paper we present our position on the potential benefits
and challenges associated with the adoption of language models in soft-
ware engineering. In particular, we focus on the possible applications of
large language models for requirements engineering, system design, code
and test generation, code quality reviews, and software process manage-
ment. We also give a short review of the state-of-the-art of large language
model support for software construction and illustrate our position by a
case study on the object-oriented development of a simple “search and
rescue” scenario.
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1 Introduction

Software engineering (SE) has traditionally been a highly manual, human-driven
process that involves a range of activities from requirements gathering and anal-
ysis, to system design, implementation, and testing. Recent advances in artificial
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intelligence (AI) have led to the development of powerful natural language pro-
cessing models such as OpenAI’s GPT [36,6,34] or Google’s Bard [42], known as
large language models (LLMs). For an overview on current LLMs see [32,49].

LLMs have opened a wide array of applications in various domains, including
applications in software engineering processes. In contrast to classical software
development support, textual interaction with an LLM-based development en-
vironment is not command-based but intent-based [33] and conversational: a
developer engages in a dialogue with the system in which she asks questions
or describes the desired outcome, but does not state how that outcome is con-
structed or calculated.

Vision Our vision is that the use of LLMs will lead to a paradigm shift in
software development. In “LLM-assisted software engineering” the LLM acts
together with other supporting bots and tools to help the human developers in
all phases of the software lifecycle. The LLM plays the role of development expert
whereas developers act as domain experts. Humans specify and clarify to the
LLM the intended requirements, judge and correct the software design proposals
and the code produced by the LLM-bot and other bots the LLM cooperates
with. In the validation and verification phase the LLM serves as testing and
verification expert. It autonomously generates tests, invokes appropriate testing
and verification goals and tools, and converses with the human for uncovering
unexpected issues with requirements and design specifications. Moreover, an
LLMmay also play the role of a software process expert and plan the forthcoming
development activities in agile development process.

However, to realize this vision many challenges still need to be overcome
ranging from integrating LLMs into the larger domain and technical context as
well as evaluating and testing the quality of the output generated by LLMs to
many further issues in practical use. If all these challenges can be resolved, we
see (at least) three scenarios of how our vision for integrating LLMs into software
engineering might play out: (1) integration of today’s LLMs into the standard
tooling for routine software development, (2) integration into the standard soft-
ware engineering processes so that LLMs take over some expert roles and thus
replace some human experts, and (3) integration into each stage of software de-
velopment so that the role of human software developers changes entirely to a
manager of AI-induced software development processes.

Contribution This paper presents our position on the potential benefits and
challenges of LLM-assisted software engineering, with a particular focus on re-
quirements engineering, system design, code and test generation, and code qual-
ity reviews. We give a short overview of the current (July 2023) state-of-the-art
of large language model support for software construction and illustrate our
position by exemplary dialogues with ChatGPT and Bard on object-oriented
development of a simple “search and rescue” scenario.

Our work provides an initial exploration into the application of LLMs through-
out the full software development lifecycle, encompassing requirements engineer-
ing, system design, development, and quality assurance. We also provide a case
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study with illustrative examples of LLM application in selected phases of the
software development lifecycle. By setting the scope that comprises the early
development phases, code and artifact generation, and the integration into soft-
ware engineering processes, we aim to stimulate a broader discussion and uncover
potential avenues for the application of LLMs in software engineering. We hope
this exploration can serve as a starting point for more comprehensive investiga-
tions in the future.

Outline The paper is organized as follows: Section 2 describes our view of the
prospects of software engineering applications of LLMs and the current state-
of-the-art. Section 3 reports on our case study dialogues with ChatGPT and
Bard for developing requirements, design and test cases of a “search and res-
cue” scenario. Section 4 discusses the challenges in adopting LLMs for software
engineering, Section 5 depicts scenarios that could evolve if some or all of the
challenges can be surpassed, and Section 6 concludes the paper.

2 LLMs in Software Engineering: Prospects and
State-of-the-Art

The idea of embodying human expertise in a software system goes back to the
roots of AI, to knowledge-based systems [20] and in particular expert systems [7].
Expert systems had applications in various domains, ranging from mathematics
to healthcare and also software engineering [5]. A further step is conversational
software engineering, i.e. engineering with the help of software-based systems
which are capable of processing natural language data to simulate a smart con-
versational process with humans [31]. The first ideas for conversational software
engineering go back to [38], which proposes an architecture for enabling assis-
tant agents to reply to questions asked by naive users about the structure and
functioning of graphical interfaces. [31] gives an overview on the field of conver-
sational agents and their impact in the field of software engineering, but LLMs
are not among the surveyed techniques nor are software development activities
among the surveyed applications.

LLM-assisted software engineering goes a step further and promises to sup-
port developers in a conversational way with expert knowledge along the whole
software lifecycle. Today, there are first experiments with LLMs helping software
developers with common software engineering tasks such as ambiguity resolu-
tion in software requirements, method name suggestion, test case prioritization,
code review, and log summarization [41]. In [43], a catalogue of prompt patterns
is proposed that guide software developers in performing common software en-
gineering activities using LLMs, such as disambiguating specification, creating
APIs, proposing software architectures, or simulating web application APIs.

The paper [37] presents an LLM-assisted prototype system, called the Pro-
grammer’s Assistant, that supports conversational interactions of developer and
system. The Programmer’s Assistant is based on a code-fluent large language
model and helps the developer by answering general programming questions,
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by generating context-relevant code, by enabling the model to exhibit emergent
behaviors, and by enabling users to ask follow-up questions that depend upon
their conversational and code contexts. The AutoScrum system [40] supports a
highly iterative Scrum process between LLM and humans where the LLM gener-
ates small chunks of text or code at a time, which are reviewed by the user and
then committed into the database. The GPT2SP system [17] helps in estimating
story points for implementing agile product backlogs.

In the following we will discuss how LLM-assisted software engineering can
support the classical phases of a software development life cycle (for AI-based
systems see, e.g., [19,18,44]), i.e., requirements engineering, design, validation
and verification. A case study with illustrative examples for some of the ap-
proaches outlined here is given in Section 3.

2.1 Requirements Engineering

Requirements Engineering (RE) is a critical process in the development of soft-
ware systems, involving the definition, documentation, and maintenance of soft-
ware requirements. This is a multidimensional task that requires robust infor-
mation retrieval, effective communication with diverse stakeholders, and the
production of detailed textual descriptions. It is an endeavor that can prove
challenging due to the complexity and breadth of the tasks involved. LLMs can
significantly facilitate this process, providing support in several areas of RE such
as requirements elicitation, specification extraction and refinement, and gener-
ating solution concepts and system architectures.

Extraction and Elicitation First experiments report that LLMs can be very
helpful in specification extraction from documents. According to a recent study
[46], LLMs that are coached by few-shot learning achieve better extraction results
than state-of-the-art techniques such as Jdoctor [4] and DocTer [45].

In addition to specification extraction, LLMs can also be used to support the
refinement of system specifications and other artifacts such as epics, stories, and
tasks in agile development. For instance, an LLM can be prompted to ask ques-
tions to identify and fill gaps in system specifications. This can be particularly
beneficial during the refinement processes in agile environments. Leveraging the
domain expertise exhibited by LLMs, the refinement process can be tailored to
different perspectives and roles such as development, testing, and security. For
instance, our case study (see Section 3) is a simple example for elaborating and
refining requirements to obtain a system design and test cases.

Moreover, the translation and summarization capabilities of LLMs can be
used to generate a system concept. By appropriately prompting the LLM, it can
organize the generated summary or system concept along certain axes, such as
system goals, stakeholders, functional and non-functional requirements, and so
on. Interestingly, LLMs can also be prompted to explicitly express any missing
information for certain aspects, thereby providing a comprehensive picture of
the system’s requirements.
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In terms of user interaction, LLMs can generate and elaborate on user flows in
an application. This can be especially beneficial in the absence of an interactive
system during the RE process. LLMs have demonstrated their capacity to derive
plausible user stories from system descriptions, thereby providing a tangible
rendering of the user experience.

Use Case Design In use case design LLMs exhibit considerable utility. For exam-
ple, given a comprehensive system specification, LLMs can ascertain the various
use cases present. This involves extraction and description of the specified inter-
actions between the users and the system, as well as the system’s response to
these interactions.

LLMs can construct illustrative use case and sequence diagrams from the
identified use cases. Use case diagrams provide a graphical representation of the
system’s intended interactions with its environment and users, making the sys-
tem’s functionality more understandable. Sequence diagrams detail the sequen-
tial order of interactions between different system components corresponding to
a specific use case, adding another layer of clarity to the system’s operations.

The use of LLMs in requirements engineering not only speeds up the pro-
cess but also reduces costs, making them an efficient alternative to manual la-
bor. This, coupled with the ability of LLMs to gather information regarding a
particular target artifact, offers an intriguing and promising avenue for future
exploration.

2.2 System Design

In the realm of system design, Large Language Models (LLMs) are emerging as
beneficial tools. Their capabilities range from proposing design alternatives to
identifying trade-offs. Given a description of a system’s functionalities, LLMs can
suggest varied design solutions, and generate diagrams for visual communication.
This enables designers to survey design alternatives more efficiently, thereby
expediting decision-making.

Architecture Large Language Models (LLMs) could play a crucial role in the
formulation of architectural views, which are vital in providing a comprehen-
sive overview of a system’s structure. These views take into consideration both
functional and non-functional requirements of a system, aiding in visualizing the
system’s organization and functionality. LLMs can also help in data modeling
and API design.

In creating architectural views, LLMs can explore and present a multitude of
possible architectural configurations. Each option is accompanied by an analysis
of its strengths and weaknesses, providing a balanced evaluation of each potential
architectural design. This ability to critically evaluate each option makes the
decision-making process more efficient and data-driven. In [47], it is shown how
this can be used for hardware-software Co-Design of Accelerators for deep neural
networks. The experimental results indicate a substantial speedup compared to
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a state-of-the-art method. [43] provide a prompt pattern that helps developers
in requesting different architectural possibilities from the LLM.

Beyond suggesting and evaluating design options, LLMs can also proactively
identify potential risks associated with each architectural option. Recognizing
these risks early in the design phase can prevent costly errors down the line.
Also, LLMs can potentially offer possible mitigation strategies to minimize these
risks, thereby adding another layer of robustness to the system design process.

A possible advantage of utilizing LLMs in this way is the alignment it creates
between system design choices and the system’s requirements. This harmoniza-
tion ensures that the chosen architectural design adequately meets the system’s
functional and non-functional requirements, leading to a more effective and opti-
mized system. If there are trade-offs involved, LLMs can help to document these
and support decision making in the architectural design process.

The capability of LLMs to align requirements and design is also particularly
valuable in architectural reviews. It may enable a streamlined and efficient review
process, with LLMs effectively serving as tools for cross-verifying the alignment
between system requirements and design choices.

Data Modeling LLMs can identify and define core entities within a system. Core
entities in a system refer to the main components or elements that make up
that system, and understanding these entities and their interactions is crucial
for effective system design and development.

When using LLMs for identifying and defining core entities, we are essen-
tially harnessing their capability to understand and interpret natural language
descriptions of a system. Given a detailed description of the system’s features,
functions, and behaviors, an LLM could potentially highlight what the central
entities are, based on frequency of mentions, context, and importance in achiev-
ing system functionalities.

LLMs can generate relational data models from context descriptions. These
models can be expressed in domain-specific languages like mermaid.js3 for visual
representation. LLMs can also accommodate different levels of abstraction in
data models, such as those seen in ELT or ETL pipelines.

API Design Based on use cases that are identified and described in requirements
engineering, LLMs can further assist in the design process by defining endpoints
for a corresponding REST API. In a web application, endpoints are the URIs
(Uniform Resource Identifiers) where specific resources reside and can be manip-
ulated via HTTP methods such as GET, POST, PUT, and DELETE. An LLM
can derive these endpoints from the use cases, ensuring that the functionality
encapsulated in each endpoint aligns with a specific user-system interaction.

By extracting use cases and generating REST endpoints from system speci-
fications, LLMs streamline the design process, reducing time and effort required
and minimizing the potential for human error. LLMs can also help the designers
to create ansd simulate APIs (see, e.g., the corresponding patterns in [43]). This

3 https://github.com/mermaid-js/mermaid

https://github.com/mermaid-js/mermaid
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allows designers to devote more attention to other critical aspects of the system
design, such as performance optimization and user experience.

2.3 Code Generation

Code generation and testing are key components of the implementation phase
in software engineering. LLMs show remarkable capabilities in code generation,
given a distinctive task specification for a small enough coding task [12]. We
think that the combination of these coding capabilities with systematic problem
decomposition assisted by LLMs could greatly expand the application domain
from only coding singular tasks to providing code artifacts for large, complex,
coordinated software systems.

LLMs have shown promising results in generating code snippets and test
cases, tailored to specific requirements and design specifications. E.g., by com-
bining code snippet generation of ChatGPT with tools for Language-Driven
Engineering and modelchecking, [8] achieve a no-code development of a point-
and-click adventure web game. Other interesting LLM-applications are generat-
ing code guided by test-driven user-intent formalization [24], or translating code
with the help of LLM-based transpilers [21]. By automating such tasks, software
engineers can focus more on solving complex problems while trusting the LLMs
for routine and repetitive tasks.

These approaches can be combined with artifacts from the previous phases.
For example, it is possible to create unit tests for REST endpoints and their re-
spective description and sequence diagrams. Following for example a test-driven
development approach, this test can the be passed to a subsequent call to the
LLM asking for an implementation based on the specification that aims to pass
the unit test.

2.4 Quality Assurance, Testing and Verification

As software projects grow in size and complexity, code reviews become crucial
to maintaining the quality and integrity of the codebase. LLMs can be employed
to conduct automatic code quality assessments, identifying potential problems,
suggesting improvements, and providing recommendations based on best prac-
tices. There are several approaches for enhancing code review using LLMs, e.g.
for providing useful suggestions on human-written code [30] or for supporting
code review of pull requests of GitHub workflows [16]. This can lead to a more ef-
ficient code review process and improve overall code quality. However, currently
ChatGPT can recognize some security code flaws but – not being trained for
such applications – it recognizes many false positives so that its output has to
be examined with great care [1].

The paper [14] provides an overview of conversational and potentially au-
tonomous testing agents and proposes a framework for conversational testing
agents that are potentially autonomous and supported by existing automated
testing techniques. Such an LLM-system could not only become an intelligent
testing partner to a human software engineer, but also be able to handle typical
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testing related tasks autonomously. Similarly, in [39] an adaptive test generation
technique is presented that uses an off-the-shelf LLM for automatically generat-
ing unit tests. Still, tests generated by ChatGPT often suffer from correctness
issues [48]. As a remedy, in [48] an iterative test refiner is proposed for reducing
compilation errors and incorrect assertions of ChatGPT-generated tests.

Furthermore, as current programming benchmarks are limited in both quan-
tity and quality, Liu et al. [27] present a ChatGPT-based evaluation frame-
work, called EvalPlus, for automatically generating and diversifying test inputs.
The authors show that EvalPlus can considerably improve the popular HU-
MANEVAL benchmark [12].

Combining LLMs with automated verification tools is a promising avenue. In
[11], a symbolic bounded model checker cooperates with an LLM for debugging
and verifying code. If the model checker detects a violation of a memory safety
property, the code is fed to the LLM for repair. The corrected code is passed
again to the model checker for a verification check. As mentioned above, in [8]
model checking ensures the correctness of an LLM-generated web application.

3 Case Study

For illustrating the software development abilities of LLMs we considered a sim-
ple search-and-rescue scenario (see [3]) and focus on the early phases, i.e., re-
quirements engineering and design as well as testing.

In the scenario, a robot agent searches for victims in a probabilistic environ-
ment over a discrete graph of locations. Locations can be in fires that can ignite
and cease. The goal of the agent is to rescue the victims and to bring them to
safe locations. Note that a version of our example is accessible via the web (e.g.
[3]), and therefore potentially part of ChatGPT’s training data.

By interacting with ChatGPT and also with Bard we conducted two sys-
tematic developments consisting of a (textual) requirements specification and
an object-oriented design specification in form of a class diagram and of pseudo-
code of the agent behavior. With Bard, we also developed the basic unit tests
and system tests of the scenario. In the following we present excerpts of these
developments and comment the results.

The conversation with ChatGPT-3.5, July 20, 2023 version was held on July
25, 2023 and the one with Bard on July 16, 2023. See the footnotes for links to
the conversation with ChatGPT 4 and the one with Bard 5.

3.1 Requirements

First, we ask ChatGPT and Bard whether they can model a search and rescue
scenario as a simulation for autonomous planning agents. Both give appropriate

4 ChatGPT https://chat.openai.com/share/a93d844d-e542-4997-a7d5-0d254e0

07c08
5 Bard https://g.co/bard/share/c51838296a3c

https://chat.openai.com/share/a93d844d-e542-4997-a7d5-0d254e007c08
https://chat.openai.com/share/a93d844d-e542-4997-a7d5-0d254e007c08
https://g.co/bard/share/c51838296a3c
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Chat GPT. Bard.

Fig. 1. Search-and-Rescue Requirements (excerpts).

Chat GPT. Bard.

Fig. 2. Simplified Search-and-Rescue Requirements (excerpts).

answers: Bard proposes an abstract earthquake scenario and some of the chal-
lenges for a simulation such as the complexity of the environment; ChatGPT
provides a more operational description of the key elements of the simulation
(see Figure 1).

Then we ask both LLMs to instantiate the abstract model to just one agent
with global observability and an environment consisting of a graph-like structure
of locations where locations may be on fire. Again both LLMs answer with
appropriate textual requirements descriptions, the one of ChatGPT being more
concrete and proposing also two possible graph search algorithms (see Figure 2).

3.2 Design

For developing a design specification, first we ask the LLMs to provide a UML
diagram of the scenario domain. Both LLMs present plausible class diagrams
and corresponding pseudocode of the important classes and their relationships.
Asked about operations, they also add appropriate methods. Concerning the
additional constraint that the agent should extinguish the fire when it moves
to a location in fire, ChatGPT adds a corresponding clause to the body of the
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Chat GPT Move operation. Bard Move operation.

Fig. 3. Search-and-Rescue Class Diagram (excerpts).

Chat GPT. Bard.

Fig. 4. Search-and-Rescue Agent Behavior (excerpts).

“move” operation (see Figure 3 left) whereas Bard remains abstract (see Figure
3 right) and mentions the constraint only in the documentation.

Then we want to construct an online planning algorithm for the agent to per-
form effective rescuing. Both LLMs give informed discussions about possible al-
gorithms. ChatGPT proposes A* search and mentions also “planning algorithms
like D* Lite, Incremental A*, or variants of Monte Carlo Tree Search (MCTS).”
Bard proposes A* search and Dijkstra’s shortest path algorithm as well as proba-
bilistic and Bayesian planning; it also mentions MCTS for probabilistic scenarios.
Concerning MCTS, both LLMs provide appropriate pseudocode for MCTS and
also for the behavior of the agent using MCTS for online planning. ChatGPT
is again more concrete and considers the constraint concerning the fires (see
the last two lines of Figure 4 left) whereas Bard remains abstract (see Figure 4
right).
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3.3 Testing

Asked about unit and system tests, both LLMs proposed relevant tests for both
test categories. Again Bard is more abstract and proposes unit tests correspond-
ing to the abstract operations of the MAPE loop whereas ChatGPT defines more
concrete tests using the unittest testing framework. Concerning the system tests,
ChatGPT offers a simple concrete scenario (consisting of three locations and two
victims) whereas Bard defines abstract tests for a simulated and a real-world en-
vironment (see Figure 5).

Chat GPT Test Scenario. Bard System Tests.

Fig. 5. Search-and-Rescue Tests (excerpts).

3.4 Discussion

We observed interesting and stimulating generated outputs for the software engi-
neering tasks in our case study. The example is quite simplistic, so the scalability
of our “naive” prompting approach remains to be evaluated. At times, we ob-
served a difference between the generated artifacts (e.g. the relation multiplicities
in a class diagram) and our expectations. We attribute this to ambiguities in our
description of the requirements. We think that systematic and potentially au-
tomated evaluation of such qualitative divergences is a highly interesting and
valuable direction for future research (see also Section 4.2 for challenges of eval-
uating generated output).

4 Challenges in Adopting LLMs for Software Engineering

In the following we outline several challenges that need to be addressed when
adopting LLMs in software engineering.

4.1 Integration with Large Context

Integrating LLMs into a larger domain and its context, such as existing pro-
cesses, background knowledge, technical environments, and tools, is challenging.
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LLMs need to understand and capture the context-specific information to pro-
vide meaningful and actionable insights to software engineers, requiring new
methods and processes for contextualization [35].

Divide and Conquer Utilizing a large language model necessitates an organized,
progressive approach, particularly for tackling intricate tasks such as the de-
sign of a software architecture. The first step entails employing the model to
construct a high-level plan. This involves identifying the key components of the
architecture, comprehending how these parts interrelate, and outlining the ba-
sic procedures necessary to create the structure. It is crucial at this stage to
recognize that the output will be a broad overview, serving as a roadmap for
subsequent, more detailed design stages.

After crafting a high-level plan the model is directed to focus on each com-
ponent individually. This involves generating detailed information for each part,
treating them as separate tasks. This methodology enables a deeper exploration
of the unique characteristics of each component.

Several open-source projects explore LLM-based automated decomposition
for software engineering, e.g., AutoGPT6, MetaGPT7, GPT-Synthesizer8, and
gpt-engineer9. However, finding the “right” level of abstraction remains chal-
lenging. For further evaluation or even automating and improving abstraction
level decisions, introducing quantifiable or ranking (comparative) quality mea-
surements would be highly valuable. These metrics could assess the relevance,
coherence, and depth of the generated content w.r.t. a given task, offering poten-
tial avenues for future research. See also the following Section 4.2 on evaluation
and testing of generative output for further elaboration on this matter.

Scaling to Large Context Managing large domain contexts within the constraint
of LLM’s limited prompt sizes poses a significant challenge. Prompt engineering,
leveraging known relations and abstractions in software engineering, can help
circumvent this issue. By distilling complex concepts into concise, structured
prompts, we can guide the model’s responses more effectively. Additionally, vec-
tor database approaches that utilize embeddings of code and documentation ar-
tifacts can help manage these large contexts. These embeddings capture seman-
tic information in a compact form, aiding in maintaining contextual continuity
across prompts.

Combining LLMs with knowledge graphs is another promising avenue to scale
to larger contexts [35]. Knowledge graphs provide structured and interconnected
representations of domain knowledge, which can be leveraged to provide con-
text to LLMs beyond their prompt limits. The graph’s nodes and edges can be
transformed into prompts or fed into the model as needed to support context-
rich generation tasks. Creating heuristics of how to organize prompt information

6 https://github.com/Significant-Gravitas/Auto-GPT
7 https://github.com/geekan/MetaGPT
8 https://github.com/RoboCoachTechnologies/GPT-Synthesizer
9 https://github.com/AntonOsika/gpt-engineer

https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/geekan/MetaGPT
https://github.com/RoboCoachTechnologies/GPT-Synthesizer
https://github.com/AntonOsika/gpt-engineer
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from knowledge graphs, or how to use LLM’s agentic capabilities to derive these
heuristics contextually on the fly seems a large area for future research. Also,
incorporating knowledge graphs already when training or finetuning LLMs is an
interesting but challenging direction.

Semantic Interfaces for Natural Language Artifacts When managing numerous
components in a larger artifact, the task of keeping track of their interfaces and
relations can become highly complex. The context window of a large language
model (LLM) is limited, making it unfeasible to hold all the component details
simultaneously. However, if each component is well-defined, it is not necessary
to retain all details; maintaining a record of their interfaces in the LLM con-
text would suffice. In addition to generating the complete component, it is thus
pivotal to create a succinct interface for the LLM context.

This concept is well-established for formal artifacts such as code, where inter-
faces denote a defined point of interaction between two components. However,
the notion of an interface becomes nebulous when dealing with natural lan-
guage artifacts, which are inherently ambiguous and lack the structured nature
of formal code. The challenge lies in defining these interfaces for natural lan-
guage artifacts. LLMs, with their robust language understanding capabilities,
could be a valuable tool for creating interfaces for these ambiguous, natural-
language-based artifacts. However, the method of achieving this remains unclear
and requires further exploration. This could be a promising avenue of research
for more efficient utilization of LLMs in complex, multi-component tasks.

4.2 Evaluating and Testing Generative Outputs

Evaluating the output generated by LLMs is a crucial aspect of their deployment.
Primarily, this involves measuring the factuality, relevance, coherence, and depth
of the generated content. LLMs are known to suffer from so called hallucinations
that create seemingly plausible but factually or logically wrong outputs [2,22].
Therefore, accurately evaluating facual correctness of generated outputs is highly
important. However, it is unclear how to perform such an evaluation without hu-
man labor in the abscence of an already labeled ground truth dataset. Relevance
assesses whether the output corresponds well with the input prompt, coherence
measures the logical consistency and fluidity of the response, and depth gauges
the level of detail and complexity. These evaluations can be conducted both
qualitatively, through human reviewers, and quantitatively, using metrics such
as BLEU, ROUGE (for references see [9]), and METEOR [25]. Furthermore,
evaluation might also consider the model’s ability to avoid generating harmful
or biased content. However, these metrics should be used in combination with
human judgment, as they may not capture all nuances of language and context.
For a recent survey on LLM evaluation, see [10].

A novel challenge arises when the output from the LLM is “better” than
the ground truth, which refers to the model generating a response that is more
accurate, insightful, or comprehensive than the expected answer. In this case,
traditional metrics that penalize divergence from the ground truth could unfairly
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penalize the model. Therefore, flexible evaluation methods that can appreciate
and reward such enhancements are necessary. One approach could be to utilize
expert human reviewers who can appreciate such improvements in the context of
the task at hand. Additionally, considering the use of “range-based” or “bucket”
scores, which allow for a certain degree of deviation from the ground truth with-
out penalty, could be another viable approach. These evaluations should be
designed in a way that they encourage innovative and high-quality responses,
rather than just adherence to a predefined answer. However, this area remains
largely unexplored and warrants further research.

4.3 Challenges in Practical Use

Evaluating Value Creation and Utility In some instances, the time invested in
scrutinizing, understanding, and modifying the output generated by an LLM
could potentially outweigh the advantages of automation. It is therefore essential
to identify the scenarios where LLMs can add true value and efficiency in terms
of time and resources. In these scenarios, LLMs can augment human productivity
by automating tasks such as code generation, bug detection, and documentation,
among others.

Accountability for Generated Content Maintaining human accountability for the
outputs generated by LLMs is of utmost importance, particularly when auto-
matic evaluation of generated output remains an open research issue (as dis-
cussed in Section 4.2). These models, while powerful, are tools that aid in various
tasks, and the ultimate responsibility for their application rests with the humans
employing them. This accountability is pivotal in ensuring ethical, lawful, and
appropriate use of LLMs. Particularly in fields like software engineering, where
potential consequences of errors can be significant, human oversight of model
outputs is crucial. This situation accentuates the importance of robust review
capabilities within systems deploying LLMs. As long as the automatic evalua-
tion of generated outputs is not entirely reliable or comprehensive, the human
review and revision of these outputs not only ensure quality but also embed a
layer of human judgement and responsibility, adding a vital layer of safety and
accountability.

Legal Uncertainty and Copyright Issues Legal issues regarding the copyright of
content generated by large language models (LLMs) represent a complex and as
yet unresolved area of discussion. Traditional copyright laws are designed around
human authorship, and how these apply to machine-generated content remains a
matter of debate. Questions about who owns the rights to the content generated
by these models – the developers of the model, the users who prompt the gener-
ation, or perhaps no one at all – are currently under examination. Furthermore,
there is the question of whether LLM outputs, if they inadvertently reproduce
or mimic copyrighted content, constitute a violation of existing copyright laws.
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Privacy Concerns Privacy and personally identifiable information (PII) consid-
erations are paramount when using large language models (LLMs) in a profes-
sional context, such as in requirements engineering, system design, code genera-
tion, and quality assurance in software engineering. Since these models learn from
the data they are trained on, there is a risk they may inadvertently memorize
and reproduce sensitive information. In a professional setting, this could lead
to the disclosure of confidential business information, proprietary algorithms,
or personal data of stakeholders, potentially violating privacy laws and ethical
guidelines. As LLMs increasingly find use in diverse fields, it becomes crucial to
implement robust mechanisms to prevent the leakage of sensitive information.
These might include data anonymization techniques, strict access controls, and
regular audits. Also, clear guidelines about what types of data should and should
not be input into the model are essential. Given the seriousness of these con-
cerns, the ongoing development and refinement of privacy-preserving techniques
in AI models represent an area of significant importance in the field of AI ethics
and governance [23,26].

Hosting open-source LLMs in private environments can help alleviate these
concerns. This allows organizations to keep their data in a secure network, re-
ducing the risk of data breaches. Strict access controls and security protocols
can further enhance data security.

Model Efficiency Increasing the resource efficiency of large language models
(LLMs) is a vital consideration, especially as the scale and complexity of these
models continue to grow. One way to achieve this is through model compression
techniques, which aim to reduce the size of the model without significantly im-
pacting its performance. Methods such as quantization, pruning, and knowledge
distillation are commonly employed. Quantization reduces the precision of the
numbers used in the model’s computations, effectively shrinking its size [13].
Pruning involves removing less important connections in the model’s neural net-
work, leading to a sparser but still effective model [15]. Knowledge distillation, on
the other hand, is a process where a smaller model (student) is trained to mimic
the behavior of a larger model (teacher), thereby achieving similar performance
with less computational resources. These techniques can hopefully lead to more
efficient LLMs that maintain high performance while reducing both the compu-
tational power required and the currently associated resource requirements and
carbon footprint [29].

5 What Could Happen if the Challenges are Resolved?

So far we have been concerned with the software engineering applications of
LLMs at hand. As the discipline is shifting, we see major opportunities as well
as severe challenges. Naturally, no one can predict future developments that
this new technology might bring about, but we can imagine various scenarios
of how the integration of LLMs into software engineering might play out; we
might mostly sort these scenarios by the (necessary) involvement of LLMs in all
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standard tasks of software engineering and likewise by the impact they might
have on the discipline.

The simplest assumption we might make is just based on the capabilities
we have seen LLMs exert today. Through integration of today’s LLMs into the
standard tooling for routine software development, we achieve Scenario 1.

Scenario 1 (A Better Bat) LLMs become integrated into standard tools for
software engineering. As such, they augment software IDEs with features like
integrated code suggestion, adaptation of code samples from the web, or the gen-
eration of documentation from code (or vice versa). As sketched throughout this
paper, they might also augment tools concerned with requirement analysis (by
allowing to automatically generate summaries or check for inconsistencies in
given descriptions) and thus aid and accelerate the whole software engineering
life cycle. However, the standard processes involved in software engineering re-
main intact (albeit somewhat shifted w.r.t. the distribution of human effort) and
well-known models for software engineering still apply. The long-term impact of
LLMs is somewhat comparable to that of more powerful debuggers or better IDEs
in the past.

As long as LLMs are not entirely disregarded as a technology, the achievement
of Scenario 1 appears almost inevitable.

Scenario 2 (A Game Changer) LLMs become integrated into the standard
model for software engineering processes and profoundly alter the way software
is developed. Standard techniques (and standard implementations of them) are
established that can reform or entirely replace parts of the software engineering
process. As such, variants of LLMs might take over some roles (providing an
AI scrum master, e.g.) or tasks (writing and updating documentation, e.g.).
Education for software developers now has to include correctly dealing with LLMs
and shift focus towards the remaining “human tasks” in software development.
However, the produced artifacts (the compiled software, documentation, etc.) still
closely resemble those generated before and compatibility with earlier products
and also with earlier processes is maintained: Human developers are easily able to
alter (and, if necessary, emulate) any machine output and scale LLM integration
according to their preference. Through more powerful development processes, new
software products may emerge whose complexity was previously not feasible for
development teams not using LLM-enhanced processes (quickly coding against a
wide range of semantically similar but syntactically diverse APIs, e.g.). The long-
term impact of LLMs is somewhat comparable to that of (increasingly) higher
programming languages or development paradigms in the past.

For this range of APIs we might imagine a smart home device that can be
enabled to talk to refrigerators without the need for a standardized API for
refrigerators, but by describing the desired interaction as well as a long list
of vendor-specific API calls and thereby generating modules for hundreds or
thousand different devices within a reasonable time frame. However, what we
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end up with is still just a large code base that could have been written by a
(albeit larger) human team.

Scenario 3 (An Entirely New Game) LLMs fundamentally change the way
we think about software and software development. LLMs become integrated in
any stage of software development (and might even be the glue that keeps the
process together or drives the process in the first place) and/or integrated into
many artifacts that are produced. The pervasive accessibility of LLMs blurs the
border between the artifact and the process that generates it, as capable LLMs
can further develop (parts of) the software at any stage without human interac-
tion. As such, LLMs become an inalienable part of any software product as even
shipped software might self-adapt according to a specific user’s preference via an
LLM that can re-program (parts of) the original product or utilize LLMs for
any means of inter-application communication (instead of protocols and APIs in
today’s sense). Software in today’s sense is either reduced to work as a founda-
tion of an LLM-based software ecosystem (similar to how Unix commands sup-
port today’s software products) and/or its functionality is quickly re-implemented
within that ecosystem. Akin to the vision of software gardening replacing soft-
ware engineering [18], the role of human software developers changes entirely
to a manager of AI-induced software development processes. These big changes
in the software ecosystem are either justified by vastly increased productivity or
entirely new capabilities only reached by this new kind of software.

Naturally, what new capabilities software might reach in the future remains
yet to be seen. However, we feel positive that more powerful development paradigms
enable more powerful software products in the long run.10

As a possible endpoint to that line of thought, Liventsev et al. [28] already
invoke the vision of “fully autonomous programming” (for now) by running an
LLM-based loop for improving a sought-for program aided by prompt generation
provided by a genetic algorithm.

6 Concluding Remarks

LLM-assisted software engineering holds a significant potential for revolutioniz-
ing software processes. However, there are challenges that need to be addressed,
such as evaluating generative output, integration with business and technical
contexts, and understanding the practical implications of automation. As re-
search continues to advance in this area, we can expect considerable improve-
ments in the right direction, providing new opportunities for the software engi-
neering domain to embrace the power of large language models.

Addressing the challenges discussed, future work in LLM-assisted software
engineering should delve deeper into using LLMs across various facets of the
software process lifecycle that have not yet been thoroughly explored. Beyond

10 Despite the validity of the Church–Turing thesis, more powerful tools enable more
products in practice.
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the application examples we outlined in this work, additional application areas
include implementation of generated system designs, operations and monitor-
ing, where LLMs could potentially contribute to automated incident detection,
root cause analysis, and decision support for resolution strategies. Combining
verification tools with LLMs and applying LLMs to system security are other
promising directions. Additionally, there is the domain of data engineering where
LLMs could assist in tasks like data cleaning, transformation, and metadata man-
agement. Furthermore, leveraging LLMs in analytics to generate insights from
complex and diverse data sets, automating data interpretation, or enhancing
decision-making processes also presents compelling research opportunities.
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