
Towards Systematically Engineering
Autonomous Systems using Reinforcement

Learning and Planning

Draft.
Final version in

Pedro López-Garćıa, John P. Gallagher, Roberto Giacobazzi (eds.):
Analysis, Verification and Transformation for Declarative

Programming and Intelligent Systems 2023: 281-306

Martin Wirsing1 and Lenz Belzner2

1 Ludwig-Maximilians-Universität München, Munich, Germany wirsing@lmu.de
2 Technische Hochschule Ingolstadt, Ingolstadt, Germany lenz.belzner@thi.de

Abstract. Autonomous systems need to be able dynamically adapt to
changing requirements and environmental conditions without redeploy-
ment and without interruption of the systems functionality. The EU
project ASCENS has developed a comprehensive suite of foundational
theories and methods for building autonomic systems. In this paper we
specialise the EDLC process model of ASCENS to deal with planning
and reinforcement learning techniques. We present the “AIDL” life cycle
and illustrate it with two case studies: simulation-based online planning
and the PSyCo reinforcement learning approach for synthesizing agent
policies from hard and soft requirements. Related work and potential
avenues for future research are discussed.

Dedicated to Manuel Hermenegildo

1 Introduction

An autonomous system is able to adapt at runtime to uncertain
and dynamically changing environments and to new requirements.
Autonomous systems can be single autonomous entities or collective
ones that consist of several collaborating entities. Classical examples
are intelligent agents [67], and autonomic systems [26], more recent
are ensembles [64,28], and collective adaptive systems [33].

Reinforcement learning [53] and online planning are methods for
automatically computing sequential controllers - so-called policies
- of autonomous systems. Given an uncertain probabilistic environ-
ment, reinforcement learning is about learning from interactions with

2 Authors Suppressed Due to Excessive Length

the environment. It is an interactive process with the goal to learn a
policy that maximises the sum of future rewards. Planning requires
a (simulation) model and is a “computational process that takes a
model as input and produces or improves a policy for interacting
with the modelled environment”.

Systematic engineering approaches for intelligent agents and multi-
agent systems such as Gaia [68], Tropos [14] support a sequential de-
velopment process or focus on software architecture such as IBM’s
MAPE-K architecture [30] for autonomic systems.

The modern industrial agile development approaches MLOps [3]
and AIOps [2] aim at machine learning methods for big data ap-
plications and IT operations. [22] proposes an engineering process
exhibiting the central activities necessary for the successful applica-
tion of machine learning.

The EU project ASCENS [1,65] has developed a comprehensive
suite of foundational theories and methods for building autonomic
systems. The ASCENS methods cover system specification and de-
velopment as well as monitoring and dynamic system adaptation.
Also machine-learning approaches have been studied in ASCENS
but they were not systematically related to the software development
life cycle. In particular, the ASCENS project has proposed the En-
semble Development Life Cycle EDLC [27] for engineering adaptive
and autonomous systems. The EDLC is an agile process covering the
whole software life cycle including development and runtime phases
and provides mechanisms for enabling system changes at runtime.

In this paper we review the EDLC life cycle and specialise it to
the construction of autonomous policies using planning and rein-
forcement learning techniques. We call this life cycle “AIDL” and
illustrate it with two existing case studies: simulation-based online
planning for autonomously adapting the behaviour of a robot [10]
and the PSyCo reinforcement learning approach for synthesizing
agent policies from hard and soft requirements [12]. Related work
and future directions for research are discussed.

Personal Note. Martin has known Manuel for almost 20 years when
they met and contributed to initiatives of the Future Emerging
Technologies section of the European Commission, e.g. in 2005 at
the “Beyond-the-Horizon” Workshop on Anticipating Future and
Emerging Information Society.

Draft Version: Engineering Autonomous Systems 3

In 2007 Manuel invited Martin to become a member of the Sci-
entific Board of IMDEA Software and later in 2011, to be a guest
researcher at IMDEA Software for three months. In this way, Martin
had the chance in participating in the extra-ordinary raise of IMDEA
Software to one of Europe’s leading research institutes. Cooperating
and discussing with Manuel is a very pleasant experience. He is not
only an outstanding scientist and an excellent coordinator of scien-
tific work; he is also a warm-hearted and kind friend and colleague.
We are looking forward to many further inspiring exchanges with
him.

Outline. In Section 2 we shortly review reinforcement learning, plan-
ning, and the EDLC life cycle. In Section 3 we present the AIDL
Life Cycle. Section 4 illustrates AIDL by two case studies. Finally,
Section 5 presents related work and Section 6 concludes the paper.

2 Preliminaries: Reinforcement Learning, Planning, and
the Life Cycle EDLC

2.1 Reinforcement learning and planning

Reinforcement learning and (online-) planning are well-suited meth-
ods for computing optimising goals in a probabilistic domain. The
standard case is that the domain is given by a Markov decision pro-
cess (MDP) (for a formal definition see Appendix A) and the goal is
to compute a policy which maximises an expected reward.

Model-free and model-based reinforcement learning. Reinforcement learning
is an interactive process between an agent and the environment. The
goal is to learn a policy for maximising the discounted cumulative
return the agent receives over time (for definitions see Appendix A).
In each step the agent makes an action and receives an immedi-
ate reward. Typically, positive values express good actions, negative
values express bad actions.

There is a rich family of reinforcement learning algorithms. For
small or middle size state and action spaces classical algorithms such
as value iteration, policy iteration, and temporal difference learning
are widely used. If the state space is large one can only hope to find
approximate solutions and thus uses so-called function approxima-
tion methods such as gradient-descent over artificial neural networks
(see e.g. [53,54]).

4 Authors Suppressed Due to Excessive Length

The latter algorithms are model-free in that they do not have any
knowledge of the domain and thus start from an arbitrary distribu-
tion. Model-based algorithms have access to or learn a (probabilis-
tic) digital twin3 of the environment which predicts state transitions
and rewards. This allows the algorithm to plan its next steps based
on a range of possible choices. In many cases this considerably im-
proves the learning efficiency; however, if the model does not faith-
fully match the reality the algorithm may behave badly in the real
environment.

Some modern algorithms combine model-free with model-based
learning. E.g. AlphaGo combines a model-free reinforcement learn-
ing algorithm with (model-based) Monte Carlo tree search; it was the
first program to win the game Go against a human champion [51].
Reinforcement learning algorithms are also combined with evolu-
tionary methods in order to improve stability and quality of the
results [20].

[54] gives an overview on classical reinforcement learning algo-
rithms (until 2010). For a taxonomy of reinforcement learning al-
gorithms see [4], an excellent survey on model-based reinforcement
learning is given in [40].

Safe learning. In the algorithms above, learning is used for optimiz-
ing the system behavior but not for guaranteeing the safety of the
system. But in many applications, the system requirements com-
prise different kinds of goals including achieve goals that optimize
behaviours, and maintain goals that restrict the space of feasible
solutions.

There are three broad classes for dealing with such situations:
shielding [6], safe exploration [24], and reward-shaping methods [47,12].
Shielding ensures at runtime that the chosen action is safe whereas in
safe exploration, the learning process is restricted to learn only safe
actions. Reward-shaping methods are based on Constrained Markov
Decision Processes (CMDP) [7] (see also Appendix A) and try to
balance optimization of return and costs incurred by constraint vio-
lation. E.g. [12] uses a Lagrangian for transforming the costs of the
safety constraints and the rewards into a single optimizing problem.
The safety of the solution is ensured by runtime Bayesian model
checking.

3 also called internal model or simulation model in the literature.

Draft Version: Engineering Autonomous Systems 5

Non-stationary environments. In non-stationary environments the prob-
ability transition function and/or the reward change over time. Main
approaches are transfer learning, and meta-learning (see e.g. [40]).

Transfer learning [55,59] explores the idea that experience gained
in learning to perform one task can help improve learning perfor-
mance in a related, but different, task. Meta-learning [56] is con-
cerned with accumulating experience on the performance of multiple
applications of a learning system. Typically, an adaptation space is
given by a distribution of environments and a shared common struc-
ture that can be exploited for fast learning. For fast online adapta-
tion in dynamic environments, [18] uses an distribution of MDPs
whereas [42] meta-trains a global model.

Planning. Planning is a large and longtime established field. In “clas-
sical” offline-planning algorithms the policy is constructed for the
entire state space before the system is interacting with the envi-
ronment. This is only feasible for small and mid-size problems. In-
stead, an online algorithm is computing a near-optimal action for
the current state. When interacting with the environment an online-
algorithm encounters only a small subset of the entire state space
and has to tune its decisions only for a single time step.

The key idea of online planning is to perform planning and ex-
ecution of an action iteratively at runtime. At each planning step,
the agent performs forward search on a digital twin, e.g. by Monte
Carlo Tree Search [34,15] (in discrete domain) or by Cross Entropy
Open Loop Planning [62] (in continuous state and action spaces).
Online planning is suitable for MDPs as well as for partially observ-
able MDPs (POMDPs) (see formal def. in Appendix A). A survey of
classical online POMDP methods is given in [49]. For the trade-off
between online planning and model-based reinforcement learning see
[41].

2.2 The Ensemble Development Life Cycle EDLC

The “Ensemble Development Life Cycle” EDLC [27] is an agile soft-
ware process model that explicitly deals with autonomous systems,
in particular with ensembles and collective adaptive systems. EDLC
has been used in the development of several autonomic systems
such as swarm robots [66,44], peer-to-peer cloud [38], and e-mobility

6 Authors Suppressed Due to Excessive Length

applications [17,25]. The construction of autonomous systems us-
ing EDLC is supported by eight engineering principles [11]. System
construction according to EDLC emphasises mathematically well-
founded approaches to validate and verify the properties of the col-
lective autonomic system and enable the prediction of the behaviour
of such complex software.

The EDLC life cycle is arranged in three cycles (see Fig. 1). In
the development cycle Dev (called “design time cycle” in [27]) the
classical development phases - requirements engineering, modelling
and programming, verification and validation - are iterated; in the
operations cycle Ops (called “runtime cycle” in [27]), the entities of
the ensemble iterate a “runtime feedback control loop” comprising
the monitoring, awareness, and (self-) adaptation mechanisms. They
consist of observing the running system and the environment, rea-
soning on such observations and using the results of the analysis for
adapting the system and providing feedback data that can be used in
the development activities for improving the system. The connection
between the two cycles is established by a third evolutionary cycle
consisting of system deployment or hot update to the operations and
providing feedback data from runtime to the development cycle.

Fig. 1: Ensemble Development Life Cycle EDLC.

Draft Version: Engineering Autonomous Systems 7

Development cycle Dev. The phases of the Dev cycle rely on math-
ematically well-founded approaches that support the correct con-
struction and the analysis of autonomic systems.

Requirements. EDLC supports two goal-oriented methods - SOTA [5]
and ARE [58] - for elicitating and specifying the requirements. In
both cases the final requirements specification consists of a model of
the domain together with hard goals that the system has to satisfy
and soft goals that describe behaviours that should be optimised.

The notion of adaptation domain [66,29] describes the “borders
of validity” of an autonomous system. The adaptation domain de-
termines the variety of different environments, goals, and adverse
system states the system should be able to tolerate and in which
it should be able to continue working “correctly.” In some cases
the adaptation space is complemented by so-called “resilience goals”
which determine those environments and system states outside the
adaptation space the system should be able to recover from and
return back into the adaptation space.

Modelling and programming. For this task, the EDLC relies on well-
known methods for modelling and implementing adaptation and au-
tonomy. This ranges from a method for stepwise refinement and the
development of high-level modelling languages (such as SCEL [19])
to classical adaptation techniques (such as programming using modes
and dynamic reconfiguration) as well as AI adaptation techniques
(such as swarm algorithms as well as planning, learning, and reason-
ing).

A main ingredient are pattern catalogues [63,21,45] to help de-
velopers to make appropriate design choices for models and imple-
mentations. For example, architectural patterns such as “knowledge-
equipped component” describe the architecture of a system or a
component, and adaptation patterns such as “centralised autonomic
manager” are concerned with adaptation mechanisms [27,45].

Validation and verification. Analysis techniques for adaptive and au-
tonomous systems have to cover the “normal” system behaviour as
well as essential aspects such as adaptive behaviour and changing
environments. This comprises qualitative methods ensuring that the
system behaves without any flaw, and quantitative analyses that tar-

8 Authors Suppressed Due to Excessive Length

get non-functional properties and evaluate expected performances
according to predefined metrics.

Qualitative methods range from reviews and testing to the auto-
mated verification of invariants and security properties. Quantitative
methods are well-suited for performance analysis and studying the
behaviour of a system in different environments and under chang-
ing requirements (for a comprehensive collection of papers see [13]).
Main techniques are statistical modelchecking (see e.g. [36]), simu-
lation tools (see e.g. [37]) and the analysis of Markov chains using
differential equations (see e.g. [66,57]).

Operations Cycle Ops In the operations cycle, the entities of the au-
tonomic system iterate a “runtime feedback control loop” consisting
of monitoring, awareness, and self-adaptation activities.

Montoring The task of monitoring is to collect data at runtime for
providing information about the environment (e.g. by the collecting
sensor data) and the functional and non-functional properties of the
system (e.g. by instrumenting the code and collecting runtime data).
The monitoring information is passed to the awareness mechanism
and may also give feedback to developers about the state of the
system and the environment.

Awareness Conventional systems can react directly to the data ob-
tained by the monitor but autonomous systems often need a deeper
analysis. The awareness mechanism uses reasoning, planning and
learning methods to determine the current situation of the system
and to prepare the subsequent system behaviour.

Self-adaptation The adaptation mechanism implements the results of
the awareness deliberations. In case of weak adaptation some control
parameters of the system are modified or new functions are added or
existing functions are modified. Strong adaptation means to modify
the architecture of the system.

Deployment and Feedback Data The evolutionary loop connects the
development cycle and the operations cycle. During deployment the
system is prepared it for its execution. This involves installing, con-
figuring and launching the application. The deployment may also
involve executable code generation and compilation/linking.

Draft Version: Engineering Autonomous Systems 9

The feedback data are collected by monitoring and in the aware-
ness process. They may trigger a new Dev cycle and are used to
provide information for system redesign, validation, verification, and
redeployment.

3 The AIDL Life Cycle for Autonomous Systems

The AIDL life cycle specialises EDLC to techniques for systemati-
cally constructing autonomous policies that are based on reinforce-
ment learning and planning techniques. We focus here on the specific
issues of learning and planning. For simplicity, we restrict ourselves
in this paper to systems with a single agent in an uncertain and
possibly changing environment which may be noisy but is fully ob-
servable.

In AIDL, the modelling and programming phase of EDLC is ex-
tended by activities for constructing a digital twin. The use of a
digital twin, i.e. a generative model of the environment dynamics,
enables modeling of highly complex transition dynamics that would
be unfeasible to capture by closed-form specification. Note that com-
ponents of the twin (e.g. environment dynamics) can be learned from
or adjusted to data collected from the environment.

At development time, the twin is used for training the system us-
ing learning algorithms. Validation is leveraging simulation for per-
forming quantitative, sample-based statistical evaluation of a trained
system. At runtime, the awareness mechanism is enriched with the
twin for online planning.

Figure 2 shows the adjusted life cycle. The three new, small run-
time cycles representing the digital twin are very similar to the oper-
ations cycle. In each of these cycles, the entities of the system iterate
a “runtime feedback control loop” consisting of monitoring, aware-
ness, and self-adaptation activities. The difference is that typically
the additional cycles operate on the digital twin and not directly on
the system.

The digital twin is not present in the requirements engineering
phase. This is a natural choice, since the twin itself is specified here:
It should comprise all relevant information about the application
domain and cannot possibly inform itself.

Note that leveraging a digital twin could also be possible for fur-
ther learning/training online at runtime, and simulation-based run-

10 Authors Suppressed Due to Excessive Length

time verification in the monitoring phase. We do not treat these
two applications of simulation at runtime in the following, and think
that integrating them into AIDLE is an interesting avenue for future
research.

Fig. 2: AIDL life cycle.

3.1 Requirements

For engineering the system requirements we follow the ASCENS
ideas and propose a goal-oriented approach where e.g. requirements
elicitation can be performed using the ARE ontology. The require-
ment specification is the end product of the requirements elicitation
process; it is defined by descriptions of the environment and of the
domain of the envisaged system, adaptation requirements, and by a
set of goals.

Domain description For systems which have to take autonomous de-
cisions about the actions of the system, the environment and the
required reliability of the system play an important role.

Often there is uncertainty on the behaviour of the environment
which may also change dynamically. If the system contains embedded

Draft Version: Engineering Autonomous Systems 11

or IoT components, then it may not be fully reliable and certain
system actions or components may fail. Such uncertain environments
and systems are expressed by probability distributions. Formally,
they form a kind of an MDP.

In many applications, in the beginning neither the initial distri-
bution nor the transition distribution are known to the agent but
they have to be learned based on the observations of the agent. In
the case of a changing environment, or a changing system reliabil-
ity, or changing goals, these distributions may change as well. Then
the adaptation domain consists of a set of goals and MDPs, or of a
probability distribution over goals and MDPs.

Goals. A goal represents a desirable system state or property that a
software systems should achieve. For an autonomic system this is not
always possible but one rather “strives to achieve” such a property,
in spite of uncertainties and obstacles.

We distinguish optimisation goals and safety goals. Optimisation
goals are soft goals that strive to achieve a property. Typically they
are expressed with the help of an objective function and their goal
is to find values that maximize or minimize this function.

Safety goals are hard goals which require that certain properties
have to be preserved; in KAOS these are called maintain goals (if a
property must always to hold) or avoid goals (if a property should
never hold). For “classical” software systems such goals can be ex-
pressed by temporal logic formulae of the form “φ =⇒ 2ψ” (where
φ and ψ are linear temporal logic formulae). But in presence of un-
certainties, these safety properties cannot be universally true. They
must consider probabilities for expressing the aleatoric uncertainty.
It is also recommendable to estimate the epistemic uncertainty, i.e.
the confidence in the validity of the result. Formally, we choose a
probabilistic temporal logic such as PCTL [23] and express “soft”
safety properties by formulas of the form “P≥p(ψ) and C≥c” which
state that the goal ψ holds with at least probability p and at least
confidence c (p, c ∈ (0, 1)).

3.2 Modelling and Programming

In this phase the system design and the implementation are devel-
oped. We focus here on the specific issues of learning and planning,
i.e. the choice of the appropriate domain model and of the learning

12 Authors Suppressed Due to Excessive Length

and planning algorithms, their implementation and the training of
the agent.

Choice of domain model. The choice of the domain model depends
on the kind of uncertainty of the environment and on the translation
of goals into rewards and costs.

Aleatoric uncertainty of the environment. In the standard case of an (aleatoric)
uncertainty, the environment can be described by a probability dis-
tribution, possibly depending on the current state and the action
of the agent. Then the system can be modelled by (a variant of)
a Markov decision process. For a specification comprising optimis-
ing and safety goals constrained Markov decision processes [7] are
a good choice whereas for a specification with only one optimising
goal a classical MDP is sufficient. If the application has noisy or
unreliable sensors and the autonomic entity may not be able to de-
termine the current state with complete reliability one may resort
to Partially Observable Markov decision processes (POMDP) [32] as
system model.

Changing environment. A more difficult situation arises if the changes
of environment are not stationary. Then one can try to model this
by a probability distribution over the set of possible environments or
- if also the goals and the system may change - one may model the
adaptation domain as a probability distribution over MDPs [18].

Specification of rewards and costs. Another issue is the definition of of
the immediate rewards and costs. Often their values can be directly
derived from the corresponding optimization and safety goals but the
correspondence is not always obvious. In this case one can explore
different reward and cost functions or try to adjust the rewards and
costs in a next round of the development cycle.

Choice of algorithm. There is a wealth of learning and planning algo-
rithms; none of them is known to outperform the others. The choice
depends on several factors including the kind of domain model and
goals, the size of the state and action space, the real-time perfor-
mance requirements, and the availability of a digital twin. For a
more detailed set of criteria see [39]

Draft Version: Engineering Autonomous Systems 13

Kind of domain model and goals. For MDPs with only one optimising
goal, there is wide selection of model-free reinforcement learning al-
gorithms, model-based reinforcement learning algorithms, and on-
line planning algorithms. For applications with safety constraints a
scalarisation approach can be followed if during training and learning
a policy, actions are not required to be always safe. Otherwise shield-
ing and safe exploration algorithms can be used. Partially Observable
Markov Decision Processes (POMDPs) can be solved by online plan-
ning algorithms or by combinations of reinforcement learning with
planning [40]).

The case of complex adaptation domains with changing environ-
ments can be tackled by meta-learning and online planning. Meta-
learning algorithms are well-suited for dealing with non-stationary
environments that can be described as a probability distribution over
a set of environments. Online planning methods are able to react to
non-stationary changes of the environment as well as to changes of
goals and to noisy actions.

Size of state and action space. For small state and action spaces classi-
cal tabular model-free algorithms can be used, e.g. Q-learning and
Temporal Difference learning for discrete sets of actions or Gaussian
processes in the continuous case. Also planning algorithms use tabu-
lar representation methods. When the state space becomes too large,
one has to resort to approximate representations of the value func-
tion. These function approximations can be linear (such as Fourier
transform) or nonlinear (such as deep or forward neural networks).
Also combining function approximation and local tabular methods
as in [52] is promising.

Because of the computational intractability of belief states, algo-
rithms for POMDPs are mostly only applicable to small and mid
size problems. These issues can by partially resolved by factorisa-
tion of the state space or by exploiting full observability whenever
possible [43].

Performance and availability of a digital twin. By using function approxi-
mation, model-free methods scale to complex tasks (such as robotics
and motion animation) but they need large amounts of samples and
training. Instead, model-based algorithms and pure online planning
require less training but need to rely on a faithful model of the envi-
ronment. Errors in the model undermine the quality of the solutions

14 Authors Suppressed Due to Excessive Length

but recent methods such as uncertainty estimation of the learned
models can mitigate the model-bias [18].

The real-time performance of model-based algorithms such as
PETS may be another issue, e.g. in case that action selection of
the algorithm needs more time than a default time-step of the envi-
ronment. In [61] T. Wang et al. provide benchmarks for several state-
of-the-art reinforcement learning algorithms and show that model-
based and model-free algorithms can achieve similar performances.
Benchmarks for algorithms with safety constraints are given in [47].

Implementation and training. The task of implementing an autonomous
agent by reinforcement learning is twofold: (1) implementing the
model, the algorithm and the training pipeline and (2) synthesis of
the policy via training (i.e. execution of the training cycle).

Implementation For implementing the model and algorithm one needs
to define a software architecture for the appropriate variant of Markov
Decision Processes, the learning algorithm, and the application. E.g.
this can be an object-oriented architecture, differential equations, or
a neural network architecture. For standard applications a reinforce-
ment learning framework can be used such as the Reinforcement
Learning Toolbox of MathWorks4 or Gym of OpenAI5. Neural net-
works for function approximation can be implemented with the help
of deep learning frameworks such as PyTorch6 and TensorFlow7.

Training The objective of training is to synthesize a policy which
achieves the required optimizing goals and safety goals constraints.

Training is executed in a training cycle in which the learning
agent interacts with the environment through a repeated trial-and-
error process. A certain number of finite episodes are performed and
the parameters of the policy are tuned for maximizing the cumu-
lative reward, minimizing the loss, and for ensuring the required
probability and confidence of the safety goals. Typically, after each
episode the parameters of the policy are updated and - if possible
- the environment is reset. Training options comprise the length of

4 https://de.mathworks.com/products/reinforcement-learning.html
5 https://gym.openai.com/
6 https://pytorch.org/
7 https://www.tensorflow.org/

Draft Version: Engineering Autonomous Systems 15

an episode, the maximum number of episodes, the individual or the
average rewards and costs.

Training can be performed in the real environment or by simula-
tions on a digital model. The latter has the advantage that typically
many more training cycles are possible and that it is reversible, i.e.
that the environment can be reset. For many applications, training
consists of two parts, a simulation on a digital twin of the application
and training of the autonomous agent in the real environment.

A good training practice is to start with a simplified setting con-
sisting of a simple simulated environment and a simple reinforcement
learning algorithm. The algorithm and environment are then refined
until the desired setting is achieved. Note that this approach means
to iteratively run through deployment, operations cycle, feedback,
validation, and re-adjustment of requirements and design until the
model is accepted and then can be deployed for operation. For com-
paring the learning algorithms and choosing the most suitable one, a
good practice is to deploy and train different algorithms in parallel.

3.3 Validation and Verification

Because of the large size of and the uncertainties about the envi-
ronment, the construction of policies for autonomic systems requires
extensive validation and verification. This is includes the validation
and verification methods of ASCENS as well as all classical verifica-
tion and testing methods such as unit, integration, system, and user
testing, static analysis, and runtime verification.

A key issue is the statistical analysis of the training results such
as the analysis of cumulative and average episode return. Statistical
model checking [36] and Bayesian model checking [69] are the main
tools for verifying safety constraints. Both methods use a runtime cy-
cle for performing simulations and statistical analysis. In statistical
model checking, finitely many randomised simulations of the system
are executed and statistical methods are used for deciding whether
the samples provide a statistical evidence for the satisfaction or vi-
olation of the specification. Bayesian model checking is a variant of
statistical model checking which - instead of randomised sampling -
incorporates prior information about the model being verified. The
advantage is that it this often requires a significantly smaller number
of sampled episodes.

16 Authors Suppressed Due to Excessive Length

The operation of autonomous systems has also to be validated in
the real environment. This leads to several additional problems such
as recognizing an environment which is different from the training
environment, guaranteeing safe exploration of the real environment,
and avoiding actions which disturb the real environment. For a dis-
cussion and possible solutions see [8].

3.4 Deployment and Feedback Data.

Deployment. Deployment is used in three phases of the AIDL life cycle:
for connecting the development cycle with the operations cycle, for
executing the training cycle, and during validation and verification.
During deployment the system is prepared for execution in a simu-
lated (“in vitro”) or in a real environment (“in vivo”). This involves
the choice of the runtime infrastructure and the choice of the real
environment and in case of simulation, the choice of the parameters
of the digital twin.

Other tasks are compilation, linking, and generation of executable
code. Microcontrollers and GPUs are typical infrastructures for au-
tonomous systems operating in real environments. Simulations are
deployed into GPUs, clouds and clusters of cpus, the latter two for
executing in parallel to improve training performance.

Feedback. Feedback is based on the data collected by monitoring and
in the awareness process. The feedback data are used for validation
and verification and for evaluating and improving the design, the
implementation, and the requirements.

3.5 The Operations Cycle

The Ops cycle of AIDL is almost the same as the one of EDLC.
It can run in the real environment or in a digital model. The only
change is that it emphasizes an additional Ops cycle for simulations
which are executed in the awareness phase.

Monitoring. As in EDLC, monitoring employs mechanisms such as
sensor information and code instrumentation for collecting data about
the state of the environment, of some components of the autonomous
system or of the whole system. In the context of MDPs, monitoring
comprises also runtime validation of design assumptions about MDP

Draft Version: Engineering Autonomous Systems 17

by observing statistical properties and simulation results and their
relations with other factors. This includes uncertainty quantification
and detecting non-functional changes such as drift and anomalies.

An important task is MDP identification, i.e. in case the agent
is able to work in several environment the current environment is
monitored and if a change of the environment is detected, the adap-
tation mechanism of the agent is triggered; using feedback, also a
new development cycle may be activated.

For systems with several digital twins, monitoring can check the
status of these twins and inform the awareness mechanism. Another
use of monitoring is to survey the learning results in case the system
continues learning during operation.

Awareness. In this phase reasoning and planning is carried out. The
monitored data are evaluated and analysed w.r.t. required (func-
tional) properties. Often simulations on the digital twin are per-
formed for predicting the behaviour of system and environment. The
results can then be used e.g. for online planning and deciding on the
next steps of the agent.

Adaptation. Based on the awareness results, different forms of adap-
tation are possible. Weak adaptation amounts simply to execute the
action selected by the policy or to change some control parameters
of the algorithm such as the change of the direct reward. Strong
adaptation means e.g. to change the dynamic model (MDP) by up-
dating the direct reward or the transition distribution. Also the sys-
tem may be reconfigured, e.g. by exchanging system components or
sensor functions.

4 Case Studies

In this section we illustrate AIDL by two existing case studies: a sim-
ple search-and-rescue case study [10] and a so-called particle dance
case study [12]. The search-and-rescue scenario is solved by online
planning whereas the particle dance illustrates the systematic de-
velopment of a reinforcement learning solution. In subsections 4.1
and 4.2 the two case studies are presented along the phases of the
AIDL life cycle. Subsection 4.3 gives a short comparison of both
approaches.

18 Authors Suppressed Due to Excessive Length

4.1 Case Study: Engineering Adaptation by Simulation-based
Online Planning

The first example [10] is a simple search-and-rescue scenario which is
solved by online planning. The experimental results shows that the
generated planning policy of the agent is able to act autonomously
and is robust w.r.t. unexpected events and changes of system goals
at runtime.

Search-and-rescue scenario. A robot is deployed in a damaged area
and must rescue victims by bringing them to an ambulance. If the
robot encounters a fire, it has first extinguish the fire, and only then
it can continue its way.

Requirements. The domain model consists of victims, fires, and am-
bulances in an environment with an unknown topology which is rep-
resented by a finite graph. The rescue robot can move (to a neighbor
position), load or drop a victim (at its position), do nothing, and ex-
tinguish a fire (at a neighbor position). The robot has two goals. Its
achieve goal is to find the victims and bring them to an ambulance.
The safety constraint requires the agent to ignite all fires that are
adjacent to its current position.

Goal Achieve SaveVictims2Amb : 3(
∧

i=1,...,n

victimi at ambulance)

(1)

Goal Constraint IgniteFire : �(∀Firef : adjacent(f)⇒ ignite(f))
(2)

There are also several adaptation requirements. First, the envi-
ronment and the system may change: fires probabilistically ignite
and cease; the actions of the robot are not reliable and may fail with
a certain probability. The robot may also inadvertently drop the vic-
tim it is bringing to the ambulance. Moreover, the goals of the robot
may change: the goal of saving victims from fire may change to the
SaveVictims2Amb goal of “saving victims and bringing them to an
ambulance.”

Draft Version: Engineering Autonomous Systems 19

Modelling and programming. For modelling and implementing the
search-and-rescue scenario, an object-oriented domain model of the
scenario and a generic framework, called OnPlan, were developed.
Then the domain model was plugged into OnPlan. Figure 3 shows
the class diagram of the domain model.

OnPlan is a framework for modelling autonomous systems based
on online planning [10]. it has a generic object-oriented architec-
ture which realises an arbitrary MDP. It comprises components for
states, actions, rewards, and also for the transition probabilities that
define the policy (called strategy in [10]) of the robot. In addition,
the architecture has a monitoring component for observing the envi-
ronment and an abstract planning component which has a concrete
simulation-based online planning component as realisation.

The latter makes use of a digital twin of the application domain
for gathering information about potential system episodes. During
the planning steps, future episodes are simulated at runtime. Simula-
tion provides information about probability and value of the different
state space regions, thus guiding system behaviour execution. After
simulating possible choices of actions and behavioural alternatives,
the transition probabilities of the MDP are updated and the agent
executes an action (in reality) that performed well in simulation.

The dynamic model of OnPlan realises the behaviour of an Oper-
ations cycle (see below) and performs monitoring of the environment
and planning and execution of actions iteratively at runtime.

Training is not necessary for OnPlan but the digital twin has to
be a true model of the real environment.

OnPlan comes with two instantiations for online planning, Monte
Carlo Tree Search [34] for discrete domains and the Gaussian ap-
proach of Cross Entropy Open Loop Planning [62] for continuous
state and action spaces. For the search-and-rescue scenario, the for-
mer was used and plugged into the OnPlan architecture.

Validation. Validation is performed by statistical model checking
using the MultiVesta tool [50]. Measurements include the estimation
of the mean expected future reward.

A main aspect is the validation of the quality of the autonomous
behaviour and of the robustness to changes. Concerning the au-
tonomous behaviour, we test the system in an environment exhibit-
ing aleatoric uncertainty: fires probabilistically ignite and cease and

20 Authors Suppressed Due to Excessive Length

the actions of the robot are not reliable and may fail with a certain
probability. Figure 4 shows that the planning component is able
to generate a policy for transporting victims to safe positions au-
tonomously.

Figures 5 and 6 address the adaptability and robustness of the
system. Figure 5 shows the robot is able to recover from the un-
expected events efficiently. The transportation of victims to safety
is only marginally impaired by the sudden unexpected changes of
the situation. The framework is also able to react adequately to a
re-specification of system goals. In Fig. 6 before step 40, the robot
was given a reward for keeping the number of fires low resulting in a
reduction of the number of burning victims. On-wards from step 40,
reward was instead provided for victims that have been transported
to safety.

In all three figures 4, 5, and 6 the blue line indicates the percentage
of saved victims, the red line the percentage of victims in fire, and the
green line the percentage of positions in fire. Dotted lines indicate
0.95 confidence intervals.

Fig. 3: Class diagram of search-and-
rescue domain.

Fig. 4: Autonomous agent performance.
Reward is given for victims at safe po-
sitions.

Operations cycle. Monitoring of the environment is performed by
OnPlan through an operation “observe” which senses the whole
graph including the current position of the robot, the victims and

Draft Version: Engineering Autonomous Systems 21

Fig. 5: Autonomous agent performance
despite unexpected events at runtime.
Every 20th step, all victims carried by
the agent fall to the ground, and the
number of fires raises to 10.

Fig. 6: Autonomous agent performance
with a re-specification of system goal
at runtime. Before step 40, the agent
is given a reward for keeping the num-
ber of fires low, resulting in a reduction
of the number of burning victims. On-
wards from step 40, reward is provided
for victims that have been transported
to safety.

fires. In addition, it counts the fires and victims, and monitors the
success of the rescue actions.

By simulating iteratively future episodes at runtime, the robot
becomes aware of the current situation.

Short term weak self-adaptation is achieved by online planning.
The policy is iteratively updated according to the results of the
Monte Carlo Search and to the observations of the robot action.

Deployment, feedback, and new development cycle Deploying the On-
Plan scenario is standard and consists of packaging the software and
deploying it on the infrastructure. Feedback comes from the moni-
toring data which inform the developers about the current status of
fires and victims as well the (victim saving and fire fighting) perfor-
mance of the agent. Strong adaptation arises in case of goal revision.
If e.g. the current agent goal was to extinguish fires but new victims
are detected, then a new development cycle is initiated for changing
the goal and giving rewards for saving the victims.

22 Authors Suppressed Due to Excessive Length

4.2 Case Study Safe learning: Policy SYnthesis with safety
Constraints (PSyCo).

In line with the AIDL life cycle, the PSyCo approach is a systematic
method for specifying and implementing agents that shape rewards
dynamically over the learning process based on their confidence in
requirement satisfaction [12]. It is centered around a safe reinforce-
ment learning algorithm which combines evolutionary learning with
Bayesian model checking. The basic idea is to emphasize return op-
timization when the learner is confident, and to focus on satisfying
given constraints otherwise. This enables to explicitly distinguish re-
quirements wrt. aleatoric uncertainty that is inherent to the domain,
and epistemic uncertainty arising from an agent’s learning process
based on limited observations.

Particle Dance Scenario. In the Particle Dance scenario, an agent has
to learn to follow a randomly moving particle as closely as possible.

Requirements. The domain is modelled as an MDP with an un-
known transition distribution. State and action space are bounded
continuous subsets of R. The reward computes the negative distance
between particle and agent.

Minimising the distance means maximizing the reward. Thus the
optimising goal is to maximise the expectation of the cumulative
return R:

Goal Optimize Return : maxE(R) (3)

The safety constraint requires the agent to keep a minimum dis-
tance of the particle except in a fixed small number of cases. We
require that the particle satisfies this requirement with a high prob-
ability and a high confidence.

Goal Constraint BoundedCollisions : P≥preq(�φ) and C≥creq (4)

Here the formula φ expresses that the distance between particle and
agent is greater than the minimum distance. Typically, we set the
required probability for satisfying the constraint preq = 0.85 and the
required confidence creq = 0.98.

Draft Version: Engineering Autonomous Systems 23

Modelling, programming, and training. For dealing with the safety
constraint, the MDP domain model of the Particle Dance is extended
to form a Constrained MDP over continuous state and action spaces.
The safety requirement �φ is transformed into a notion of cost Cφ
which (for each episode of Particle Dance) counts the number of vio-
lations of the safety property φ. The transformed goal is the following
constrained optimization problem.

maxE(R) s.t. P≥preq(Cφ = 0) and C≥creq (5)

To solve this goal, we developed the so-called Safe Neural Evo-
lutionary Strategies (SNES) reinforcement learning algorithm. As
usual in deep learning, SNES models a policy as neural network.
SNES synthesises such policies by combining a safe evolutionary
learning algorithm with an algorithm for Bayesian model checking.
The basis of the safe learning algorithm is the Lagrangian approach
for solving constrained MDPs [7] where the constrained problem

maxR s.t. Cφ = 0 (6)

is transformed to a Lagrange formulation:

maxR− (1− λ)Cφ (7)

where λ ∈ R+ is a Lagrangian multiplier [9].
The resulting optimisation algorithm adaptively weights return

and cost such that the resulting policy is likely to be positively ver-
ified. The algorithm does not ensure safety while learning, but only
when converging to a solution of the Lagrangian. Bayesian model
checking serves for modelling the epistemic uncertainty about the
satisfaction probability of the results. We use it in two ways: To
guide the learning process towards feasible solutions and to verify
synthesized policies. The learning procedure of SNES is based on an
evolutionary algorithm, called Evolutionary strategies (ES). This is
a gradient free, search-based optimization algorithm that has shown
competitive performance in reinforcement learning tasks.

Function approximation for SNES is realised by a feedforward
neural network with one hidden layer. Training is performed over
60000 episodes (of length 50). Every 1000 episodes, Bayesian model
checking is performed for a maximum of 1000 episodes (outside the
learning loop of SNES) to evaluate the policy synthesized by SNES
up to that point.

24 Authors Suppressed Due to Excessive Length

Validation. Validation is performed by Bayesian model checking and
an analysis of e.g. the proportion of constraint satisfaction and the
confidence in the results. For example, we can observe that the SNES
agent learns to follow the particle closely. Figure 7 illustrates this by
sample trajectories of the particle and the agent (color gradients
denote time).

Figure 8 shows the proportion of episodes that satisfy the given
requirement. We can see that the proportion closely reaches the de-
fined bound of preq = 0.85, shown by the dashed vertical line. Note
that the satisfying proportion is closely above the required bound.

Fig. 7: Sample trajectories of the par-
ticle (light to dark blue, color gradient
denotes time) and the agent (light to
dark red).

Fig. 8: Proportion of episodes satisfying
cost requirement.

Figure 9 shows the confidence of the learning agent in its ability
to satisfy the given requirement based on the observations made in
the learning process. Note that the confidence is mostly kept above
the confidence requirement creq = 0.98 given in the specification.
This shows SNES is effectively incorporating observations, probabil-
ity requirements, and confidence into its learning process.

Operations cycle. Monitoring consists in sensing the distance of the
agent to the particle and in recording the number of distance vio-
lations and the cumulative reward. Since the policy is synthesised
the operations cycle consists of monitoring and executing the pol-
icy. Thus there is no explicit adaptation and awareness phase in this
loop.

Draft Version: Engineering Autonomous Systems 25

Fig. 9: Confidence csat in satisfying specification based on observations in the
course of learning.

Deployment, feedback and new development cycle. As for OnPlan,
deployment is standard and consists of packaging the software and
deploying it on the infrastructure.

Feedback is given e.g. in case the monitor detects that the particle
behaviour is changing or the agent behaviour is degrading so that the
agent is not following closely the particle. Then a new development
cycle is initiated for revising the requirements and the algorithm,
new training and validation rounds, and finally the deployment of a
revised policy.

4.3 Comparison

The above results show that although the requirements are similar
the two solutions are complementary in many ways.

Both case studies have goals requiring a high level of confidence.
The search-and-rescue scenario is modelled as an MDP whereas as
the particle dance is modelled as a CMDP. The sets of states and
actions are discrete and finite for the search-and-rescue case but
infinite and continuous for the particle dance.

Reinforcement learning is model-free; but it needs many training
cycles and thus is “slow” at “programming” time. Online planning

26 Authors Suppressed Due to Excessive Length

is model-based; but it does not need any training and thus is fast
at “programming” time. During the Ops cycle, the synthesised rein-
forcement policy is directly executed and thus is fast, whereas online
planning uses runtime simulation which may be too slow for real-
time applications.

Adaptation of the synthesised policy requires a new Dev cycle,
whereas the online planning policy is able to act autonomously and
is robust w.r.t. unexpected events at runtime. For a change of system
goals, also online planning requires an adjustment of the rewards and
thus a new development cycle.

5 Related Work

Systematic engineering approaches for intelligent agents and multi-
agent systems such as Gaia [68], Tropos [14] support a sequential
development process starting with the collection of goal-oriented re-
quirements and the model of the environment and then proceed-
ing with architectural design, detailed design, and implementation.
Gaia follows an organisational metaphore where agents play roles
whereas Tropos is founded on the BDI (Belief, Desire, and Intention)
agent architecture [46]. The AgentComponent approach [35] pro-
poses a component-based software development process fully based
on UML models. IBM’s approach to autonomic systems is based on
the MAPE-K architecture [30] built around an “autonomic man-
ager” that iterates a feedback control loop consisting of four activi-
ties: Monitoring, Analysing, Planning, and Executing. The “generic
life cycle for context-aware adaptive systems” based on MAPE-K
addresses foreseen and unforeseen evolution of the environment [31].

More recent development approaches for autonomous systems fo-
cus on specialised goal-oriented requirements (such as SOTA [5],
GEM [29], and ARE [58]) and on feedback control loops (such as
[16,60]). The SOTA [5] approach is an extension of existing goal-
oriented requirements engineering that integrates elements of dy-
namic systems modelling. Semantically, SOTA is built on the Gen-
eral Ensemble Model GEM [29]. The Autonomous Requirements En-
gineering approach ARE [58] focusses on systematically eliciting so-
called autonomy requirements.

Similar to AIDL and EDLC, DevOps [48] is an agile software de-
velopment method which connects software development with run-

Draft Version: Engineering Autonomous Systems 27

time management based on a software life cycle. DevOps does not
specialize on autonomous systems and its life cycle consists of only
one life cycle instead of three. MLOps [3] instantiates DevOps to
the development of machine learning applications but different from
AIDL, it focusses on big data applications. AIOps [2] aims at au-
tomating and enhancing IT operations through analytics and ma-
chine learning, but it does not consider software development.

The engineering process [22] for machine learning is closely re-
lated to AIDL. It follows a different life cycle and addresses adap-
tive instead of autonomous systems, but as AIDL it proposes central
activities necessary for developing machine learning applications.

The FRAP framework [39] does not aim for a full engineering life
cycle; instead it identifies fine grain design decisions for reinforce-
ment learning and planning algorithms. In addition to computational
effort and function representation, criteria such as trial selection, re-
turn estimation, update procedure, and back-up are considered.

6 Concluding Remarks

In this paper we proposed a systematic development process, called
AIDL, for constructing/ synthesizing policies of autonomous systems
using planning and reinforcement learning techniques. AIDL can be
seen as an instance of the EDLC development process for collective
autonomic systems. It emphasizes the particular issues of machine
learning techniques such as training, digital environment and agent
models, and additional runtime cycles in almost all phases of devel-
opment. We illustrated AIDL with two existing complementary case
studies for reinforcement learning and online planning.

AIDL is not yet complete. Our two case studies address autonomic
systems with single agents; a next step will be to refine and ex-
tend AIDL to AIDL-E for engineering collective autonomic systems.
Also further learning/training online at runtime, simulation-based
runtime verification in the monitoring phase, and additional non-
functional requirements such as reliability, robustness, and security
of policies should be discussed and integrated into our development
approach. An ambitious mid term objective is to build an integrated
development environment for AIDL.

An interesting methodical research question is how to use abstrac-
tion and refinement for stepwise learning of digital twin and how

28 Authors Suppressed Due to Excessive Length

abstraction can help to learn policies. Also the relationship between
aleatoric and epistemic uncertainty is not always straightforward and
deserves further investigation.

Acknowledgement. We thank the anonymous reviewer for construc-
tive criticisms and helpful suggestions.

A Markov Decision Processes

A Markov Decision Process (MDP) M defines a domain as a set S of
states consisting of all states of the environment and the agent, a set
of A of agent actions, and a probability distribution T : p(S|S,A) de-
scribing the transition probabilities of reaching some successor state
when executing an action in a given state. For expressing optimi-
sation goals the labelled transition system is extended by a reward
function R : S × A × S → R which gives the expected immedi-
ate reward gained by the agent for taking each action in each state.
Moreover, an initial state distribution ρ : p(S) is given.

An episode ~e ∈ E is a finite or infinite sequence of transitions
(si, ai, si+1, ri), si, si+1 ∈ S, ai ∈ A, ri = R(si, a, si+1) in the MDP.
For a given discount parameter γ ∈ [0, 1] and any finite or infinite
episode ~e, the cumulative return R is the discounted sum of rewards

R =
∑|~e|

i=1 γ
iri. Depending on the application, the agent behaves in

an environment according to a memoryless stationary policy π : S →
p(A) or according to a deterministic memoryless policy π : S → A
with the goal to maximise the expectation of the cumulative return
E(R).

A partially observable Markov Decision Process (POMDP) [32]
is a Markov decision process together with a set Ω of observations
and an observation probability distribution O : p(Ω|S,A).

A Constrained Markov Decision Process (CMDP) has an addi-
tional cost function C : S × A × S → R which can be used for
expressing constraints and safety goals.

References

1. ASCENS: Autonomic Component Ensembles. Integrated Project, 2010-10-01
- 2015-03-31, Grant agreement no: 257414, EU 7th Framework Programme.
http://www.ascens-ist.eu/, accessed on April 21, 2020.

Draft Version: Engineering Autonomous Systems 29

2. Gartner, Inc.: Market Guide for AIOps Platforms. November 07, 2019.
https://www.bmc.com/forms/tools-and-strategies-for-effective-aiops.html, ac-
cessed on October 07, 2020.

3. Google Cloud Solutions: MLOps: Continuous delivery and automation pipelines
in machine learning. https://cloud.google.com/solutions/machine-learning/mlops-
continuous-delivery-and-automation-pipelines-in-machine-learning, accessed on
October 07, 2020.

4. OpenAI. Spinning Up in Deep RL! Part 2: Kinds of RL Algorithms, 2018.
https://spinningup.openai.com, accessed on July 07, 2020.

5. D. Abeywickrama, N. Bicocchi, M. Mamei, and F. Zambonelli. The SOTA ap-
proach to engineering collective adaptive systems. Int. J. Softw. Tools Technol.
Transf., 22(4):399–415, 2020.

6. M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and U. Topcu. Safe
reinforcement learning via shielding. In AAAI, pages 2669–2678. AAAI Press,
2018.

7. E. Altman. Constrained Markov decision processes, volume 7. CRC Press, 1999.

8. D. Amodei, C. Olah, J. Steinhardt, P. F. Christiano, J. Schulman, and D. Mané.
Concrete problems in AI safety. CoRR, abs/1606.06565, 2016.

9. B. Beavis and I. Dobbs. Optimisation and Stability theory for Economic Analysis.
Cambridge University Press, 1990.

10. L. Belzner, R. Hennicker, and M. Wirsing. OnPlan: A framework for simulation-
based online planning. In C. Braga and P. C. Ölveczky, editors, Formal Aspects of
Component Software - 12th Internat. Conf., FACS 2015, Revised Selected Papers,
volume 9539 of Lecture Notes in Computer Science, pages 1–30. Springer, 2015.

11. L. Belzner, M. M. Hölzl, N. Koch, and M. Wirsing. Collective autonomic systems:
Towards engineering principles and their foundations. Trans. Found. Mastering
Chang., 1:180–200, 2016.

12. L. Belzner and M. Wirsing. Synthesizing safe policies under probabilistic con-
straints with reinforcement learning and Bayesian model checking. Science of
Computer Programming, 206:102620, 2021.

13. M. Bernardo, R. De Nicola, and J. Hillston, editors. Formal Methods for the
Quantitative Evaluation of Collective Adaptive Systems, SFM 2016, volume 9700
of Lecture Notes in Computer Science. Springer, 2016.

14. P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos. Tropos: An
agent-oriented software development methodology. JAAMAS, 8(3):203–236, 2004.

15. C. Browne, E. J. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfsha-
gen, S. Tavener, D. P. Liebana, S. Samothrakis, and S. Colton. A survey of Monte
Carlo Tree Search methods. IEEE Trans. Comput. Intell. AI Games, 4(1):1–43,
2012.

16. Y. Brun, G. Di Marzo Serugendo, C. Gacek, H. Giese, H. M. Kienle, M. Litoiu,
H. A. Müller, M. Pezzè, and M. Shaw. Engineering self-adaptive systems through
feedback loops. Software Engineering for Self-Adaptive Systems, pages 48–70, 2009.

17. T. Bureš, R. De Nicola, I. Gerostathopoulos, N. Hoch, M. Kit, N. Koch, G. V. Mon-
reale, U. Montanari, R. Pugliese, N. Šerbedžija, M. Wirsing, and F. Zambonelli.
A life cycle for the development of autonomic systems: The e-mobility showcase.
SASO Workshops, 2013:71–76, 2013.

18. I. Clavera, J. Rothfuss, J. Schulman, Y. Fujita, T. Asfour, and P. Abbeel. Model-
based reinforcement learning via meta-policy optimization. In CoRL 2018, vol-
ume 87 of Proceedings of Machine Learning Research, pages 617–629. PMLR, 2018.

30 Authors Suppressed Due to Excessive Length

19. R. De Nicola, M. Loreti, R. Pugliese, and F. Tiezzi. A formal approach to au-
tonomic systems programming: The SCEL language. ACM Trans. Auton. Adapt,
9(2):7:1–7:29, 2014.

20. M. M. Drugan. Reinforcement learning versus evolutionary computation: A survey
on hybrid algorithms. Swarm Evol. Comput., 44:228–246, 2019.

21. J. L. Fernandez-Marquez, G. D. M. Serugendo, S. Montagna, M. Viroli, and J. L.
Arcos. Description and composition of bio-inspired design patterns: a complete
overview. Nat. Comput., 12(1):43–67, 2013.

22. T. Gabor, A. Sedlmeier, T. Phan, F. Ritz, M. Kiermeier, L. Belzner, B. Kempter, C.
Klein, H. Sauer, R. Schmid, J. Wieghardt, M. Zeller, and C. Linnhoff-Popien. The
scenario coevolution paradigm: adaptive quality assurance for adaptive systems.
Int J Softw Tools Technol Transfer, 2020.

23. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Asp. Comput., 6(5):512–535, 1994.

24. M. Hasanbeig, A. Abate, and D. Kroening. Cautious reinforcement learning with
logical constraints. In AAMAS, pages 483–491. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2020.

25. N. Hoch, H. Bensler, D. B. Abeywickrama, T. Bures, and U. Montanari. The
e-mobility case study. In [65], pages 513–533.

26. P. Horn. Autonomic computing: IBM perspective on the state of information tech-
nology. IBM T.J.Watson Labs, NY, 2001.

27. M. M. Hölzl, N. Koch, M. Puviani, M. Wirsing, and F. Zambonelli. The ensemble
development life cycle and best practices for collective autonomic systems. In [65],
pages 325–354, 2015.

28. M. M. Hölzl, A. Rauschmayer, and M. Wirsing. Engineering of software-intensive
systems: state of the art and research challenges. In [64], pages 1–44. 2008.

29. M. M. Hölzl and M. Wirsing. Towards a system model for ensembles. In Formal
Modeling: Actors, Open Systems, Biological Systems, number 7000 in Lecture Notes
in Computer Science, pages 241–261. Springer, 2011.

30. IBM. An architectural blueprint for autonomic computing. Technical report, IBM
Corporation, 2005.

31. P. Inverardi and M. Mori. Software lifecycle process to support consistent evolu-
tions. In Software Engineering for Self-Adaptive Systems, pages 239–264. 2010.

32. L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in
partially observable stochastic domains. Artif. Intell., 101(1-2):99–134, 1998.

33. S. Kernbach, T. Schmickl, and J. Timmis. Collective adaptive systems: challenges
beyond evolvability. CoRR abs/1108.5643, 2011.

34. L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo planning. In EMCL 2006,
volume 4212 of Lecture Notes in Artificial Intelligence, pages 282–293. Springer,
2006.

35. R. Krutisch, P. Meier, and M. Wirsing. The agent component approach, combin-
ing agents, and components. In First German Conference on Multiagent System
Technologies, MATES 2003, volume 2831 of Lecture Notes in Computer Science,
pages 1–12. Springer, 2003.

36. A. Legay, B. Delahaye, and S. Bensalem. Statistical model checking: An overview.
In RV 2010, volume 6418 of Lecture Notes in Computer Science, pages 122–135.
Springer, 2010.

37. M. Loreti and J. Hillston. Modelling and analysis of collective adaptive systems
with CARMA and its tools. In Bernardo et al. [13], pages 83–119.

38. P. Mayer, J. Velasco, A. Klarl, R. Hennicker, M. Puviani, F. Tiezzi, R. Pugliese,
J. Keznikl, and T. Bures. The autonomic cloud. In [65], pages 495–512, 2015.

Draft Version: Engineering Autonomous Systems 31

39. T. M. Moerland, J. Broekens, and C. M. Jonker. A framework for reinforcement
learning and planning. CoRR, abs/2006.15009, 2020.

40. T. M. Moerland, J. Broekens, and C. M. Jonker. Model-based reinforcement learn-
ing: A survey. CoRR, abs/2006.16712, 2020.

41. T. M. Moerland, A. Deichler, S. Baldi, J. Broekens, and C. M. Jonker. Think too
fast nor too slow: The computational trade-off between planning and reinforcement
learning. CoRR, abs/2005.07404, 2020.

42. A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine, and C.
Finn. Learning to adapt in dynamic, real-world environments through meta-
reinforcement learning. In ICLR 2019. OpenReview.net, 2019.

43. S. C. W. Ong, S. W. Png, D. Hsu, and W. S. Lee. Planning under uncertainty for
robotic tasks with mixed observability. Int. J. Robot. Res., 29(8):1053–1068, 2010.

44. C. Pinciroli, M. Bonani, F. Mondada, and M. Dorigo. Adaptation and awareness
in robot ensembles: Scenarios and algorithms. In [65], pages 471–494.

45. M. Puviani, G. Cabri, and F. Zambonelli. Patterns for self-adaptive systems: agent-
based simulations. EAI Endorsed Trans. Self-Adaptive Systems, 1(1):e4, 2015.

46. A. S. Rao and M. P. Georgeff. Modeling rational agents within a bdi-architecture.
In Proc. Knowledge Representation and Reasoning, pages 473–484, 1991.

47. A. Ray, J. Achiam, and D. Amodei. Benchmarking safe exploration in deep rein-
forcement learning. Technical report, Open AI, 2019.

48. J. Roche. Adopting DevOps practices in quality assurance. Commun. ACM,
56(11):38–43, 2013.

49. S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa. Online planning algorithms for
pomdps. J. Artif. Intell. Res., 32:663–704, 2008.

50. S. Sebastio and A. Vandin. Multivesta: statistical model checking for discrete event
simulators. In ValueTools ’13, pages 310–315. ICST/ACM, 2013.

51. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D.
Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. P. Lillicrap, M. Leach, K.
Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game of Go with deep
neural networks and tree search. Nat., 529(7587):484–489, 2016.

52. D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T.
Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. P. Lillicrap, F. Hui, L. Sifre,
G. van den Driessche, T. Graepel, and D. Hassabis. Mastering the game of Go
without human knowledge. Nature, 550(7676):354–359, 2017.

53. R. S. Sutton and A. G. Barto. Reinforcement learning - an introduction. Adaptive
computation and machine learning. MIT Press, 2nd edition, 2018.

54. C. Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lectures on
Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, 2010.

55. M. E. Taylor and P. Stone. Transfer learning for reinforcement learning domains:
A survey. J. Mach. Learn. Res., 10:1633–1685, 2009.

56. S. Thrun and L. Y. Pratt. Learning to learn: Introduction and overview. In S.
Thrun and L. Y. Pratt, editors, Learning to Learn, pages 3–17. Springer, 1998.

57. M. Tschaikowski and M. Tribastone. A unified framework for differential aggre-
gations in Markovian process algebra. J. Log. Alg. Meth. Prog., 84(2):238–258,
2015.

58. E. Vassev and M. Hinchey. Engineering requirements for autonomy features. In
[65], pages 379–403. 2015.

59. R. Vilalta, C. G. Giraud-Carrier, P. Brazdil, and C. Soares. Inductive transfer. In
C. Sammut and G. I. Webb, editors, Encyclopedia of Machine Learning and Data
Mining, pages 666–671. Springer, 2017.

32 Authors Suppressed Due to Excessive Length

60. N. Šerbedžija and S. Fairclough. Biocybernetic loop: From awareness to evolution.
In IEEE Evolutionary Computation 2009, pages 2063–2069. IEEE, 2009.

61. T. Wang, X. Bao, I. Clavera, J. Hoang, Y. Wen, E. Langlois, S. Zhang, G. Zhang,
P. Abbeel, and J. Ba. Benchmarking model-based reinforcement learning. CoRR,
abs/1907.02057, 2019.

62. A. Weinstein and M. L. Littman. Open-loop planning in large-scale stochastic
domains. In AAAI 2013. AAAI Press, 2013.

63. D. Weyns, B. R. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer, J.
Wuttke, J. Andersson, H. Giese, and K. M. Göschka. On patterns for decentralized
control in self-adaptive systems. In Software Engineering for Self-Adaptive Systems,
volume 7475 of Lecture Notes in Computer Science, pages 76–107. Springer, 2013.

64. M. Wirsing, J.-P. Banâtre, M. M. Hölzl, and A. Rauschmayer, editors. Software-
Intensive Systems and New Computing Paradigms - Challenges and Visions, vol-
ume 5380 of Lecture Notes in Computer Science. Springer, 2008.

65. M. Wirsing, M. M. Hölzl, N. Koch, and P. Mayer, editors. Software Engineering for
Collective Autonomic Systems – The ASCENS Approach, volume 8998 of Lecture
Notes in Computer Science. Springer, 2015.

66. M. Wirsing, M. M. Hölzl, M. Tribastone, and F. Zambonelli. ASCENS: Engineering
autonomic service-component ensembles. In FMCO 2011, volume 7542 of Lecture
Notes in Computer Science, pages 1–24. 2013.

67. M. J. Wooldridge and N. R. Jennings. Intelligent agents: theory and practice.
Knowledge Eng. Review, 10(2):115–152, 1995.

68. F. Zambonelli, N. R. Jennings, and M. J. Wooldridge. Developing multiagent
systems: The Gaia method. ACM Trans. Softw. Eng. Meth., 12(3):317–370, 2003.

69. P. Zuliani, A. Platzer, and E. M. Clarke. Bayesian statistical model checking with
application to Simulink verification. Formal Meth. Syst. Des., 43(2):338–367, 2013.

	Towards Systematically Engineering Autonomous Systems using Reinforcement Learning and Planning
	Introduction
	Preliminaries: Reinforcement Learning, Planning, and the Life Cycle EDLC
	Reinforcement learning and planning
	The Ensemble Development Life Cycle EDLC
	Development cycle Dev.
	Operations Cycle Ops
	Deployment and Feedback Data

	The AIDL Life Cycle for Autonomous Systems
	Requirements
	Modelling and Programming
	Choice of domain model.
	Choice of algorithm.
	Implementation and training.

	Validation and Verification
	Deployment and Feedback Data.
	The Operations Cycle

	Case Studies
	Case Study: Engineering Adaptation by Simulation-based Online Planning
	Search-and-rescue scenario.
	Requirements.
	Modelling and programming.
	Validation.
	Operations cycle.
	Deployment, feedback, and new development cycle

	Case Study Safe learning: Policy SYnthesis with safety Constraints (PSyCo).
	Particle Dance Scenario.
	Requirements.
	Modelling, programming, and training.
	Validation.
	Operations cycle.
	Deployment, feedback and new development cycle.

	Comparison

	Related Work
	Concluding Remarks
	Acknowledgement.

	Markov Decision Processes

