
cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 37

Component-based CEGAR - Building Software Verifiers
from Off-the-Shelf Components

Dirk Beyer1, Jan Haltermann2, Thomas Lemberger3, Heike Wehrheim4

Abstract: Software verification tools typically consist of tighly coupled components, thereby preclud-
ing the easy integration of off-the-shelf components. We propose to decompose software verification
into independent subtasks, each task being implemented by an own component communicating with
other components via clearly defined interfaces. We apply this idea of decomposition to one of
the most frequently used techniques in software verification: CEGAR. Our decomposition, called
component-based CEGAR (C-CEGAR), comprises three components: An abstract model explorer, a
feasibility checker and a precision refiner. It allows employing conceptually different components for
each task within one instance. Our evaluation shows that C-CEGAR has, compared to a monolithic
CEGAR-implementation, a similar efficiency and that the precision in solving verification tasks even
increases.

Keywords: Software engineering, Software verification, Abstraction refinement, CEGAR, Decompo-
sition, Cooperative verification

Component-based CEGAR

Violation
Witness

Path
Witness

Invariant
Witness

Abstract Model
Explorer

Feasibility
Checker

Precision
Refiner

𝑃, 𝜑

Task

program
correct

program
incorrect

Fig. 1: Workflow of component-based CEGAR

The past years have seen enormous
progress in software verification.
Although there is an interest in stan-
dardizing verification artifacts (e.g.,
using witnesses), the verification
task itself – though consisting of
several subtasks – is predominantly
realized using strongly cohesive soft-
ware units with stateful components.
This makes reusing components com-
plicated, impacts scalability (e.g.,
parallelization) and hampers exchange
and integration of new (off-the-shelf)
components.

1 LMU Munich, Munich, Germany, dirk.beyer@sosy-lab.org
2 University of Oldenburg, Oldenburg, Germany, jan.haltermann@uol.de
3 LMU Munich, Munich, Germany, thomas.lemberger@sosy.ifi.lmu.de
4 University of Oldenburg, Oldenburg, Germany, heike.wehrheim@uol.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:dirk.beyer@sosy-lab.org
mailto:jan.haltermann@uol.de
mailto:thomas.lemberger@sosy.ifi.lmu.de
mailto:heike.wehrheim@uol.de


38 Dirk Beyer, Jan Haltermann, Thomas Lemberger, Heike Wehrheim

We propose to decompose the construction of verifiers into independent components and
employ cooperative verification to have the components solve verification tasks together. We
demonstrate the feasibility of this idea by applying the decomposition to the counterexample-
guided abstraction refinement (CEGAR) scheme. CEGAR’smain concept during verification
is to iteratively refine an abstract model of the system using infeasible counterexamples.

The result of the decomposition, called C-CEGAR, is depicted in Fig. 1. It comprises
three components: Abstract model explorer, feasibility checker and precision refiner. The
interfaces for the communication between them – violation, path and invariant witnesses –
are defined using the existing and standardized witness format. The abstract model explorer
builds an abstract model of the program and therein searches for property violations,
given the task (program 𝑃 and property 𝜑) and an invariant witness (encoding the so-far
discovered abstraction predicates). If no violation is found, the program is proven correct;
otherwise, it constructs an error path leading to the violation, encoded as violation witness.
The feasibility checker checks the counter-example encoded in the violation witness for
feasibility. If it is feasible, the program violates the property. Otherwise, a path witness
encoding the infeasible path is built and given to the precision refiner which computes
additional abstraction predicates. These ensure that the infeasible counter-example is
not rediscovered. To be able to employ off-the-shelf tools within C-CEGAR, we provide
constructions for using a verifier as abstract model explorer or feasibility checker and an
invariant generator as precision refiner [Be22].

We realized C-CEGAR with CoVeriTeam. First, we decomposed CPAchecker’s CEGAR-based
predicate abstraction and than employed it with FShell-witness2test and Ultimate Automizer
as additional standalone-components within C-CEGAR. The evaluation on 8 347 verification
tasks has shown that (1) the decomposition of an existing CEGAR implementation has
(almost) no negative effects on the effectiveness, on the contrary increasing the precision
through the use of more sophisticated components, and that the efficiency only decreases
by a constant factor; (2) the cost of in addition using standardized formats for exchanging
information leads to a reduction of the effectiveness by around 20% and (3) using different
components within one C-CEGAR instance is simple and pays off.
In short: Building software verifiers from off-the-shelf components is doable and worth it.

Data Availability
Our implementation of C-CEGAR is open source and available online as part of CoVeriTeam;
Our artifact (evaluated as available and reusable) containing the implementation and all
experimental data is archived at Zenodo (https://doi.org/10.5281/zenodo.5301636).

Bibliography
[Be22] Beyer, D.; Haltermann, J.; Lemberger, T.; Wehrheim, H.: Decomposing Software Verification

into Off-the-Shelf Components: An Application to CEGAR. In: Proc. ICSE. ACM, pp.
536–548, 2022.

https://doi.org/10.5281/zenodo.5301636

