
BenchCloud: A Platform for Scalable Performance Benchmarking
Dirk Beyer
LMU Munich

Munich, Germany

Po-Chun Chien
LMU Munich

Munich, Germany

Marek Jankola
LMU Munich

Munich, Germany

Abstract

Performance evaluation is a crucial method for assessing automated-
reasoning tools. Evaluating automated tools requires rigorous bench-
marking to accurately measure resource consumption, including
time and memory, which are essential for understanding the tools’
capabilities. BenchExec, a widely used benchmarking framework,
reliably measures resource usage for tools executed locally on a sin-
gle node. This paper describes BenchCloud, a solution for elastic and
scalable job distribution across hundreds of nodes, enabling large-
scale experiments on distributed and heterogeneous computing
environments. BenchCloud seamlessly integrates with BenchExec,
allowing BenchExec to delegate the actual execution to BenchCloud.
The system has been employed in several prominent international
competitions in automated reasoning, including SMT-COMP, SV-
COMP, and Test-Comp, underscoring its importance in rigorous
tool evaluation across various research domains. It helps to ensure
both internal and external validity of the experimental results. This
paper presents an overview of BenchCloud’s architecture and high-
lights its primary use cases in facilitating scalable benchmarking.

Demonstration video: https://youtu.be/aBfQytqPm0U
Running system: https://benchcloud.sosy-lab.org/

CCS Concepts

• General and reference→ Cross-computing tools and tech-

niques; • Computing methodologies → Distributed computing
methodologies; • Computer-systems organization → Cloud com-
puting; Client-server architectures; • Software and its engineering

→ Software verification and validation.

Keywords

Benchmarking, Remote execution, Job-distribution system, Resource
management, Cloud computing, Tool competition, Containers

ACM Reference Format:

Dirk Beyer, Po-Chun Chien, and Marek Jankola. 2024. BenchCloud: A
Platform for Scalable Performance Benchmarking. In Proceedings of the
39th IEEE/ACM International Conference on Automated Software Engineering
(ASE ’24), October 27 – November 1, 2024, Sacramento, CA, USA. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3691620.3695358

1 Introduction

Large-scale performance evaluation is essential in experimental
automated-reasoning research for assessing the effectiveness of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASE ’24, October 27 – November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1248-7/24/10
https://doi.org/10.1145/3691620.3695358

various tools and methodologies [1]. Performance-critical auto-
mated tools such as verifiers, logic solvers, simulators, and test-case
generators require rigorous benchmarking to accurately measure
execution time, memory usage, and other performance measures.

There are two major problems to solve: (1) To ensure internal
validity, it is essential to use accurate and reliable technology for
controlling resources. The benchmarking framework BenchExec [2]
can be used to address this problem. (2) To ensure external validity,
it is essential to evaluate the performance across a diverse and large
benchmark set. The competition SV-COMP 2024 [3] involved over
30 000 verification tasks and evaluated 76 verification tools. We
provide BenchCloud as a solution to scale to large experiments.

BenchCloud addresses these scalability challenges by providing
an elastic cloud-based infrastructure. This system enhances the ca-
pability of BenchExec to handle large-scale experiments and ensures
reliable performance measurements. BenchCloud’s architecture in-
cludes a manager process that distributes benchmark runs across
an elastic set of worker nodes. Benchmark results are collected and
returned to users, including output files, resource measurements,
and execution logs. The system also features run prioritization,
allowing for flexible resource allocation based on the importance
of different benchmark runs. BenchCloud is elastic in the sense that
it is tolerant to disappearing workers and starts using new workers
as soon as they appear. By supporting resource management and
monitoring across distributed nodes, BenchCloud facilitates rigorous
performance evaluations in various research domains [3–5].

Development History. The development of BenchCloud started in
2011 at the University of Passau. The project was initially named
VerifierCloud (hence the abbreviation vcloud in some references)
as it was designed for benchmarking software verifiers on the cloud.
BenchCloud made its first public debut in the competition report
of SV-COMP 2017 [6]. Now the project is primarily developed and
maintained by researchers and students at LMU Munich.

Significance and Impact. BenchCloud has become a pivotal plat-
form for hosting various well-recognized international tool compe-
titions on software verification (SV-COMP [3, 6]), software testing
(Test-Comp [4]), and satisfiabilitymodulo theories (SMT-COMP [5]).
It ensures reliable performance measurements via BenchExec [2]
and scales for parallel benchmark execution across many worker
machines, meeting the rigorous requirements of large-scale eval-
uations for research in software engineering and automated rea-
soning. While primarily utilized in automated-reasoning commu-
nities, BenchCloud can also be used for benchmarking other auto-
mated tools. Its unique role in these competitions and software-
engineering research underscores its substantial contribution to the
development and assessment of cutting-edge tools. Despite being
developed and utilized for over a decade, the system has not been
adequately documented in the literature. This manuscript addresses
this gap by offering an overview of the system.

https://doi.org/10.5281/zenodo.13742756
https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0001-5139-5178
https://orcid.org/0009-0008-7961-190X
https://youtu.be/aBfQytqPm0U
https://benchcloud.sosy-lab.org/
https://doi.org/10.1145/3691620.3695358
https://doi.org/10.1145/3691620.3695358
https://sv-comp.sosy-lab.org/
https://sv-comp.sosy-lab.org/
https://test-comp.sosy-lab.org/
https://smt-comp.github.io/


ASE ’24, October 27 – November 1, 2024, Sacramento, CA, USA Dirk Beyer, Po-Chun Chien, and Marek Jankola

User

User-Side
Script (.py)

Benchmarking
Client (.jar)

Administrative Client (.jar)

User Machine

Manager
(.jar)

Manager Machine

Worker (.jar)
Worker (.jar)

Worker (.jar)

Worker Machines

Figure 1: Components of BenchCloud

2 System Description

Figure 1 provides a high-level system overview of BenchCloud, illus-
trating its four main components: user-side script, clients, manager,
and workers. These components work together across multiple
machines to facilitate large-scale performance benchmarking. From
a user’s machine, the user-side script collects the executables of
the tool to be benchmarked, the benchmark set (i.e., a set of input
files for the tool to execute on), and the experimental settings into
a run collection, and submits it to the BenchCloud manager through
the benchmarking client. Upon receiving a run collection, the man-
ager distributes the workload to the worker machines. Each worker
machine executes a set of benchmark runs with the resource con-
straints specified in the experimental settings and reports the results
back to the manager. Finally, the manager aggregates the results
and sends them back to the user via the client and the user-side
script. In this section, we describe each of the main components
of BenchCloud in detail.

2.1 User-Side Script

The user-side script vcloud-benchmark.py1 takes as input a bench-
mark definition, which specifies the tool to be benchmarked, the
benchmark set, files to be retrieved after a benchmark run, and
the experimental setup, including the required CPU model of the
worker machines, and limits (memory, time, cores) for each run.

The user-side script is integrated in the BenchExec framework [2]
by implementing BenchExec’s Executor interface, for which the
framework provides a default implementation for local execution.
Our Executor for remote execution tells BenchExec how to process a
run collection after aggregating all necessary files, by implementing
the method execute_benchmark(). Therefore, the user-side script
can be used as a drop-in replacement for the program benchexec,
which uses the default Executor provided by the framework.

To benchmark a tool on BenchCloud, it has to be available on the
user’s machine as executable for the worker machine. If external
dependencies, such as libraries, are required for the tool’s execution,
they should be shipped together with the tool or installed on the
worker machines (future versions will support OCI containers [7]).
Moreover, the user needs to provide a tool-info module2 to instruct
BenchExec on how to assemble the command line to start the tool,
which directories to deploy to workers, and how to parse its output.

2.2 Clients

The communication between the user and the BenchCloud manager
flows through clients. Here we describe two commonly-used clients:
the benchmarking client and the administrative client.

1https://github.com/sosy-lab/benchexec/blob/3.24/contrib/vcloud-benchmark.py
2Examples: https://github.com/sosy-lab/benchexec/tree/3.24/benchexec/tools

BenchmarkingClient.The benchmarking client serves as a bridge
between the user-side script and the manager. It is employed by
the user-side script for submitting run collections to the manager,
and later receiving the benchmarking results from the manager.

Administrative Client. The administrative client is used for ad-
ministrating a running BenchCloud instance. It features an interac-
tive command-line interface that allows the user to (1) obtain the
status and availability of the workers, (2) add and remove workers
to/from the system, (3) retrieve the information (e.g., number of
finished runs and the submission time) about a run collection, and
(4) cancel and adjust the priority (explained in Sect. 2.3) of a run
collection.

2.3 Manager

The manager is the central component in BenchCloud, responsible
for distributing benchmark runs to worker machines and collecting
the results. Its three main functionalities are described below.

Job Distribution. The manager maintains an overview of the
worker machines, including CPU model, available memory and
cores, occupancy status, and current workload. As mentioned in
Sect. 2.1, each run collection has a set of resource requirements,
with which the worker machines have to comply. The manager
assigns runs only to worker machines with a matching CPU model
and sufficient available memory and CPU cores, based on these re-
quirements. Each run is assigned dedicated CPU cores and memory,
ensuring that no two runs are using the same CPU core and that
memory is not overbooked on the worker machines.

In practical scenarios, worker machines are often shared with
external users, that is, users who use these machines for purposes
other than benchmarking and are not part of the BenchCloud system.
If the manager detects that an external user is occupying a worker
machine, it will stop all currently-executing runs on that machine
(and later reassign them to other machines). No further runs will
be assigned to that worker machine until the occupancy is cleared.
This feature is particularly useful at universities, where computer
pools are shared among students and researchers.

Run Scheduling. Multiple users can submit run collections to
BenchCloud at the same time. The manager schedules runs based
on the specified priority of the run collection. BenchCloud offers the
following five priority levels:
• URGENT: Runs are always scheduled if a worker machine satisfy-
ing the resource requirements is available.

• HIGH and LOW: Runs are scheduled if there are no URGENT runs.
The ratio of number of runs scheduled for HIGH and LOW is 2:1.

• IDLE: Runs are scheduled only if no runs of higher priority
(URGENT, HIGH, and LOW) are in the queue.

• PAUSED: No runs are scheduled.

https://github.com/sosy-lab/benchexec/blob/3.24/doc/benchexec.md#input-for-benchexec
https://github.com/sosy-lab/benchexec/blob/3.24/doc/benchexec.md#input-for-benchexec
https://github.com/sosy-lab/benchexec/blob/3.24/contrib/vcloud/benchmarkclient_executor.py
https://github.com/sosy-lab/benchexec/blob/3.24/bin/benchexec
https://github.com/sosy-lab/benchexec/blob/3.24/contrib/vcloud-benchmark.py
https://github.com/sosy-lab/benchexec/tree/3.24/benchexec/tools


BenchCloud: A Platform for Scalable Performance Benchmarking ASE ’24, October 27 – November 1, 2024, Sacramento, CA, USA

If there are multiple run collections with the same priority from
different users, the manager schedules their runs fairly. The priority
of a run collection is initially set by the user, but can be later adjusted
by the system administrator using the administrative client (see
Sect. 2.2). Having different priority levels and the flexibility to
adjust them allows BenchCloud users to coordinate the allocation
of computing resources according to their needs.

Result Aggregation. After a run collection is completed, the man-
ager collects the computed results and outputs from the worker
machines. The result from a run contains the extracted outcome of
the tool (using the tool-info module; see Sect. 2.1), the consumed
CPU time, and the memory usage (i.e., the peak memory consump-
tion). All results are organized in a structured and standardized
XML format used in the BenchExec framework [2]. Additionally,
the manager collects the console output (stdout and stderr) of
the tool, as well as the output files specified in the benchmark def-
inition. These aggregated files are then sent back to the user via
the benchmarking client. (Users can conveniently post-process and
visualize the results using the program table-generator in the
BenchExec framework.)

2.4 Worker

A worker is a BenchCloud process running on a worker machine.
It has the following responsibilities.

Status Monitoring. The worker continuously monitors and re-
ports the status of the machine to the manager. The reports include
the current runs being executed, the available computing resources,
and whether any external user is occupying the machine. This
reporting mechanism ensures that the manager has up-to-date in-
formation on the status of all worker machines, which is essential
for effective job distribution (see also Sect. 2.3).

Isolated Run Execution and Resource Management. Each
BenchCloud worker uses the program runexec from the BenchExec
framework [2] to execute benchmark runs. runexec pins a bench-
mark run to the CPU cores assigned by the manager and restricts
its memory usage according to the given experimental settings
using the control groups (cgroups) of the Linux kernel. Besides
constraining resource usage, cgroups also support the measure-
ment of resource consumption of the benchmark run. Additionally,
runexec leverages Linux namespaces for isolated execution, effec-
tively containerizing each benchmark run. This isolation ensures
that benchmark runs do not interfere with each other. Linux overlay
file systems are used for clean handling of file access and result
collection: the benchmarked tool writes to an overlay file system.
The combined use of cgroups, namespaces, and overlay file systems
ensures the reliability and reproducibility of the benchmark results.

FileCaching. In typical benchmarking scenarios, users often bench-
marks the same tool across different tasks of a benchmark set or
benchmarks different tools on the same tasks. To optimize perfor-
mance and efficiency, each BenchCloud worker maintains a local
file cache for these commonly used files, including both the tool
binaries and the benchmark tasks. This caching mechanism effec-
tively reduces network traffic and the time required to transfer files
between the manager and the worker machines, and mitigates the
risk of saturating the network. By reducing data-transfer overhead,

BenchCloud fosters smoother execution of benchmark runs and
improves overall system efficiency.

2.5 Implementation and System Requirements

The user-side script and BenchExec are written in Python, whereas
the remaining components of BenchCloud are written in Java. Com-
munication between clients, manager, and workers is handled via
the java.net package. The manager additionally relies on SSH
connections to initiate a worker process on a worker machine. For
BenchCloud 1.1 [8], Java 11 and Python 3.8 (or newer) are required.
In order to ensure process isolation and reliable resource measure-
ment for benchmark runs on worker machines using BenchExec [2],
thesemachines are required to have a Linux-based operating system
with modern features like control groups (for managing resource
usage), namespaces (for process containerization), and overlay file
systems (for file handling).

3 Use Cases

In this section, we present the main use cases and the existing
instances of BenchCloud.

3.1 Large-Scale Performance Benchmarking

BenchCloud is a cloud platform designed for large-scale performance
benchmarking of automated tools, a common practice in the field of
software engineering. At the time of writing, there are four running
instances of BenchCloud at LMU Munich, Technical University of
Dortmund, Masaryk University of Brno, and ISP RAS. The instance
at LMU Munich has the most extensive computing resources, boast-
ing a cluster of over 250worker machines, with a total of more than
2 400 CPU cores and 10 TB of RAM. These BenchCloud systems are
primarily used for research activities in the universities.

Software-Engineering Research. BenchCloud serves as a pivotal
platform for performing experimental evaluations with precision
and scalability for the software-engineering research community.
Once research ideas evolve into tools and mature into experimen-
tal setups intended for publication, BenchCloud ensures reliable
and consistent performance measurements. Its capability to hori-
zontally scale experiments across multiple machines is invaluable,
significantly reducing the time required for evaluations that might
otherwise take months on a single machine to just a matter of hours
with BenchCloud. The system supports the rigorous demands of
scientific research while maintaining an efficient workflow.

International Tool Competitions. BenchCloud plays a crucial
role in several prominent international tool competitions, including
SV-COMP [3], Test-Comp [4], and SMT-COMP [5], where it serves
as a platform for evaluating the performance of numerous auto-
mated logic-solving tools. These competitions necessitate rigorous
benchmarking of tools across diverse benchmark tasks under con-
trolled environments to assess the tools’ effectiveness and efficiency.
The BenchCloud instance at LMU Munich supports such evaluation
requirements. For example, the 13th SV-COMP in 2024 [3] was exe-
cuted on 168 worker machines, each equipped with an Intel Xeon
E3-1230 v5 CPU. The competition involved 76 verification tools
and over 30 000 verification tasks, collectively consuming approxi-
mately 4 394 days of CPU time. Notably, while previous editions of

https://github.com/sosy-lab/benchexec/blob/3.24/doc/run-results.md
https://github.com/sosy-lab/benchexec/blob/3.24/doc/run-results.md
https://github.com/sosy-lab/benchexec/blob/3.24/bin/table-generator
https://github.com/sosy-lab/benchexec/blob/3.24/bin/runexec
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/net/package-summary.html
https://sv-comp.sosy-lab.org/
https://test-comp.sosy-lab.org/
https://smt-comp.github.io/


ASE ’24, October 27 – November 1, 2024, Sacramento, CA, USA Dirk Beyer, Po-Chun Chien, and Marek Jankola

SMT-COMP were conducted on StarExec [9], the 19th SMT-COMP
in 2024 utilized the BenchCloud instance at LMU Munich. Bench-
Cloud’s scalability and robust resource management make it an
ideal choice for hosting large-scale tool competitions.

3.2 Continuous Integration

BenchCloud can also be used for continuous integration (CI) of soft-
ware projects, especially for detecting functional and performance
regressions. For example, the project CPAchecker [10], a configurable
software-verification platform developed at LMU Munich, inte-
grates BenchCloud in its Buildbot-based CI pipelines. CPAchecker’s
Buildbot launches a set of regression tests (as benchmark runs) on
BenchCloud at the latest commit of CPAchecker on a daily basis.3
Every day, the BenchCloud instance at LMU Munich executes over
80 000 benchmark runs for CPAchecker, consuming an average of
85 days of CPU time. Similarly, the development team of JDart [11]
at Technical University of Dortmund also incorporates BenchCloud
into their CI pipelines. By leveraging BenchCloud for regression
testing, the tool developers can quickly identify issues introduced
by recent commits. This integration greatly enhances the reliability
of the development process, and ensures high code quality and
stable performance in the software tools.

4 Related Work

StarExec [9] provides a similar functionality for distributing bench-
mark runs across computing nodes. It is a web-based benchmarking
platform that supports large-scale experimental evaluations across
different logic-solving communities, including SMT, SAT, and QBF.
StarExec offers a shared infrastructure for storing and managing
benchmark tasks and solvers, running solver competitions, and
performing comparative evaluations. It used to delegate the re-
source measurement and control to runsolver [12] and has now
adopted runexec from the BenchExec framework for this purpose.
BenchCloud, on the other hand, is designed to be a cloud-based
extension of BenchExec, offering seamless integration with existing
components in the framework. This design enables experimental
setups that work locally with BenchExec to be easily adapted for
remote execution. Additionally, the experimental data gathered
by BenchCloud can be directly processed by table-generator in
BenchExec, streamlining the workflow for researchers.

There are also general-purpose job scheduling and management
systems such as Slurm [13] and Kubernetes. Slurm is widely used
in high-performance computing environments thanks to its op-
timized resource allocation and modularity. Kubernetes, designed
for container orchestration, provides various features for running
containerized applications in parallel. However, these systems are
not specifically tailored for benchmarking, and require additional
customization to integrate into a scientific evaluation workflow.

Cloud-based load-testing services from providers like AWS and
Azure can also be employed to distribute runs at scale. Nonetheless,
these services typically provide resource measurement at the node
level, whereas BenchCloud collects resource usage for each individ-
ual benchmark run. Furthermore, BenchCloud is a free software,
while cloud services are generally commercial offerings.

3CPAchecker’s Buildbot uses a specialized, tool-specific benchmarking client that also
automates the tool compilation using worker machines.

5 Conclusion and Future Work

BenchCloud already plays an important role in the automated-
reasoning research community, since it is used by three interna-
tional competitions, and there are at least four independent in-
stances running at European research institutes. Thus, it is time
to release the code of this important infrastructure to the public
to let more people benefit from it. BenchCloud makes it possible
to use the capabilities of BenchExec across many computing nodes,
which guarantees reliable and accurate benchmarking on a large
scale. The integration with BenchExec facilitates consistency in ex-
perimental setups from local to remote execution and convenience
in data processing. Furthermore, BenchCloud’s components enable
system administrators to effortlessly manage a running instance,
and the run-prioritization features give users flexibility in resource
allocation. Future releases plan to support tool execution in cus-
tomizable containers [7], reducing the need for users to install the
necessary dependencies on the worker machines.

Declarations

Data-Availability Statement. The source code, compiled binaries,
and documentation of BenchCloud 1.1 are archived on Zenodo [8].
Funding Statement. This project was funded in part by the
Deutsche Forschungsgemeinschaft (DFG) – 378803395 (ConVeY)
and 418257054 (Coop), and by the Free State of Bavaria.
Acknowledgement.We thank all developers and users from LMU
Munich, Uni Passau, Uni Oldenburg, TU Dortmund, BME Budapest,
and Masaryk Uni Brno for valuable feedback and contributions.

References

[1] W. F. Tichy. 1998. Should Computer Scientists Experiment More? IEEE Computer
31, 5 (1998), 32–40. https://doi.org/10.1109/2.675631

[2] D. Beyer, S. Löwe, and P. Wendler. 2019. Reliable Benchmarking: Requirements
and Solutions. Int. J. Softw. Tools Technol. Transfer 21, 1 (2019), 1–29. https:
//doi.org/10.1007/s10009-017-0469-y

[3] D. Beyer. 2024. State of the Art in Software Verification and Witness Validation:
SV-COMP 2024. In Proc. TACAS (3) (LNCS 14572). Springer, 299–329. https:
//doi.org/10.1007/978-3-031-57256-2_15

[4] D. Beyer. 2023. Software Testing: 5th Comparative Evaluation: Test-Comp 2023.
In Proc. FASE (LNCS 13991). Springer, 309–323. https://doi.org/10.1007/978-3-
031-30826-0_17

[5] T. Weber, S. Conchon, D. Déharbe, M. Heizmann, A. Niemetz, and G. Reger. 2019.
The SMT Competition 2015-2018. J. Satisf. Boolean Model. Comput. 11, 1 (2019),
221–259. https://doi.org/10.3233/SAT190123

[6] D. Beyer. 2017. Software Verification with Validation of Results (Report on SV-
COMP 2017). In Proc. TACAS (LNCS 10206). Springer, 331–349. https://doi.org/
10.1007/978-3-662-54580-5_20

[7] D. Beyer and H. Wachowitz. 2024. FM-Weck: Containerized Execution of Formal-
Methods Tools. In Proc. FM (LNCS 14934). Springer. https://doi.org/10.1007/978-
3-031-71177-0_3

[8] D. Beyer, P.-C. Chien, and M. Jankola. 2024. BenchCloud Release 1.1. Zenodo.
https://doi.org/10.5281/zenodo.13742756

[9] A. Stump, G. Sutcliffe, and C. Tinelli. 2014. StarExec: A Cross-Community
Infrastructure for Logic Solving. In Proc. IJCAR (LNCS 8562). Springer, 367–373.
https://doi.org/10.1007/978-3-319-08587-6_28

[10] D. Beyer and M. E. Keremoglu. 2011. CPAchecker: A Tool for Configurable
Software Verification. In Proc. CAV (LNCS 6806). Springer, 184–190. https:
//doi.org/10.1007/978-3-642-22110-1_16

[11] K. S. Luckow, M. Dimjasevic, D. Giannakopoulou, F. Howar, M. Isberner, T. Kah-
sai, Z. Rakamaric, and V. Raman. 2016. JDart: A Dynamic Symbolic Anal-
ysis Framework. In Proc. TACAS (LNCSS 9636). Springer, 442–459. https:
//doi.org/10.1007/978-3-662-49674-9_26

[12] Olivier Roussel. 2011. Controlling a Solver Execution with the runsolver Tool.
JSAT 7 (2011), 139–144. https://doi.org/10.3233/SAT190083

[13] A. B. Yoo, M. A. Jette, and M. Grondona. 2003. Slurm: Simple Linux Utility
for Resource Management. In Proc. JSSPP (LNCS 2862). Springer, 44–60. https:
//doi.org/10.1007/10968987_3

https://buildbot.net/
https://buildbot.sosy-lab.org/cpachecker/
https://buildbot.sosy-lab.org/cpachecker/
https://github.com/StarExec/StarExec
https://www.tapatalk.com/groups/starexec/new-benchmarking-framework-benchexec-t117.html
https://github.com/SchedMD/slurm
https://github.com/kubernetes/kubernetes
https://aws.amazon.com/solutions/implementations/distributed-load-testing-on-aws/
https://azure.microsoft.com/en-au/products/load-testing
http://gepris.dfg.de/gepris/projekt/378803395
https://convey.sosy-lab.org/
http://gepris.dfg.de/gepris/projekt/418257054
https://coop.sosy-lab.org/
https://doi.org/10.1109/2.675631
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-031-30826-0_17
https://doi.org/10.1007/978-3-031-30826-0_17
https://doi.org/10.3233/SAT190123
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-031-71177-0_3
https://doi.org/10.1007/978-3-031-71177-0_3
https://doi.org/10.5281/zenodo.13742756
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-662-49674-9_26
https://doi.org/10.1007/978-3-662-49674-9_26
https://doi.org/10.3233/SAT190083
https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3

	Abstract
	1 Introduction
	2 System Description
	2.1 User-Side Script
	2.2 Clients
	2.3 Manager
	2.4 Worker
	2.5 Implementation and System Requirements

	3 Use Cases
	3.1 Large-Scale Performance Benchmarking
	3.2 Continuous Integration

	4 Related Work
	5 Conclusion and Future Work
	References

