CoVeriTeam GUI: A No-Code Approach to Cooperative Software
Verification

Thomas Lemberger
LMU Munich
Munich, Germany

Abstract

We present CoVeriTeam GUL, a No-Code web frontend to compose
new software-verification workflows from existing analysis tech-
niques. Verification approaches stopped relying on single tech-
niques years ago, and instead combine selections that complement
each other well. So far, such combinations were—under high imple-
mentation and maintenance cost—glued together with proprietary
code. Now, CoVeriTEam GUI enables users to build new verification
workflows without programming. Verification techniques can be
combined through various composition operators in a drag-and-drop
fashion directly in the browser, and an integration with a remote
service allows to execute the built workflows with the click of a
button. CoVeriTeam GUI is available open source under Apache 2.0:
https://gitlab.com/sosy-lab/software/coveriteam-gui
Demonstration video: https://youtu.be/0ZoOARuIOuA

ACM Reference Format:

Thomas Lemberger and Henrik Wachowitz. 2024. CoVeriTeam GUI: A No-
Code Approach to Cooperative Software Verification. In 39th IEEE/ACM
International Conference on Automated Software Engineering (ASE °24), Octo-
ber 27-November 1, 2024, Sacramento, CA, USA. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3691620.3695366

1 Introduction

Compared to testing, formal software verification can not only
show the presence of bugs, but also prove software safe with re-
gards to given properties. But no single verification technique
can solve all verification tasks. Because of this, many verification
approaches stopped relying on a single technique: The Interna-
tional Competition on Software Verification [2] (SV-COMP) pro-
vides a yearly snapshot of the state of the art in automated soft-
ware verification. In SV-COMP 2024 [2], 12 of the 26 submitted
tools and two of the three medalists in category Overall com-
bined different verification techniques.

So far, these combinations are—under high implementation and
maintenance cost—redundantly implemented and glued together.
Cooperative verification [11] addresses this and proposes to com-
bine existing verification tools off-the-shelf. While this sacrifices
some potential performance optimizations, it avoids the high costs
of (re-)implementation and still produces competitive results [6].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASE °24, October 27-November 1, 2024, Sacramento, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1248-7/24/10

https://doi.org/10.1145/3691620.3695366

Henrik Wachowitz
LMU Munich
Munich, Germany

But cooperative verification is an abstract idea that does not
propose a specific implementation or framework to build tool com-
binations. The CoVeriTeam [5] project tries to fill this gap with three
features: (1) It gives researchers access to a plethora of verification
tools through its integration with the community-maintained fm-
tools [1] repository. (2) It provides a domain-specific language to
define verification workflows over these tools, and (3) it provides
a runtime to execute defined workflows locally.

On the downside, CoVeriTean still requires researchers to learn
its domain-specific language, which includes unintuitive quirks and
expert-centered documentation (as often seen in research projects).

CoVeriTeam GUI lightens this burden. It is a web-based graphical
user interface that enables users to build verification workflows
in a drag-and-drop fashion without knowing the details of the
CoVeriTeam language. These workflows can then also be executed
on a remote service [8] with the click of a button.

To stay in sync with new versions of CoVeriTEam, CoVERITEAM GUI
automatically synthesizes the available actors and artifacts from the
CoVeriTEAM source code.

Contributions. This paper provides the following contributions:

(1) No-Code Approach to Cooperative Verification: CoVeriTEAm GUI
provides a no-code solution to build verification workflows with
a plethora of available verification tools.

(2) Visualization: CoVeriTeam GUI can import and visualize work-
flows that were built with the CoveriTeam language. This helps
with understanding existing workflows.

(3) Automated Synthesis: CoVeriTeam GUI automatically synthesizes
the available GUI components from the CoVeriTeam source code.
This makes it easy to keep CoVeriTeam GUI up-to-date.

(4) Reuse: CoVeriTeam GUI is available open source on GitLab [10].
It is implemented as a pure frontend application and can be
deployed easily.

Running Example. When an automated verifier produces a ver-
ification verdict, it is common to increase the confidence in this
verdict with a third-party validator [3]. In this setting, the verifier
receives as inputs a program and a specification, and produces
as outputs a verification verdict and a witness. The verification
verdict is “TRUE’ if the program is claimed correct with respect
to the specification, and ‘FALSE’ if the program is claimed to vio-
late the specification. The witness contains machine-readable data
that tries to support the respective verdict.

The third-party validator then receives as input the program,
specification, and witness, and tries to confirm the verification
verdict with the help of the witness. There are two categories
of validators, with different capabilities: If we want to check ver-
dict “TRUE’ we must run a correctness validator. To check verdict
‘FALSE’ we must run a violation validator.

https://orcid.org/0000-0003-0291-815X
https://orcid.org/0000-0002-4768-4054
https://gitlab.com/sosy-lab/software/coveriteam-gui
https://youtu.be/oZoOARuIOuA
https://doi.org/10.1145/3691620.3695366
https://doi.org/10.1145/3691620.3695366

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

CProgram

path: "example.c" o .
ProgramVerifier
data_model: [LP32 e Actor

cpachecker -

Specification

Definition:
.

Required Input Artifacts:
Program, Specification
Produced Output Artifacts:
Verdict, Witness

specification

.
path: "unreach-callprp’ &

‘Output Artifacts: Verdict, Witness

? e

® condition:

Thomas Lemberger and Henrik Wachowitz

ProgramValidator

Definition: uautomizer v
.

i ,
e Version: | svcomp24-correctne... -

? e
® condition: | ELEMENTOF(verd

Output Artifacts: Verdict, Witness

false
0

©

ProgramValidator
Actor Output Artifacts: Verdict, Witness

o Definition: uautomizer v
e . .
ELEMENTOF(verd

false
.

Version: svcomp24-violation v

Figure 1: Composition of a validating verifier in CoVeriTEam GUI

1 class ProgramVerifier(Verifier, AtomicActor)

2 _input_artifacts = {

3 "program": Program, "spec": Specification
4 }

5 _output_artifacts = {

6 "verdict": Verdict, "witness": Witness

7 }

8

Figure 2: Excerpt of the implementation of the actor
ProgramVerifier in CoVErITEAM

In a traditional setting we have to first run the verifier and then
manually invoke the correct type of validator afterwards. As run-
ning example we avoid this work and directly combine a verifier
and validator in a sequence that reflects the workflow described
above. We call the resulting approach a validating verifier [5]. Fig-
ure 1 shows this composition in CoVeriTeam GUL

2 Background: CoVeriTeam

The CoVeriTeam language is a domain specific language to build
new workflows from existing automated verification techniques. A
CoVeriTEAM program consists of three parts: (1) Inputs to the pro-
gram, (2) the definition of the verification workflow, and (3) the exe-
cution of the workflow.

Artifacts. All data that is used in a verification workflow is repre-
sented as an artifact. Artifacts are distinguished by their concrete
type. Three examples: A CProgram artifact is a C program, a Speci-
fication artifact is a specification file, and a Verdict artifact is one
of three string values that represent a verification verdict: “TRUE’,
‘FALSE’, and ‘UNKNOWN’. Each concrete artifact that is used in a veri-
fication workflow also has a unique name that is set upon creation.

Atomic Actors. Existing verification techniques are represented
by atomic actors. An atomic actor defines its expected input artifacts
and output artifacts (both by name and type), and calls an external
tool with the input artifacts to produce the output artifacts. Within
CoVEeriTeam, different types of atomic actors exist for different pairs
of input- and output-artifacts. Figure 2 shows an excerpt of the
internal implementation of the atomic actor Programverifier, a stan-
dalone software verifier that receives a program and a specification
and produces a verification verdict and a verification-result witness.
If an actor does not receive all required input artifacts, it will not
execute and CoVeriTeam will issue an appropriate error message.

Composition Operators. Composition operators combine atomic
actors. CoVeriTeam supports the sequential composition, parallel
composition, cyclic composition and if-then-else composition of

1 // Create verifier and validator from yml files

2 verifier = ActorFactory.create(ProgramVerifier,

— verifier_path, verifier_version);

validatorC = ActorFactory.create(ProgramValidator,
< validator_path, version_correct);

4 validatorV = ActorFactory.create(ProgramValidator,

< validator_path, version_violation);

5 // Use validatorC if verdict is true
6 // or validatorV if verdict is false
7 condition_true = ELEMENTOF (verdict,
8
9

w

{TRUE});
condition_false = ELEMENTOF (verdict, {FALSE});
false_branch = ITE(condition_false, validatorV);

10 second_component = ITE(condition_true, validatorC,
< false_branch);

11 // Verifier and second component to be executed
< sequence

12 validating_verifier =
< second_component);

in
SEQUENCE (verifier,
received from the command line

ArtifactFactory.create(CProgram,
data_model);

14 // Inputs,

15 program =
< program_path,

16 specification =
< ArtifactFactory.create(BehaviorSpecification,
< spec_path);

17 inputs = {'program':program, 'spec':specification};
18 // Execute the new component on the inputs

19 res = execute(validating_verifier, inputs);

20 print(res);

Figure 3: A validating verifier as a CoVErRITEaAM program

actors. Compositions can be arbitrarily nested. The if-then-else
ITE(c,A1,A2) takes three arguments: a condition ¢ over incoming
artifacts, the actor A1 that is executed when c is true, and the (op-
tional) actor A2 that is executed when c is false. The CoVeriTeam lan-
guage supports instanceof, elementof, existence and equality checks.
For example condition ELEMENTOF (verdict, {TRUE, FALSE}) is
true when the incoming verdict is either ‘TRUE’ or ‘FALSE’.

Example CoVeriTEam Program. Figure 3 shows the definition of
a validating verifier in the CoVeriTeam language. A program ver-
ifier (line 2) receives a program and a specification as input, and
produces a verification verdict and a verification-result witness. It
is combined in a sequence (line 12), with conditional validation as
second component: If the produced verdict is true (line 10), it is
checked by correctness validator validatorC (line 3). Otherwise, if
the produced verdict is false (line 9), it is checked by violation val-
idator validatoryV (line 4). If the produced verdict is another value
(unknown), there is no need to check the result and nothing happens
after verification (no else-branch in the if-then-else in line 9). The in-
put program and specification are defined in lines 15 and 16. Finally,

CoVeriTeam GUI: A No-Code Approach to Cooperative Software Verification

"actors": [
{

"name": "ProgramVerifier",

"inputArtifacts": {
"program": "Program",
"spec": "Specification"

1,

"outputArtifacts": {
"verdict": "Verdict",
"witness": "Witness"

}

Y, /* snip other .. x/

Figure 4: Excerpt of the synthesized JSON file

the composition is executed (lines 17-19) and the result is printed
to the user. All undefined variables in a CoVeriTEam program must
be provided upon execution with CoVeriTeam. Here this is 8 vari-
ables: verifier_path, verifier_version, validator_path, version_correct,
version_violation, program_path, data_model, and spec_path.

We hope this example demonstrates how even a relatively simple
sequential composition is complicated to write and execute with the
CoVeriTEam language.

CoVeriTeam SErvice. Originally, verification workflows are exe-
cuted through CoVeriTeam on the command line. CoVerTEaM SER-
vice [8] is an existing web service that allows to execute workflows
remotely without a local installation of CoVeriTEam.

3 Contribution

CoVEeriTEaM GUI provides a no-code alternative to the text-based
CoVeriTeam programs. It is implemented as a web application, where
users can define a cooperative verification workflow visually and
execute it remotely through CoVeriTEam Service [8].

3.1 Synthesizing the Frontend

A major concern in building CoVeriTeam GUI was the evolving
nature of CoVeriTeam. Users and maintainers of CoVeriTeam add
new atomic actors on a regular basis, for example to support tools
with special output files like new witness formats or test suites.
To keep CoVeriTeam GUI up-to-date with CoVeriTeam despite these
frequent additions, we synthesize the atomic actors and artifacts
directly from CoVeriTeam’s source code.

This synthesizer is written in Python. It parses the CoVeriTeam
code and extracts all classes that transitively inherit from class
AtomicActor. The inputs and outputs of atomic actors are extracted
from the class fields _input_artifacts and _output_artifacts. To ex-
tract the available artifacts, the synthesizer uses an analogous pro-
cess. The full result of this analysis is processed into a JSON file
that lists all atomic actors and artifact types. This can be consumed
by the CoVeriTEam GUI to display the components accordingly. An
excerpt of the synthesized JSON file is shown in Fig. 4.

3.2 No-Code Cooperative Verification

Figure 5 shows the initial state of CoVeriTEam GUI when a user cre-
ates a new composition. CoVeriTeam GUI visualizes the verification
workflow on a canvas (area on the right in Fig. 5). For larger com-
positions that don’t fit on the screen, a minimap on the bottom
right helps the users navigate. Users can select compositions (box

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

CoVeriTeam GUI

Compositions

Craratet I 1 I Repeat |

ConditionExtractor
CMCReducer

= e

Artifacts

ClassificationConfidence

Created Flows

FlowChart_My Flow... X
FlowChart_example X

Figure 5: Full CoVeriTEam GUI with a blank composition

‘Compositions’) and atomic actors (box ‘Actors’) from the palette
on the left to position them on the canvas.

The canvas lets users freely move and rearrange components.
A sequential composition is created by connecting one block’s
outputs with another block’s inputs. The edges are labeled with
the artifacts that flow through them (see Fig. 1).

The atomic actors offer a drop-down menu where users can
select from a large array of available verification tools and their
versions. This removes one big source of unbound variables in text-
based CoVeriTeam programs. CoVeriTeam GUI provides all tools that
store their metadata in the fm-tools repository [1].

To provide inputs to the workflow, such as the program un-
der analysis, users can select artifacts from the palette on the
left. This places a matching artifact node on the canvas where
users can upload the intended input file.

To execute their workflow users can click the green play but-
ton in the top-right corner. This executes the workflow remotely
through CoVeriTeam Service. The output of the execution is dis-
played in a popup console window on the right side of the screen.
When the execution finished, users can download the full output
of CoVeriTEam as a . zip file. Users can also download their work-
flow as a CoVeriTeam program with a click on the orange download
button on the top right. After the first execution or download, the
workflow is stored in the left box ‘Created Flows’.

Figure 1 shows how the running example of a validating verifier
can be built in CoVeriTeam GUL Notice how easy it is to process the
data flow through the composition compared to Fig. 3, even though
the view was optimized for space. For the verifier we have selected
CPAcrecker and for the validators two configurations of UAutomizer.

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

1 actorl = ActorFactory.create(ProgramVerifier,
< "cpachecker.yml", "svcomp24");

2 actor2 = ActorFactory.create(ProgramValidator,
< "uautomizer.yml", "svcomp24-violation");

3 actor3 = ActorFactory.create(ProgramValidator,
< "uautomizer.yml", "svcomp24-correctness");

ITE(ELEMENTOF (verdict, {FALSE}), actor2,);
ITE(ELEMENTOF (verdict, {TRUE}), actor3, a_2);
= SEQUENCE (actorl, a_1);

© ® N gl
[SRR]
S = N
1

artifactl = ArtifactFactory.create(CProgram,

< "example.c", ILP32);

10 artifact2 = ArtifactFactory.create(Specification,
< "unreach-call.prp");

12 inputs = {'program': artifactl, 'spec': artifact2};

14 result = execute(a_@, inputs);
15 print(result);

Figure 6: CoVeriTEam program generated by CoVeriTEam GUI

3.3 Code Generation

Because CoVeriTeam GUI is implemented as a pure JavaScript fron-
tend application, it generates a CoVeriTEam program from the visual
representation of the workflow directly in the user’s browser. To
do this, it traverses the internal graph representation of the ver-
ification workflow. First, it generates the corresponding call to
ActorFactory or ArtifactFactory for every atomic actor and in-
put artifact. Then, the code for the compositions is generated by
recursing through them bottom-up. First all children of a compo-
sition are generated and stored in variables, then the composition
itself. For example, the workflow in Fig. 1 is translated into the
CoVeriTeam program in Fig. 6 (snipped for brevity).

3.4 Deployment

CoVeriTeEam GUI is implemented as a pure frontend application in
JavaScript/React. We host an instance of CoVeriTeam GUI at coveriteam-
service.sosy-lab.org/gui. CoveriTeam GUI can also run locally or be
hosted on your own web server through the packed HTML.

4 Related Work

Electronic Tools Integration (ETI) [17, 18] was a pioneering platform
that offered verification tools to users through the internet. To
use ETI, users had to learn the domain-specific language HLL. The
Unite [19] project aims to make web hosting of verifiers easier. With
only a few lines of configuration, developers can make their verifiers
available through the web. Unite does not provide a graphical user
interface to execute the tools, but a standardized API that enables in-
tegration into code editors. Multiple verification tools provide some
form of accessibility through a web front-end [4, 13-15]. However,
these web portals are tailored to single tools and do not offer the
composition of multiple tools. No-Code solutions can be found in
various other domains, such as blockchain [12] and education [16].

5 Conclusion

We presented CoVeriTEam GUL, a No-Code solution for coopera-
tive verification. We showed how a user can assemble a validating

Thomas Lemberger and Henrik Wachowitz

verifier composition without prior knowledge of the CoVeriTeam
language and execute it directly from the GUL

Data-Availability Statement. We use CoVeriTeam GUI [10], ver-
sion 1.0, CoVeriTeam [7], version 1.2.1, and CoVERITEAM SERVICE [9],
version 1.2. All three are open source under the Apache 2.0 license.
A reproduction package for CoVeriTEam GUI is available on zenodo:
10.5281/zenodo.13757771. The GUI is available online for experi-
mentation: https://coveriteam-service.sosy-lab.org/gui.

Acknowledgement. We thank Jasmin Krenz for help with the
implementation of CoVeriTeam GUI as part of her bachelor thesis.

Funding Statement. This work was funded by the Deutsche
Forschungsgesellschaft (DFG) — 378803395 (ConVeY).

References

[1] D. Beyer. 2024. Conservation and Accessibility of Tools for Formal Methods. In
Proc. Festschrift Podelski 65th Birthday. Springer.

[2] D.Beyer. 2024. State of the Art in Software Verification and Witness Validation:
SV-COMP 2024. In Proc. TACAS (3) (LNCS 14572). Springer, 299-329. https:
//doi.org/10.1007/978-3-031-57256-2_15

[3] D.Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig.
2022. Verification Witnesses. ACM Trans. Softw. Eng. Methodol. 31, 4 (2022),
57:1-57:69. https://doi.org/10.1145/3477579

[4] D.Beyer, G. Dresler, and P. Wendler. 2014. Software Verification in the Google
App-Engine Cloud. In Proc. CAV (LNCS 8559). Springer, 327-333. https://doi.org/
10.1007/978-3-319-08867-9_21

[5] D.Beyer and S. Kanav. 2022. CoVERITEAM: On-Demand Composition of Coop-
erative Verification Systems. In Proc. TACAS (LNCS 13243). Springer, 561-579.
https://doi.org/10.1007/978-3-030-99524-9_31

[6] D.Beyer, S. Kanav, and C. Richter. 2022. Construction of Verifier Combinations
Based on Off-the-Shelf Verifiers. In Proc. FASE. Springer, 49-70. https://doi.org/
10.1007/978-3-030-99429-7_3

[7] D.Beyer, S. Kanav, and H. Wachowitz. 2023. CoVeriTeam Release 1.0. Zenodo.
https://doi.org/10.5281/zenodo.7635975

[8] D. Beyer, S. Kanav, and H. Wachowitz. 2023. CoOVERITEAM SERVICE: Verification
as a Service. In Proc. ICSE, companion. IEEE, 21-25. https://doi.org/10.1109/ICSE-
Companion58688.2023.00017

[9] D. Beyer, S. Kanav, and H. Wachowitz. 2024. CoVeriTeam Service Release 1.2.
Zenodo. https://doi.org/10.5281/zenodo.12552828

[10] D. Beyer, T. Lemberger, and H. Wachowitz. 2024. Source-Code Repository of
CoVErITEAM GUL https://gitlab.com/sosy-lab/software/coveriteam-gui. Ac-
cessed: 2024-09-13.

[11] D.Beyer and H. Wehrheim. 2020. Verification Artifacts in Cooperative Verifica-

tion: Survey and Unifying Component Framework. In Proc. ISoLA (1) (LNCS 12476).

Springer, 143-167. https://doi.org/10.1007/978-3-030-61362-4_8

S. Curty, F. Hérer, and H. Fill. 2023. Design of blockchain-based applications

using model-driven engineering and low-code/no-code platforms: a structured
literature review. Softw. Syst. Model. (2023), 1857-1895. https://doi.org/10.1007/
$10270-023-01109-1

[13] Z.Esen and P. Rimmer. 2022. TRICERA: Verifying C Programs Using the Theory

of Heaps. In Proc. FMCAD. TU Wien Academic Press, 360-391. https://doi.org/
10.34727/2022/isbn.978-3-85448-053-2

M. Heizmann, . Christ, D. Dietsch, E. Ermis, J. Hoenicke, M. Lindenmann, A. Nutz,

C. Schilling, and A. Podelski. 2013. ULTIMATE AuToMIZER with SMTInterpol

(Competition Contribution). In Proc. TACAS (LNCS 7795). Springer, 641-643.

https://doi.org/10.1007/978-3-642-36742-7_53

[15] N. Macedo, A. Cunha, J. Pereira, R. Carvalho, R. Silva, A. C. R. Paiva, M. S.
Ramalho, and D. Silva. 2021. Experiences on Teaching ALLoy with an Automated
Assessment Platform. Science of Computer Programming 211 (2021), 102690.
https://doi.org/10.1016/].scico.2021.102690

[16] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond. 2010. The Scratch
Programming Language and Environment. ACM Trans. Comput. Educ. (2010),
1-15. https://doi.org/10.1145/1868358.1868363

[17] T. Margaria, R. Nagel, and B. Steffen. 2005. Remote integration and coordination

of verification tools in JETL In Proc. ECBS. 431-436. https://doi.org/10.1109/

ECBS.2005.59

Bernhard Steffen, Tiziana Margaria, and Volker Braun. 1997. The Electronic Tool

Integration Platform: Concepts and Design. STTT 1, 1-2 (1997), 9-30. https:

//doi.org/10.1007/s100090050003

O. Vagicek,] Fiedor, T. Kratochvila, K. Bohuslav, A. Smrcka, and T. Vojnar. 2022.

Unite: An Adapter for Transforming Analysis Tools to Web Services via OSLC.

In Proc. ESEC/FSE. ACM. https://doi.org/10.1145/3540250.3558939

=
N

[14

(18

[19

https://coveriteam-service.sosy-lab.org/gui
https://coveriteam-service.sosy-lab.org/gui
https://gitlab.com/sosy-lab/software/addme
https://doi.org/10.5281/zenodo.13757771
https://coveriteam-service.sosy-lab.org/gui
http://gepris.dfg.de/gepris/projekt/378803395
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1145/3477579
https://doi.org/10.1007/978-3-319-08867-9_21
https://doi.org/10.1007/978-3-319-08867-9_21
https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/10.1007/978-3-030-99429-7_3
https://doi.org/10.1007/978-3-030-99429-7_3
https://doi.org/10.5281/zenodo.7635975
https://doi.org/10.1109/ICSE-Companion58688.2023.00017
https://doi.org/10.1109/ICSE-Companion58688.2023.00017
https://doi.org/10.5281/zenodo.12552828
https://gitlab.com/sosy-lab/software/coveriteam-gui
https://doi.org/10.1007/978-3-030-61362-4_8
https://doi.org/10.1007/S10270-023-01109-1
https://doi.org/10.1007/S10270-023-01109-1
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2
https://doi.org/10.1007/978-3-642-36742-7_53
https://doi.org/10.1016/j.scico.2021.102690
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1109/ECBS.2005.59
https://doi.org/10.1109/ECBS.2005.59
https://doi.org/10.1007/s100090050003
https://doi.org/10.1007/s100090050003
https://doi.org/10.1145/3540250.3558939

	Abstract
	1 Introduction
	2 Background: CoVeriTeam
	3 Contribution
	3.1 Synthesizing the Frontend
	3.2 No-Code Cooperative Verification
	3.3 Code Generation
	3.4 Deployment

	4 Related Work
	5 Conclusion
	References

