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Abstract. Interoperability between deductive program verification tools
is a well-recognized long-standing challenge. In this paper we propose
a solution for a well-delineated aspect of this challenge, namely the
exchange of abstract contracts for possibly stateful interfaces that repre-
sent modularity boundaries. Interoperability across tools, specification
paradigms, and programming languages is achieved by focusing on ab-
stract implementation-independent behavioral models. The approach,
called Contract-LIB in reminiscence of the widely-successful SMT-LIB
format, aims to standardize the language over which such contracts are
formulated and provides clear guidance on its integration with estab-
lished methods to connect high-level specifications with code-level data
structures. We demonstrate the ideas with examples, define syntax and
semantics, and discuss the rationale behind key design decisions.

1 Introduction

Deductive verification [27] following the design-by-contract principle [36] allows
proving software correct against expressive specifications that can capture strong
properties. Today, users can choose from a variety of mature and powerful
deductive verification tools such as Dafny [35], KeY [3], KIV [22], SecC [21],
VerCors [6], Verifast [32], Viper [37], Why3 [37] that target many programming
languages and are based on different verification paradigms.

Specifications are often built using mathematical modeling tools, in particular
algebraic data types (ADTs), to formally represent non-trivial data structures
and contracts for their operations. ADTs offer a high level of abstraction, are
precisely defined, and are expressive enough to capture complex operations if a
sufficiently extensive toolbox of predefined operations is available. Due to their
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axiomatic foundations in mathematics, ADTs possess a well-defined semantics
upon which the verification tools agree; regardless of the paradigms they follow.

A common specification pattern – which can be regarded as the prototypical
case – is that the abstract state of a (well-encapsulated) data structure is formally
and abstractly modeled via ADT values; and operation contracts are expressed
formally by defining how the abstract state evolves.

In an ideal world, verification tools would be interoperable in the sense that
they can freely exchange specifications and other verification artifacts. While
approaches and tools agree on the semantics of ADTs, they differ considerably
on how abstract state and implementation state are coupled, and on how the
framing problem [17] is addressed.

Hence, to enable interoperation for more than trivial examples, an approach
to exchange information is needed for sharing abstract specification artifacts.
In this paper we introduce Contract-LIB, a new exchange infrastructure for
sharing design-by-contract specifications between different verification tools and
paradigms. Contract-LIB is a language to concisely and tool-independently
represent abstract specifications. It is designed to allow verification tools to
import abstract specifications as concrete tool-specific specifications (resp. export
in the opposite direction).

Each verification paradigm and tool has specific strengths and limitations
(stemming not only from the underlying theoretical foundations, but also from
the emphasis placed by the developers of that tool). Being able to rely on a
common abstract background specification in Contract-LIB and to thus ex-
change specifications allows the seamless integration of otherwise incompatible
approaches.

There are numerous situations in formal software design that can benefit from
an effective specification exchange technology: verified standard libraries (like
JDK or libc) can be shared amongst tools, collaborating code base written in
different languages can be verified in heterogeneous projects, and different parts
serving different purposes in a program can be verified using different verification
techniques. Sect. 2 elaborates on typical application scenarios for Contract-LIB.

One design goal of Contract-LIB is to have a standardized machine-readable
(yet still human-readable) interchange format with clear and simple structures.
Comparable exchange formats serve a similar purpose very successfully in other
formal method communities: DIMACS, SMT-LIB [12], BTOR2 [38], and the
TPTP format [40] have had a huge impact and unlocked unforeseen applications.

First steps have already been made towards interoperability. For example,
[30] translate specifications and auxiliary annotations between JML, VerCors,
and Krakatoa [24] for Java. In contrast, [34] aim to integrate static analysis
tools and software verifiers into more expressive deductive ones to increase proof
automation. In full generality, however, tool integration remains challenging due
to the heterogeneous and diverse feature set of the tools, i.e., exactly that aspect
which makes innovation possible and integration worthwhile in the first place.
Hence, it is questionable whether a fully standardized approach is even desirable.
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Therefore, in this paper, we look at a particular, well-delineated aspect of tool
integration, namely to find common ground for a specification formalism that is
well-suited for interoperability of deductive verification tools in the sense that
it is useful and at the same time easy to adopt. This issue has been discussed
in-depth in the community over the past years and a conceptual opportunity has
been identified that we now follow-up with a concrete technical proposal.

The key insight behind this opportunity is that the above mentioned ideal case
specification pattern used in deductive tools typically encompass three different
levels [44]: 1) code-level entities and assertions that capture implementation-
level concepts, 2) data abstractions using ADTs to represent code-level values
with behavior abstractions expressed using ADT data expressions, and 3) logical
coupling machinery to formally connect these two. While 1) and 3) must inherently
be specific to the used verification approach and programming language, it is the
mathematical abstractions in 2) that are stable across tools and are hence the
target to be exchanged in our approach. On the other hand, while Contract-LIB
specifications only talk about abstractions, import and export functionalities
from and into actual programming languages must ensure that necessary tool-
dependent specification artifacts for 1) and 3) are provided, e.g. to guarantee
that the modules are well encapsulated entities. Only thus can a sound modular
interplay of the verification tools be guaranteed.

Contribution: This paper standardizes an approach to the integration of deductive
verification tools, called Contract-LIB in reminiscence of SMT-LIB. We motivate
and define Contract-LIB as a standardized interface modeling language as an
extension of SMT-LIB that expresses those parts of behavioral contracts that
are shareable. We describe the rationale behind its design that allows for easy
adoption and integration into existing infrastructure. In Sec. 2 we identify a
number of use-cases and in Sec. 3 we walk through some design requirements
using a nontrivial example. We work out the conceptual approach for integration
in the style of Data Refinement [28] as general guidelines for point 3) above. We
discuss syntax, semantics, and showcase how different specification paradigms
(Dynamic Frames, Separation Logic) can be connected to Contract-LIB (Sec. 4).

Data Availability: The tool-chain and examples are available as open source on
Github: https://github.com/gernst/contract-lib.

2 Use Cases for Contract-LIB

The fundamental and guiding principle behind the design is to precisely describe
interfaces of possibly stateful components/modules that are well-encapsulated.
Intuitively, a module is well-encapsulated if the possible interactions, as observed
at the interface can be explained fully and precisely in terms of an abstract
mathematical model without referencing (pun intended) implementation-level
concepts, notably mutable memory. The key observation behind Contract-LIB
is that—despite all the heterogeneity in methodology and language-specific
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aspects—the principles and constituents of such mathematical abstractions are
well-understood, stable, semantically unambiguous and widely supported in the
better part of their functionality. Being based on that observation, Contract-LIB
has a well-defined scope which aspects of specifications it can describe and which
we intentionally do not aim to incorporate. In the terminology of [44], Contract-
LIB is a format that “formally and fully captures the requirements and nothing
more” (Sec 1. point 2 ).
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Fig. 1. Interoperability of Contract-LIB specifications.

In this section, we discuss the use cases for interoperability and tool integration
in which we see a potential for Contract-LIB to play a central role resp. that
benefit and/or are enabled by it in the first place. Consider Fig. 1, which shows
how information is communicated: At the top-left in green, Contract-LIB scripts
contain all that is needed to describe behaviors of well-encapsulated modules and
the underlying domain formalization (Sec. 3). This information can be combined
and/or related to structural information that is specific to a programming
language, such as interface specifications in Java or header files in C, as shown
bottom-left in black.

A deductive verification tool can then import these, for example, by linking a
given Contract-LIB specification with a suitable signature, to internalize resp.
annotate the program with contracts in its own specification language. Part of
this translation step could already be the scaffolding of the typical methodology-
specific definitions, such as those of abstraction predicates or footprints, to be
later filled in by a human.

The converse direction is to export from a tool’s native specification language
into Contract-LIB. In fact, its role is more that of an intermediate representation
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rather than a first-class language directly written by humans, similar in spirit
to SMT-LIB, which is also primarily designed for ease of machine readability in
mind. Below, we give some concrete scenarios and small examples, deferring a
larger example to Sec. 3.

Co-development of larger projects composed of modules: A first scenario for inter-
operability that comes to mind is to be able to use multiple deductive verification
tools in the context of a larger project that consists of multiple components,
all of which are written in the same programming language. Considering that
a formal specification often touches different formal aspects, one would like to
be able to use different tools with complementary strengths. For example, one
could use VerCors to prove linearizability of a concurrent data structure and then
communicate the established abstract behavior to the OpenJML [19] verifier that
scales better for lightweight properties in order to establish the client’s sequential
correctness.

Applications comprised of multiple implementation languages: Cross-language
verification projects are tricky to realize today [?] unless tools already support
multiple programming languages. One scenario is when native code (compiled from
C) is invoked from a higher-level programming language (such as Java). Reasons
for relying on native code could be for example efficiency concerns, connecting
to operating system services, or relying on a given library that happens to be
written in the lower-level language. Besides native code, a prime use-case would
be that Dafny is nowadays used at scale to implement critical infrastructure.
Dafny has multiple back-ends into which the programs can be translated into,
but of course, the interfaces between the Dafny parts and the parts written in the
more conventional language are annotated with specifications on the Dafny side.
Mistakes here can undermine the verification guarantees, which is why Dafny
can insert runtime checks to validate assumptions about the integration points.
For critical cases, perhaps one may want to instead verify these as guarantees,
and Contract-LIB offers a way to mechanically translate the respective contracts
between Dafny and the verifier used for the conventional language.

Shared specifications of standard libraries. Shareable abstractions of standard
libraries for a given implementation language (such as Java’s JDK or libc) are a
promising prospective to converge as a whole field towards making tools more
“industry-ready”. While comprehensive support for such standard libraries is
usually not needed to solve small but intricate verification challenges, scaling to
larger and more realistic code bases at some point will rely on having specifications
for example for strings, Java’s collection classes like java.util.List, or C’s low-
level memory allocation and manipulation functions like malloc and strlen. So
far, support for such libraries is rather underdeveloped, with some exceptions,
e.g., specifications written in JML3 or in VeriFast4. Contract-LIB will provide

3 https://github.com/OpenJML/Specs
4 https://github.com/verifast/verifast/tree/master/bin
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the means to seamlessly exchange such library specifications across tools for the
same implementation language, even across specification paradigms.

To give a concrete example, VeriFast specifies memset from string.h as follows
(slightly adapted), whose purpose is to initialize each byte in a memory region of
the given size starting at pointer array with a particular value.

void* memset(void *array, char value, size_t size);

//@ requires chars(array, size, ?cs0);

//@ ensures chars(array, size, ?cs1) &*& result == array;

//@ ensures all_eq(cs1, value) == true;

The contract expresses this by a combination of pre-/postconditions that capture
the methodology-specific validity of the memory region in terms of a separation
logic predicate, which links in particular the array contents to abstract value
cs1 as a mathematical sequence of bytes. The tool-independent constraints then
ensures that this sequence has the correct value in all places. Sharing such
specifications can also tie deductive techniques closer to fully automated software
model checkers that participate for example in SV-COMP [14].

Formal specifications of normative documents. RFCs are the typical format in
which standards for our connected world are established. This includes widespread
and standard protocols such as HTTP and SSL. Of course, there are many for-
malizations of protocols in the literature, for example based in the modeling
languages of specialized tools such as Tamarin [13]. However, these are rarely
connected to implementations, notable exceptions are for example Project Ever-
est [15]. Here, exporting the corresponding formal models and sharing them
as Contract-LIB specifications can ensure that we not only have RFCs as an
informal basis for implementations, but also that we gradually move towards a
standardized and fully formal set of models of protocols that can be realized by
verified implementations.

Verification competitions and challenges. Verification competitions like the Veri-
fyThis on-site events [20] and the longer running cooperative challenges [29,23]
may benefit from a common interchange format. For example, verification tasks
can be specified by the competition organizers so that participants get a clear
goal for their verified implementations. Conversely, the respective abstract spec-
ifications could be a basis for a machine-assisted analysis and comparison of
the results, which today are judged by humans [20]. With respect to the longer-
running competitions, Contract-LIB enables tighter collaboration in the sense of
the first few scenarios mentioned above. This takes on suggestions that are part
of the respective challenge descriptions already [23].

Integration with other program analysis techniques. There are many other use-
cases for Contract-LIB besides verification. Either can we generate specifications
from traditional model-based development approaches, such as FOCUS [5] or
maybe UML state-charts, or alternatively can we export behavioral models into
other tools, such as automatic test generators or symbolic model checkers [26].

6



Possibly, there is some common kernel that can be translated losslessly between
Contract-LIB and MoXI [39]. Finally, invariant inference techniques and lemma
generators can be integrated to produce facts that at least give some proof
support for properties that can be expressed at the abstract level already, which
by experience is often relevant in practice.

3 Requirements for Contract-LIB

In this section we show how the specifications of desired behaviors are typically
realized in deductive verification tools. We follow an example, which is taken from
the VerifyThis long-term challenge 5, which has as its subject the in-memory
cache server memcached [23]. We discuss the described functionality alongside the
means of its formalization. The case-study is intentionally somewhat complex
to talk about a wide range of features and we complement it with several
additional smaller examples to discuss some features not present in the memcached

specification.6

Memcached is a high-performance key-value cache which is used to speed up
cloud-native applications, e.g., by avoiding database lookups. It is realized as a
small daemon that keeps an in-memory mapping from keys (sequences of bytes)
to entries. What distinguishes memcached from say a hash-map is that entries
have a lifetime after which the association implicitly expires, and moreover,
entries can be evicted due to memory pressure. Memcached is accessed via a simple
text-protocol as exemplified in Fig. 3. Here, an entry is stored under key token

with flags 0, a timeout of 30s, and a length of 6 bytes, the subsequently line
denotes the data associated to this entry, here the arbitrary number 162596. Lines
6ff and 12ff show the responses when accessing the entry before resp. after expiry
of the timeout. Note, we will not model the protocol representation of data types
itself but instead formulate a higher-level abstraction.7

The discussion hinges on Fig. 2, in which the green part above the double
horizontal line represents the mathematical abstraction, i.e., all that information
which we wish to transfer across tools and implementation languages using
Contract-LIB. Below, the figure visualizes the respective implementation-level
data structures, which are grouped into logical units that independently can be
coupled to the respective mathematical abstractions. This is essentially the idea
behind Data Refinement [28], which is reflected in modern tools for example by
the use of ghost state, abstraction predicates, data structure invariants, and so
on. The verification itself ensures that such abstractions are compatible with the
dynamic behavior of the implementation, typically in the form of a simulation
proof.

5 https://verifythis.github.io/
6 The specification is also available at https://gist.github.com/gernst/

eb0028af1961b6df4740b5ceca628cf9
7 The procotol is documented at https://github.com/memcached/memcached/blob/

master/doc/protocol.txt
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Ingredient 1: Expressive Standardized Mathematical Theories. Data abstractions
require expressive mathematical background theories, including user-declared
algebraic data types and mathematical sequences, sets, and maps. Moreover,
besides the typical built-in operations such as cardinality, membership test,
union/intersection/difference, subset, map update, user-defined functions are
often needed to capture certain concepts concisely.

Fig. 4 shows the data type declarations of over which the system model for
memcached is defined, in the specification language of Dafny [35]. It starts by
declaring some unspecified types to represent parts of the protocol messages, i.e.,
we choose to abstract from the underlying byte representation.

Memcached associates to each key of type Key a value of datatype Entry, which
tracks the respective data and metadata comprised of flags, expiry timeout,
and a version counter unique, which is is picked to be globally fresh by the
system for every transaction and which supports CAS-style synchronization
among concurrent clients (not discussed further here). Datatype Result is used
to encode return values of operations, further described below, where the Values

is used to encode both responses shown in Fig. 3, once with a singleton sequence
and once with the empty sequence; remarking that there is an operation gets,
too, which possibly returns multiple values. Predicate live determines whether
an entry must be considered expired when compared to a given time point now,
where none represents that the entry does not expire.

We therefore derive the following requirements: While tools in practice are
roughly compatible in their support for mathematical sstructures, the key goal
associated with this ingredient is to standardize which data structures are deemed
available, what operations should be supported out-of-the-box, and what the
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1 // entry with timeout 30s

2 set token 0 30 6

3 162596

4

5 // before timeout

6 get token

7 VALUE token 0 6

8 162597

9 END

10

11 // after timeout

12 get token

13 END

Fig. 3. Example interaction with
memcached at the protocol level

1 type Key(==) // Keys support equality
2 type Flags
3 type Time = nat
4 type Data
5
6 datatype Entry
7 = Entry(data: Data, flags: Flags, unique: nat,
8 expiry: option<Time>)
9

10 datatype Result
11 = Values(entries: seq<(Key,Entry)>)
12 | Stored | Touched | Deleted | Exists | NotFound
13
14 predicate live(expiry: option<Time>, now: Time) {
15 match expiry {
16 case none => true
17 case some(time) => now < time
18 }
19 }

Fig. 4. Dafny model of the data structures of
memcached.

mechanism to communicate user-defined operations should be. We address this
in Sec. 4 by basing Contract-LIB on the widely established SMT-LIB standard,
complemented with the definition of those theories that are missing from the
official standard (using notation already supported by cvc5).

Ingredient 2: Declarations of Data Abstractions. In order to view some module
of a given system in terms of a data abstraction, we need some mechanism to
bundle together those state variables that represent this abstraction in such a
way that it integrates well with typical coupling mechanisms found in practice.

To continue the example, Fig. 5 the interface specification of memcached,
realized as trait Code, in terms of two attributes variables, entries and uniques,
which in being marked as ghost are not part of the implementation but instead
whose purpose is to keep track of the current state of the abstraction. While
entries simply maintains the associations between keys and values, set uniques

accumulates all version counters used so far, including those of entries not present
in entries any longer.

In addition, we provision two typical features that connect these to potential
implementations of this interface, i.e., a set footprint of memory locations (object
references) on which the abstraction depends on, and an abstract predicate Valid,
to be realized by each implementation, which captures all necessary invariants
on both the abstract and concrete state space. Here, we may already manifest
some of these, such as the fact that at least all current unique version counters
must be tracked by set uniques and that these must be distinct.

We emphasize that footprint and Valid are not to be understood as part
of the actual behavioral model—Contract-LIB will in fact not represent these
but rather it is designed in such a way that it honors a wide range of similar
mechanisms. In VeriFast [?] for the C programming language for example, the
coupling would be expressed as a Separation Logic abstraction predicate, where
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1 trait Cache {
2 // Abstract model of the internal state
3 ghost var entries: map<Key, Entry>
4 ghost var uniques: set<nat>
5
6 // The coupling to the implementation is specified in terms of
7 // a dynamic frame of relevant memory locations ...
8 ghost var footprint: set<object>
9

10 // ... and a predicate describing invariants and coupling to code.
11 // Note that this predicate is not defined here but as part of instances,
12 // yet, we already state some desired consequences of its definition.
13 ghost predicate Valid()
14 reads this, footprint
15 ensures forall key :: key in entries
16 ==> entries[key].unique in uniques
17 ensures forall key1, key2 :: key1 in entries && key2 in entries && key1 != key2
18 ==> entries[key1].unique != entries[key2].unique
19
20 // ...
21 }

Fig. 5. Dafny specification of the state of the data abstraction, expressed over the data
types from Fig. 4 as ghost attributes of an interface specification realized as a trait.
Moreover, the trait already provisions the connection to possible implementations.

struct cache is the implementation-level data structure being related to the
abstract values given by entries and uniques in a similar manner (the footprint

is implicit in this methodology).

predicate Valid(struct cache *cache, map entries, set uniques)

In order to achieve this compatibility, we need to identify the requirements
and conditions formally that control aliasing just sufficiently that changes at
the abstract level are not interferred with by aliases that are representable in
the implementation only—this leads to strong independence assumptions in
Sec. 4, which essentially formalize some important aspects of a module being
well-encapsulated, and therefore justifying the scope of Contract-LIB as described
earlier with a technical point. We emphasise that within this argumentation
underpins the key rationale, why Contract-LIB is an actionable approach to
integration in the first place.

Ingredient 3: Contract Definitions for Operations. Having established the other
two ingredients, we can now formulate contracts that describe behavior in terms
of them. Contracts are pre-/postcondition pairs that relate the input parameters
and return values to a transition between a pair of states.

Of the many operations supported by memcached, Fig. 6 defines the contracts
of the methods implementing protocol commands get and set, respectively, as
shown in Fig. 3. The contracts of these two operations have two parts: The
first part manifests that predicate Valid serves as a class invariant, i.e., may be
assumed upon method calls and must be re-established by methods that change
the state (such as Set). In addition, we impose some typical frame conditions
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1 trait Cache {
2 // ...
3
4 method Get(key: Key, ghost now: Time)
5 returns (result: Result)
6 requires Valid() // assume invariant Valid()
7
8 // effect of the operation on the abstract state
9 ensures key in entries && live(entries[key].expiry, now)

10 ==> result == Values([(key, entries[key])])
11 ensures key !in entries || !live(entries[key].expiry, now)
12 ==> result == Values([])
13
14
15 method Set(key: Key, data: Data, flags: Flags, expiry: option<Time>, ghost now: Time)
16 returns (result: Result, ghost unique: nat)
17
18 modifies this, footprint
19 requires Valid() // preserve invariant Valid()
20 ensures Valid()
21
22 // typical frame assumption wrt. existing objects
23 ensures old(footprint) <= footprint && fresh(footprint - old(footprint))
24
25 // effect of the operation on the abstract state
26 ensures unique !in old(uniques) && uniques == old(uniques) + {unique}
27 ensures entries == old(entries)[key := Entry(data, flags, unique, expiry)]
28 ensures result == Stored
29 }

Fig. 6. Contract definitions of two operations of memcached.

on footprint, i.e., that it can only grow in terms of freshly allocated objects to
guarantee independence between this and other objects.

While the first part very generic and appears in this form in virtually all case-
studies that embrace Dafny’s methodology, the second part is case-study specific
and explains the behavior of memcached precisely in terms of the abstract state
representation. The contract specification of Get is split up into two behaviors. In
case key denotes a valid entry that has not expired yet the result is the singleton
sequence that pairs the key with the respective entry, wrapped in the Values

constructor of type Result. Otherwise, the operation similarly returns the empty
sequence of keys (constructor NotFound of Result serves a different purpose).
Operation Set has two return values, which is supported first-class in Dafny:
result, which is always Stored, and unique, which is the unique version number
assigned to the entry after its creation or modification. While unique may not be
accessed (directly) by the caller of this interface, we use it to specify the contract:
Set uniques was disjoint to and is enlarged by that value and entries at index
key is updated accordingly. Note the use of keyword old to express the relation
between the state of the abstraction before and after the operation.

Another interesting situation is when the abstractions of two objects change
simultaneously by the same method call. For example, we could have a class
for storing lists of integers, with a method that moves some values to another
collection, such as:
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class IntList {

ghost var content: seq<int>

method moveNegativeValuesTo(IntList that)

modifies this, that

ensures this.content == pos(old(this.content))

ensures that.content == old(that.content) + neg(old(this.content))

}

This specifies that both objects are modified and how the respective lists’ content
changes (where pos and neg are some mathematical functions that retain resp.
drop the positive elements only).

The requirement for Contract-LIB therefore to be able to associate with
each method/top-level function two key information. First, which abstractions
are passed in and out including the receiver this (or self) in object-oriented
languages. In Fig. 6, for example, change is reserved to the trait itself, as indicated
by the modifies clause, but in the second example, the abstractions of two objects
is changed at the same time. In Sec. 4 we represent this by annotating each
parameter with an input/output mode, which describes whether the respective
datum is an input or output, or whether it is a dynamic object whose abstraction
is changed accordingly.

4 Technical Realization of Contract-LIB

Contract-LIB intends to specify software components that have a well-defined
external interface and an encapsulated internal state. It is designed to be agnostic
to the methodology and tool used to verify the correspondence between the
specification expressed in Contract-LIB and potential implementations or refine-
ments towards any implementation language. The format realizes the the three
ingredients discussed in Sec. 3, namely expressive standardized mathematical
domain models, compatibility with established approaches for data abstraction,
and support for denoting the dynamic behavior arising from method calls on the
objects that are affected, but abstractly. Note that the structure of this section
cross-cuts these three ingredients with respect to their syntactic representation,
the semantic foundations, and practical concerns.

4.1 Syntax for Defining Abstractions and Contracts

The syntax of Contract-LIB is based on SMT-LIB. It is based on S-expressions and
therefore easy to parse. More importantly, all the machinery for ingredient 1, i.e.,
the definition of rich mathematical background theories, is already in place. This
means that all of the following SMT-LIB commands [11] are valid in Contract-
LIB too: declare-sort, define-sort, declare-fun, define-fun, define-funs-rec,
declare-datatypes, and assert.

As an example, function live can be encoded in SMT-LIB either in terms of
a function definition and pattern matching
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⟨command⟩ ::= (declare-abstractions (⟨sort_dec⟩n+1
) (⟨datatype_dec⟩n+1

) )

| (define-contract ⟨symbol⟩ (⟨formal⟩+) (⟨contract⟩+))
| . . .

⟨formal⟩ ::= (⟨symbol⟩ (⟨mode⟩ ⟨sort⟩))
⟨mode⟩ ::= in | out | inout

⟨contract⟩ ::= (⟨term⟩ ⟨term⟩)
⟨term⟩ ::= (old ⟨term⟩) | . . .

Fig. 7. Grammar of Contract-LIB, where nonterminals ⟨symbol⟩ and ⟨sort⟩ are defined
as in SMT-LIB, but for ⟨term⟩ we add an additional form (old . . . ) which is allowed
to appear in contracts to express transitions as a relation over a pair of states.

(define-sort Time () int)

(define-fun live ((expiry (Option Time)) (now Time))

(match expiry

((none true)

((some time) (< now time)))))

or semantically equivalently using a function declaration and two axioms.
The grammar for extensions specific to Contract-LIB is shown in Fig. 7 For

ingredient 2, we introduce a new command, declare-abstractions, which has
exactly the same structure as declare-datatypes but which assigns a different
purpose to the sorts declared. As an example, the two ghost variables in Fig. 5
are grouped into an abstraction Cache as follows:

(declare-abstractions

((Cache 0))

((Cache

((entries (Map Key Entry))

(uniques (Set Int))))))

The intended interpretation is that sort Cache encodes the abstraction of a module
with the same name, such as a class or a C API. Note that having multiple
constructors may reflect that the state of the module can in one of multiple
operational modes, each with their respective abstract data associated. However,
note also that while this is naturally supported in approaches using Separation
Logic predicates, it is less clear how the connection to a fixed set of top-level
ghost variables without introducing a nested data type.

We introduce a second new command define-contract, which captures possi-
ble state transitions on abstractions introduced by declare-abstractions. Such a
contract specification refers to the name of the operation, given by the ⟨symbol⟩,
followed by a list of formal parameters and a list of pre-/postcondition. A formal
parameter is analogous to that of say a define-fun command, however, instead
of pairing names just with types as in (x Int) we additionally annotate an
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input/output mode as, for example (key (in Key)) declares the key parameter
to be an input argument, whereas (this (inout Cache)) declares the (implicit)
receiver argument as being a parameter that is both read and updated by the
corresponding call (for Set). This means that while the reference this in Dafny
remains pointing to the same object, the abstraction of the underlying object
does change.

(define-contract Cache.get

((this (in Cache) (key (in Key))))

((; first behavior: the key is exists and the entry is live

(and (set.contains (map.keys (entries this)))

(live (map.get (entries this)) now))

...)

(; second behavior here

...)))

(define-contract Cache.set

((this (inout Cache) (key (in Key)))

(data Data) (flags Flags) (expiry (Option Time)) (now Time))

((...)))

4.2 Standardized Theories and Polymorphism

As we have seen in Sec. 3, finite sequences, sets, and maps are indispensable
as means to specification. However, the SMT-LIB standard includes functional
arrays as the only compound data type. Although it is possible to represent
sequences, sets, and maps directly in terms of arrays, this is not convenient at
all as SMT-LIB arrays are unbounded, so that encoding cardinality and well-
behaved equality is tricky. To that end, deductive tools with SMT backends tend
to axiomatize in a way that it is tightly integrated with other aspects of the
encoding.

Contract-LIB therefore takes the approach to fix the signatures of sorts and
functions that are intended to be exchanged. We expect this list to converge
over time during the adoption process, the current proposal is available online.8
Here, the list of functions supported for the respective data types as well as their
naming mirrors that of cvc5 [9]9 for Set and Seq, and those we propose for Map

are similar. We emphasize that tools would still aim to translate these types and
functions into their front-end specification language, so that they would still use
whatever encoding is already in place. This includes concerns like partiality of
operations (Sec. 4.5).

Having polymorphic container types like those discussed above as well as
practical experience suggests that from a standpoint of expressiveness, first-class
support for polymorphic definitions is highly desirable. Note, SMT-LIB only

8 https://github.com/gernst/contract-lib/tree/main/src/test/contractlib/builtin
9 https://cvc5.github.io/docs → Theory References
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⟨command⟩ ::= (declare-fun (par (⟨symbol⟩+) ((⟨sort⟩∗) ⟨sort⟩)))

| (define-fun (par (⟨symbol⟩+) ((⟨sorted_var⟩∗) ⟨sort⟩)⟨term⟩) )

| (assert (par (⟨symbol⟩+) ⟨term⟩))
| . . .

Fig. 8. Extensions for polymorphism in Contract-LIB.

supports schematic sorts, but has no built-in support for polymorphic definitions.
However, some SMT-LIB like formats, such as TIP [18] have introduced notation
that is fits well for our purposes, too. As shown in Fig. 8, we embrace the
syntactic form (par ...), already in use for declare-datatypes in SMT-LIB, to
optionally appear in certain commands to bind type parameters, i.e., critical
parts of commands are wrapped in a declaration of type parameters, simply given
as a list (⟨symbol⟩+) of symbols.

4.3 Semantics of Contracts

We rely on the semantics of SMT-LIB as defined in [11, Sec 5.3]. Scripts are
interpreted over Σ-structures A. It assigns carrier sets σA to sorts σ, specifically,
the carrier sorts of data type sorts are freely generated (the term model). Function
symbols f are interpreted as total functions fA over the carrier sorts of its
signature. Open terms t with free variables are interpreted over a structure A and
valuation v, which assigns to each sorted variable x : σ a value v(x) ∈ σA of the
respective carrier set. A pair I = (A, v) is called an interpretation, which gives
rise to the semantics of terms in the standard way, written JtKI . For a boolean
term ϕ, we write I |= ϕ if JtKI = true where true is the semantic truth value
(SMT-LIB is based on classical logic).

We introduce a new semantic domain of contracts c ∈ C that captures
the interpretation of contracts as an indexed collection of binary relations be-
tween interpretations where suitable valuations range over variables representing
all parameters. Specifically, JcK contains entries (j, I, I ′) for calling the j-th
pre-/postcondition successfully and entries (j, I,⊥) to signify that the j-th
postcondition is not satisfied in I.

For an interpretation I = (A, s), we will call valuation s an abstract state or
more suggestively a ghost state, to highlight its conceptual role, and the intention
of assigning formal meaning to contracts C is to characterize the abstract transition
from states s at call time to states s′ upon successful return of the operation,
where structure A in I ′ = (A, s′) remains unchanged as expected.

In terms of its abstract syntax, a contract with n parameters and k pre-
/postcondition pairs

c ∈ C = (x1 : µ1σ1, . . . xn : µnσn; (φ1, ψ1), . . . , (φn, ψk))
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declares a list of parameters xi, each annotated with a sort σi and its mode µi ∈
{i,o, io}. Pairs (φj , ψj) pairs of preconditions ϕj and postconditions ψj , which
jointly describe the possible behaviors.

A contract is well-specified if variables with o do not occur in any φj and not
inside old(_) in any ψj , as we prefer to not fix an interpretation that may be
counterintuitive to some users.

The semantics of such a contract is intended to be as follows:

JcK =
{(
j, (A, s),⊥

)
| s ̸|= φj

}
∪
{(
j, (A, s), (A, s′)

)
| s |= φj and s, s′ |= ψj and s ≡i s

′}
where s ≡i s

′ denotes that s(x) = s′(x) for all xi : iσi and j = 1, . . . , k. Note the
outcome ⊥ when the precondition is violated, which is distinct from absence of
tuples when the postcondition is false.

Relational semantics s, s′ |= ψj evaluates each occurrence of a variable inside
old(_) with respect to s and otherwise with respect to s′. This mirrors the only
sensible choice that input parameters must be interpreted with respect to the
state at call time. Dafny disallows local assignments to method parameters to
avoid the need of imposing this check.

4.4 Integration with Dynamic Frames and Separation Logic

For this discussion, we assume a simple semantic model with a global heap
h : H where H = R 7→ O is the type of heaps modeled as a partial maps from
references R to objects O.

An abstraction αI(r, t, h) with α ⊆ R × σ × H of an object residing at
r ∈ dom(h) is a predicate that describes when the attributes of o = h(r) and its
“dependent” objects are together abstracted to the value JtKI denoted by t : σ in
the current logical state s of an interpretation I = (A, s).

In the Dynamic Frames approach, a single global heap h is reflected into the
logic as explicit variables so that users may express well-formedness conditions
or other properties over it. In addition, each object o with o = h(r) is associated
with a Dynamic Frame f(o) which defines the set of dependent objects as
{r′ | r′ ∈ f(o)}. This frame f may be represented either as an additional
attribute of o, that is updated explicitly and constrained via an invariant (as in
Sec. 3), or it is denoted by a potentially recursive logic function.

In Separation Logic, predicates αI(r, t, h) are local in the sense that the
part of the heap described by h coincides with the memory locations required
to determine the predicate’s value. This intuitively means that (for precise
predicates), knowledge that αI(r, t, h) holds implies that dom(h) = f(o), albeit
function f is never made explicit.

A key requirement is that abstractions αI(r, t, h) are well-framed : They are
allowed to depend only on those memory locations of the dependent objects. In
Separation Logic, this feature is built-in, in fact it is what gives Separation Logic
its ease of reasoning: Any change of the heap that is legal according to the proof
rules will either directly concern αI(r, t, h) or leave it implicitly intact.
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In the Dynamic Frames, the situation is a bit more complicated, and we require
that abstractions are stable under heap modifications, αI(r, t, h) =⇒ αI′

(r, t, h′)
for all heaps h ≡f(h(r)) h

′ that coincide on the locations denoted by the objects
frame and all interpretations I ≡free(t) I ′ that coincide on the valuation of t’s
free variables.

Well-framing of abstraction predicates relates to the notion of well-encapsulation
discussed earlier: Suppose we have a method m(r1, . . . , rk) with k reference pa-
rameters, then the relation to Contract-LIB contracts in terms of some abstraction
predicates α1, . . . , αk of the respective reference types to mathematical coun-
terparts only makes sense if there is no mutual aliasing between the footprints
of inout and out parameters with any type of parameter, including the in pa-
rameters. In Dafny, for example, this is in parts realized by making explicit
the dependency via reads annotation on invariants like Valid, but in practice,
additional constraints may need to be specified manually.

While enforcing well-encapsulation is in fact specific to the method and tool, it
may be reasonable in practice to rely on unspecified and even synthetic predicates
α that are solely introduced for the sake of tracking ownership of the references
passed in and out of an otherwise opaque interface.

4.5 Partiality of Functions

So far, we have treated functions at the logic level as total. This fits well with
the semantic underpinnings of SMT-LIB, but the specification languages of some
tools impose constraints on what constitutes well-formed terms and formulas
that may occur in contracts.

As an example, Dafny will check all subterms in specifications to use partially
defined operations only within their domain. For instance, writing ∀k.a[k] = 0 for
a sequence, map, or array a is ill-defined because key k may not be in the domain
of the index operator. Instead, one has to write ∀k.k ∈ dom(a) =⇒ a[k] = 0 or
similar, and boolean operators are asymmetric insofar as earlier operands can
constraint the well-formedness of later ones. In contrast, in SMT-LIB operators
are left unspecified outside their domains.

The rationale behind such checks is not so much to avoid logical inconsistencies
but to give feedback to the user. This is particularly helpful in auto-active tools
that do not expose or offer ways to interact with the state of the back-end prover,
which otherwise makes it really hard to debug when the definitions of operators
fail to apply for out-of-domain arguments.

For Contract-LIB we decided not to impose similar requirements upfront and
instead leave it up to the respective tool integration to address these. This means
that a Contract-LIB script may correspond to an ill-formed specification in Dafny
whereas the same script might be accepted by another tool that would then just
have a hard time establishing the desired correctness guarantees. It is not out of
question that in the future we will rectify this design choice based on experience,
however, until then we make it an informal requirement that any tool integration
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must not make assumptions about particular properties of operators outside their
natural domains (e.g., not define x/0 = 0 for convenience).10

A third option is to detect and possibly synthesize additional preconditions
that capture the missing checks for well-formedness, which is a desirable feature
of utility tools provided for dealing with Contract-LIB scripts, but we leave this
to future work.

5 Pragmatics of Tool Integration

When proposing a language such as Contract-LIB, which is intended to be
integrated and used by the developers of various verification tools, it is important
to make good tools available early on. Therefore, we provide the following tool-
chain which is written in Java and can be found as open source on GitHub11:

– SMT-LIB files that declare the signatures of the standardized set of types
and functions for reference, as described in Sec. 4.2.

– An ANTLR4 grammar for Contract-LIB based on the SMT-LIB grammar (ver-
sion 2.6). It supports all commands declare-* and define-* as well as assert
from SMT-LIB, and additionally the new commands declare-abstractions

and define-contract, as described in ??.
– Interfaces of factories to create abstract syntax trees (AST) nodes for Contract-

LIB (found in the package org.contractlib.factory). The key design point
of this interface is that it is fully generic in the types of sorts, functions, and
contracts, so that Java-based tools can directly instantiate their own internal
representation with litte overhead. Importantly, the interface provides scoping
information already, so that name resolution becomes straight-forward.

– A parser based on the ANTLR grammar which has to be instantiated with a
given factory implementation and which produces AST (found in the package
org.contractlib.ast).

– There is also a very rudimentary example AST implementation (for exmaple,
it does not enforce typing constraints) and a corresponding factory imple-
mentation to showcase how to make use of this library.

The library is small and has no dependencies apart from ANTLR4 to encourage
its adoption. Developers who want to import Contract-LIB into their Java-based
tools have two choices to make use of this library: One can either rely on the
factory interface to directly instantiate the internal representation. This step may
already involve full name resolution and type checking, giving a very direct way
to parse Contract-LIB scripts. Alternatively, one can rely on or adapt the given
AST implementation, and convert that to the tool’s internal data structures
by traversing the fully-built AST. At the moment of writing the paper, we are
working on an implementation to convert Contract-LIB into the data structures
used in the KeY prover (basically an AST of JML).
10 This is actually a sensible and logically sound choice taken up by Isabelle and other

interactive proof systems.
11 https://github.com/gernst/contract-lib
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However, supporting the syntax of Contract-LIB is not sufficient for end-to-end
integration between tools. Depending on the use-case, as discussed in Sec. 2, the
parts of specifications and interface signatures that are exported/imported may
vary, with some already being given or some others being generated, including
proof scaffolding. As a consequence, there are further concerns that need to
be considered in relation to a particular tool and a particular programming
language. We think that collecting a catalogue of best-practices would be one
way to document the experience of working with the format.

For example, Naming conventions for relating the identifier used in Contract-
LIB’s command define-contract to the source code could be useful. For example
composing names from class names and method names, as we have done in the
examples, seems like a reasonable choice. Alternatively, when importing Contract-
LIB into one’s tool, the user may be asked to define the mapping. Similarly,
Language-specific naming conventions, such as having a first parameter this

and a (possibly) last parameter result to capture the single receiver and single
return value in object-oriented languages like Java may need to be be taken into
account.

6 Related Work

Contract-LIB is by no means the first nor only formal language for the formulation
of operation summaries or contracts. However, it has distinguishing features that
set it aside from other formalisms and make it the ideal choice as exchange format
of contracts for well-encapsulated modules.

Recently, the Model eXchange Interlingua MoXI [39] has been introduced as
a standard interchange format for symbolic model checking challenges. While it
is like Contract-LIB based on the semantic foundations of SMT-LIB, its focus
is on state-based transition systems with temporal properties and trace-based
semantics. As such it has a single internal state which does not capture well the
use case of an unrestricted number encapsulated entities which is needed for
modular/object-oriented verification. Hence, MoXI seems a suitable formalism
that can import Contract-LIB specifications, but tool exchange for design-by-
contract specification should be at higher-level and more tailored to the needs.

Avestan [42] is another proposed declarative modeling language based on
the semantic foundations of SMT-LIB. Its syntax is based on Alloy [31] with
the goal to add logical expressiveness not present in SMT-LIB (like transitive
closure) and to be more readable. These goals are complementary to those of
CONTRACT-LIB that stays within the logical bounds of SMT-LIB and extends
its syntax. Again, it can be a suitable format that can import Contract-LIB
specifications.

Z [43], Event-B [2], B [1], ASM [16] and related methods are state-based
formalisms that would also allow the specification of contracts However, they are
significantly more sophisticated, come with rich set-theoretic formal language
and lack a simple machine-readable textual representation or even a commonly
accepted set of features.
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TPTP [40] is the machine-readable exchange format the automated theorem
prover community with an extensive set of benchmark examples. TPTP would
have been alternative to SMT-LIB to base Contract-LIB on, but as most deductive
tools use SMT solvers (and only partly ATP solvers) as back-ends nowadays and
as the support for ADTs is naturally stronger with SMT-LIB the latter was the
more natural choice.

CASL [8] is an algebraic specification language that emphasizes on the spec-
ification of the semantics of (algebraic) data types which is not our goal. The
shared semantics of data types is left a bit more implicit, analogous to that of
SMT-LIB theories, and we do not wish to impose any particular axiomatization.
Instead, tools are at liberty to translate types like sets/maps/sequences into their
native format with potential additional nuances like partiality (cf. Sec. 4.5) and
with particular strategies for proof automation.

Most of these languages are also rather complex, with sophisticated notation
and expressive foundations. More importantly, they give a primary interpretation,
whereas here, we allow tools to be flexible in certain ways, as long as the validity
of the contract is retained (e.g. partiality).

There are a number of intermediate verification programming languages like
Boogie [10], Why3 (or even possibly Dafny) that could serve as a common language
for the community. However, experience shows that while these languages do
have most features needed for the common ground they are already committed
to particular methodological design decisions that make them unsuitable as basis
for the common independent exchange language.

There have been some efforts towards translating translating specifications
directly from one specification/verification framework to another or to base
verification on a common low-level language. While this serves a similar goal,
Contract-LIB wants to allow exchange between different formalisms without
that one needs to know the idiosyncrasies at both ends of the translation. The
Specification Translator [7] translates annotations of Java programs between
VerCors, Krakatoa, and JML-based tools via an intermediate representation.
The Karlsruhe Java Verification suite [34] serves the similar goal to integrate
various Java verification tools but uses JML as the common exchange language.
Similarly, Frama-C [33] is a framework for verification of C programs where
different verification paradigms share a common ACSL specification. b2w [4]
implements a translation of proof obligations from Boogie to Why3 and bridges
the gap on a rather technical level.

There are ongoing efforts in the related area of proof assistants:12 Project Eu-
roProofNet “aims at boosting the interoperability and usability of proof systems”,
which is a much broader and more ambitious goal than ours, in parts because the
languages of interactive proof assistants are much richer from a mathematical
standpoint than SMT-LIB (e.g., including higher-order and dependent types)
and because they consider translation of proofs as well [25,41].

12 https://europroofnet.github.io/
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Another interesting concurrent activity is the aim for a standardized contract
language for Rust.13 It involves practitioners and academics alike, which means
that not only language-specific aspects are relevant but also contracts have a
much wider range of purposes than here. While we aim to share our developments
with this community, Rust’s ownership system seems to imply that contracts
relate three instead of two states, namely the state when a particular function
call returns but also that when all borrows are returned, which in turn does not
immediately fit into the semantic model of well-encapsulation discussed in Sec. 4.

7 Conclusion and Outlook

This paper introduced Contract-LIB, a standardized interchange format designed
to enable the interoperability between deductive program verification tools and
paradigms. It focuses on a concept of abstract contracts for stateful interfaces
that verification tools can import and export. By leveraging the established SMT-
LIB framework, Contract-LIB provides a concise, tool-agnostic representation
of contract specifications that are a requirement of an efficient collaboration
across different tools and programming languages. We outlined the syntactic and
semantic core concepts of Contract-LIB that add data abstraction and operation
contract definition mechanisms to SMT-LIB.

In future work, we will extend the prototypical reference implementation
towards selected different verification tools covering different programming lan-
guages and will elaborate how well-encapsulation can be formulated across
specification paradigms. We need to identify and collect the relevant data type
and operation definitions that allow us to conduct larger case studies to show
the utility and efficacy of the approach.
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