
FM
Artifact
Evaluation

Reusable

FM
Artifact
Evaluation

Available

FM-Weck: Containerized Execution of
Formal-Methods Tools

Dirk Beyer and Henrik Wachowitz

LMU Munich, Munich, Germany

https://gitlab.com/sosy-lab/software/fm-weck

Abstract. Software is ubiquitous in the digital world, and the correct
function of software systems is critical for our society, industry, and infras-
tructure. While testing and static analysis are long-established techniques
in software-development processes, it became widely acknowledged only
in the past two decades that formal methods are required for giving
guarantees of functional correctness. Both academia and industry worked
hard to develop tools for formal verification of software during the past
two decades, with the result that many software verifiers are available
now (for example, 59 freely available verifiers for C and Java programs).
However, most software verifiers are challenging to find, install, and use
for both external researchers and potential users. FM-Weck changes this:
It provides a fully automatic, zero-configuration container-based setup
and execution for more than 50 software verifiers for C and Java. Both the
setup requirements and execution parameters of every supported verifier
are provided by the tool developers themselves as part of the FM-Tools
metadata format that was established recently and was already used by the
international competitions SV-COMP and Test-Comp. With our solution
FM-Weck, anyone gets fast and easy access to state-of-the-art formal
verifiers, no expertise required, fully reproducible.

Keywords: Formal Methods · Verification · Model Checking · Testing · FM-Tools
· Tool Conservation · Reproducibility · Satisfiability Modulo Theories · Provers

1 Introduction

Reliable, correctly functioning IT systems are fundamental in a digital world.
One way to achieve correct systems is to apply formal methods. Tools for formal
methods are intricate software systems, which often compute abstract models
to prove system implementations correct or find errors. There is already a large
pool of mature and well-established verification tools (for example, in the area
of software verification [1, 2, 3, 4, 5]), and automatic tools are heavily used in
industrial software-engineering applications [4, 6, 7, 8]. Sometimes such tools are
even used as components in meta verifiers [9, 10, 11, 12, 13, 14]. However, the
integration of verification tools provides multiple obstacles: (1) There exists a
plentitude of research verification tools that are no longer maintained despite

© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 39–47, 2025.
https://doi.org/10.1007/978-3-031-71177-0_3

https://doi.org/10.5281/zenodo.12666378
https://doi.org/10.5281/zenodo.12666378
https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0002-4768-4054
https://gitlab.com/sosy-lab/software/fm-weck
https://doi.org/10.1007/978-3-031-71177-0_3
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-71177-0_3&domain=pdf

40 Dirk Beyer and Henrik Wachowitz

verifier.yml fm-weck expert

shell

run

Enter interactive environment
for verifier.yml

Run verifier of verifier.yml
with verbatim arguments

Install and run verifier of verifier.yml
with predefined configuration

Fig. 1: Overview of FM-Weck

delivering interesting results, making them incapable of running in modern software
environments, (2) the tools often provide poor documentation of their requirements
on the environment (e.g., whether LLVM 9 or LLVM 12 is required), and which
operating system they expect (e.g., Ubuntu 20.04), and (3) these tools often
have a huge configuration space resulting in a complicated set of command-line
interface (CLI) arguments that users have to understand and set correctly. These
obstacles deter developers and researchers from experimenting or even integrating
verification tools in their own processes and tools [15, 16].

FM-Weck is a command-line tool that mitigates these issues by using the
developer-provided metadata from the FM-Tools repository [17, 18]. The FM-
Tools repository is a community-maintained source of metadata for formal-
methods tools. The repository and the metadata format has been adopted by the
international competitions on software verification (SV-COMP) [19] and testing
(Test-Comp) [20], and tool developers maintain the information about their
tools, including the expected runtime environments and execution parameters.
FM-Weck uses these data provided by experts to give researchers and users easy
access to controlled runtime environments and execution of more than currently 50
verification tools for C and Java. Figure 1 gives an overview of FM-Weck’s three
modes of operation, shell, expert, and run, which assist users working with tools
for formal methods. In the following section, we briefly introduce the FM-Tools
metadata format that is used by the FM-Tools repository (for more details we
refer to the format description [17]), then we present how to use FM-Weck’s
modes of operation before concluding with current applications of the tool.

Related Work. CoVeriTeam [21] is a tool and language for constructing tool com-
positions. It uses a YAML-based format for the atomic-actor definitions (informa-
tion where to download, how to assemble command-lines). This format has inspired
the format used in FM-Tools. Unfortunately, CoVeriTeam does not configure
the execution environment for the tools and simply assumes that the host machine
has all required packages readily installed, which FM-Weck solves. Conserving
tools for formal methods is an old desire [22], also addressed by CoVeriTeam Ser-
vice [9]. FM-Weck adds the use of Docker containers to make the environment
reproducible and easy to run, also independently from web services.

2 FM-Tools: Tool Metadata

The FM-Tools repository aggregates relevant information about tools for formal
methods: It specifies the download location, maintainers, command-line options,

FM-Weck: Containerized Execution of Formal-Methods Tools 41

as well as other related information. In addition, FM-Tools stores information
about container images on which the tool is guaranteed to run according to the
maintainers. An FM-Tools file for a specific tool is a YAML document with
a precisely defined set of keys (a schema for the metadata of formal-methods
tools is available in the repository). FM-Tools was adopted by SV-COMP and
Test-Comp in their 2024 edition [19, 20]. As part of FM-Weck, we also provide
a Python library [23] that helps users to parse, use, and modify FM-Tools.

1 versions:
2 - version: "svcomp24"
3 doi: 10.5281/ zenodo .10203297
4 benchexec_toolinfo_options:
5 ["-svcomp24", "-heap", "10000M",
6 "-benchmark", "-timelimit", "900 s"]
7 required_ubuntu_packages:
8 - openjdk -17-jdk -headless
9 base_container_images:

10 - docker.io/ubuntu :22.04
11 full_container_images:
12 - registry.gitlab.com/sosy -lab/\
13 benchmarking/competition -scripts/user :2024

Listing 1: Example of a tool entry in FM-Tools

Listing 1 shows an example of a tool-version entry in FM-Tools. The field
required_ubuntu_packages specifies the Ubuntu packages that are required to run
the tool. The field base_container_images specifies the Ubuntu container images
on which the required Ubuntu packages can be installed, and with which the tool
is guaranteed to run after package installation. The field full_container_images
specifies self-contained container images that are guaranteed to run the tool
out-of-the-box. For a tool t it shall hold that

∀i ∈ base_container_images : (i⊕ required_ubuntu_packages) |= t (1)
∀i ∈ full_container_images : i |= t (2)

where ⊕ denotes the operation of installing the packages on the image i and i |= t
denotes that the image i is sufficient to run the tool t.

FM-Tools currently refers to Ubuntu packages, because most tools run on
Linux, and Ubuntu as a widespread distribution, whose long-term support keeps
specifying and installing the packages straightforward across verifiers.

3 FM-Weck

FM-Weck is a command-line tool written in Python, which consumes FM-
Tools [18] tool metadata to execute formal-methods tools inside of a container.
(The tool’s name is inspired by a German brand of jars for conserving food.) The
utility can be used to run, develop, and experiment with formal-methods tools. The
software architecture of FM-Weck also allows and encourages usage as a library.

FM-Weck simplifies the execution of formal-methods tools by setting up
and starting containers tailored for each tool. FM-Weck can also configure a

42 Dirk Beyer and Henrik Wachowitz

container runtime such that benchmarks with BenchExec are possible inside
of them. To launch the actual container, FM-Weck uses podman [24] internally
with the crun runtime [25]. The FM-Weck CLI comes with three modes of
operation: run, expert, and shell.

3.1 FM-Weck Modes

Every command in FM-Weck takes an FM-Tools file as input. This file can
be specified either as a path, or as the identifier of the tool. In the latter case,
FM-Weck uses the bundled file from the FM-Tools repository with the corre-
sponding name. In any case, users can also specify a specific version of a verifier by
appending it with a colon after the file path or name, e.g., <verifier>:<version>.

Automatic (run) Mode.
fm-weck run verifier.yml -p property file.c

The run mode enables plug-and-play execution of formal-methods tools: it down-
loads and unpacks a tool from the archive specified in the FM-Tools metadata
file (’verifier.yml’ above) into a user-specified cache directory on the host system.
This cache is mounted into the container, where the verifier is then executed with
the given command-line arguments. The run mode takes two additional arguments:
(1) the -p argument specifies a property file, i.e., the goal for the verifier—this can
either be a path to the property file or the name of one of the properties used in
SV-COMP or Test-Comp, and (2) the files that shall be passed to the tool. In the
case of software verifiers, these program files are the input programs to be verified.

Manual (expert) Mode.
fm-weck expert verifier.yml <args>

The expert mode is for manual interaction with a verifier: it executes a given
verifier, specified through the corresponding FM-Tools YAML file, in its con-
tainerized environment passing any additional arguments verbatim to the verifier.
Just like in the run mode, FM-Weck takes care of downloading and unpacking
the verifier as well as setting up the container before the execution. All arguments
following the tool verifier.yml are passed to the verifier in the container, which
makes the expert mode essentially act like the verifier if it was executed directly
on the host system. The following is an example execution that displays the
version of the CPAchecker verifier: fm-weck expert cpachecker -version

Interactive (shell) Mode.
fm-weck shell verifier.yml

The shell mode enters an interactive shell inside of the container specified by
the given verifier. The shell mode launches a Bash shell with the current working
directory mounted inside. Users may mount additional directories through a
configuration file described in Sect. 3.2. Like with the expert mode, the container
information is extracted from the FM-Tools metadata file provided by the user.
The shell mode takes no additional parameters. The following example starts an
interactive shell in the container of Ultimate Automizer: fm-weck shell uautomizer

FM-Weck: Containerized Execution of Formal-Methods Tools 43

3.2 Project-Specific Configuration

FM-Weck works without any additional configuration, but expert users can still
modify aspects of FM-Weck to their needs. Users may set default values and
additional files or directories which shall be available inside the container. The
configuration is specified in TomL format, as seen in Listing 2. If users define a
default image file in this configuration, they can omit the verifier.yml in the
shell mode, and the *container_image keys in the expert and run modes.

1 [defaults]
2 image = "some_image:latest"
3 [mount]
4 "local/path" = "/container/path"

Listing 2: Example of a run configuration

Relative paths in the configuration file are relative to the directory that contains
the configuration file. If no configuration path is explicitly set via the command
line, FM-Weck first looks for a configuration file .weck in the current working
directory. If this does not exist, it looks for a configuration file .config/weck
in the user’s home directory.

4 Applications

FM-Weck is designed with three core applications in mind: (1) to execute a
single tool based on its FM-Tools metadata, (2) to facilitate the execution of
unmaintained tools in future competition instances, and (3) as a utility that
enables OS-independent execution in CoVeriTeam [21].

4.1 Execution of a Single Tool

FM-Weck provides a bother-free user experience that encourages curious re-
searchers and developers to try and experiment with different verification tools—
from well established behemoths to cutting-edge research tools. Users do not have
to worry about the tool’s dependencies, installation, or complicated command-
line configurations. The run mode of FM-Weck achieves this goal. Running
CPAchecker to find overflows in a C program is as simple as:
fm-weck run cpachecker -p no-overflow program.c

4.2 Containerized Execution in CoVeriTeam

CoVeriTeam [21] is a framework for cooperative verification. Similar to fm-weck,
CoVeriTeam takes tool metadata in a YAML format as input, to download and
run the tools specified in a cooperative-verification workflow. Each tool is executed
inside a containerized environment provided by BenchExec [26]. However, these
BenchExec containers do not support OCI container images. This means that all
tools running in a CoVeriTeam workflow must be able to run on the host system.
We extend CoVeriTeam with an FM-Weck-based run mode. This enables the
cooperation of actors regardless of their system requirements.

44 Dirk Beyer and Henrik Wachowitz

fm-weck

CoVeriTeam

run tool

FM-Tools

Fig. 2: FM-Weck as executor
in CoVeriTeam

fm-weck run

SV-COMP Exec

runexec -- verifier

unmaintained regular

Fig. 3: FM-Weck as drop-in com-
mand for SV-COMP infrastructure

Figure 2 illustrates the integration of FM-Weck in CoVeriTeam. Instead
of calling BenchExec, CoVeriTeam calls FM-Weck to instantiate a container
for the given tool and execute the assembled command inside of it. CoVeriTeam
is also written in Python and uses FM-Weck directly as a library.

4.3 Reliable Execution in SV-COMP 2025

SV-COMP comparatively evaluates more than 70 verification tools on an extensive
benchmark set [19, 27]. The server infrastructure that executes these millions of
verification and validation runs during the competition is hosted on the always-
latest Ubuntu LTS Version. This is a formal requirement of the SV-COMP rules.
However, there is a growing number of tools that are no longer actively maintained
and serve as a retrospective baseline—the so-called hors-concours participants.
These tools are benchmarked in the same way as the regular participants, but they
do not compete in the ranking. Until SV-COMP 2024, these tools were manually
migrated by volunteers to still work on the latest Ubuntu LTS Version, but with
26 hors-concurs participants, the amount of migration-labor becomes infeasible.

With FM-Weck we extend the functionality of the current SV-COMP in-
frastructure to execute these tools in the SV-COMP 2024 environment. Figure 3
illustrates how FM-Weck is used as a drop-in solution. We wrap the exist-
ing invocation of the benchmark command inside of a pre-built image. This
image replicates the OS and installed packages of SV-COMP 2024. By default,
BenchExec cannot run inside of another container: FM-Weck also sets up the
container runtime such that BenchExec works inside of it.

5 Conclusion

We developed FM-Weck, a utility to run formal-methods tools in containerized
environments. The goals are to (a) conserve the tools, such that they stay ex-
ecutable in the future, and (b) make it easy for researchers, practitioners, and
educators to use and explore the existing tools for formal methods. The appli-
cation scenarios in CoVeriTeam and SV-COMP infrastructure demonstrate the
capabilities of FM-Weck as a library as well as a command-line tool. The tool is
open source, licensed under Apache 2.0, and available on GitLab [28].

Data-Availability Statement. The metadata are available in the FM-Tools
repository [18] and the source code in the FM-Weck repository [28]. A refined
version [29] of the artifact submitted for evaluation [30] is available on Zenodo.

https://gitlab.com/sosy-lab/benchmarking/fm-tools
https://gitlab.com/sosy-lab/benchmarking/fm-tools
https://gitlab.com/sosy-lab/software/fm-weck

FM-Weck: Containerized Execution of Formal-Methods Tools 45

Funding Statement. FM-Weck was funded in part by the Deutsche Forschungs-
gemeinschaft (DFG) — 378803395 (ConVeY).

References

1. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software
verification. In: Proc. CAV. pp. 184–190. LNCS 6806, Springer (2011). https:
//doi.org/10.1007/978-3-642-22110-1_16

2. Heizmann, M., Bentele, M., Dietsch, D., Jiang, X., Klumpp, D., Schüssele, F., Podel-
ski, A.: Ultimate automizer and the abstraction of bitwise operations (competition
contribution). In: Proc. TACAS (3). pp. 418–423. LNCS 14572, Springer (2024).
https://doi.org/10.1007/978-3-031-57256-2_31

3. Jonáš, M., Kumor, K., Novák, J., Sedláček, J., Trtík, M., Zaoral, L., Ayaziová, P.,
Strejček, J.: Symbiotic 10: Lazy memory initialization and compact symbolic exe-
cution (competition contribution). In: Proc. TACAS (3). pp. 406–411. LNCS 14572,
Springer (2024). https://doi.org/10.1007/978-3-031-57256-2_29

4. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M., O’Hearn,
P.W., Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving fast with software
verification. In: Proc. NFM. pp. 3–11. LNCS 9058, Springer (2015). https://doi.
org/10.1007/978-3-319-17524-9_1

5. Vojdani, V., Apinis, K., Rõtov, V., Seidl, H., Vene, V., Vogler, R.: Static race
detection for device drivers: The Goblint approach. In: Proc. ASE. pp. 391–402.
ACM (2016). https://doi.org/10.1145/2970276.2970337

6. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: Slam and Static Driver Verifier:
Technology transfer of formal methods inside Microsoft. In: Proc. IFM. pp. 1–20.
LNCS 2999, Springer (2004). https://doi.org/10.1007/978-3-540-24756-2_1

7. Cook, B.: Formal reasoning about the security of Amazon web services. In: Proc.
CAV (2). pp. 38–47. LNCS 10981, Springer (2018). https://doi.org/10.1007/
978-3-319-96145-3_3

8. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: Proc. PLDI. pp.
196–207. ACM (2003). https://doi.org/10.1145/781131.781153

9. Beyer, D., Kanav, S., Wachowitz, H.: CoVeriTeam Service: Verification as a
service. In: Proc. ICSE, companion. pp. 21–25. IEEE (2023). https://doi.org/10.
1109/ICSE-Companion58688.2023.00017

10. Beyer, D., Lemberger, T., Wachowitz, H.: Reproduction package for TACAS2024
submission ‘Continuous verification: Mitigations of tool restarts for java verifiers’.
Zenodo (2023). https://doi.org/10.5281/zenodo.8383787

11. Chien, P.C., Lee, N.Z.: CPV: A circuit-based program verifier (competition con-
tribution). In: Proc. TACAS (3). pp. 365–370. LNCS 14572, Springer (2024).
https://doi.org/10.1007/978-3-031-57256-2_22

12. Beyer, D., Spiessl, M.: MetaVal: Witness validation via verification. In: Proc.
CAV. pp. 165–177. LNCS 12225, Springer (2020). https://doi.org/10.1007/
978-3-030-53291-8_10

13. Richter, C., Hüllermeier, E., Jakobs, M.C., Wehrheim, H.: Algorithm selection for
software validation based on graph kernels. Autom. Softw. Eng. 27(1), 153–186
(2020). https://doi.org/10.1007/s10515-020-00270-x

14. He, F., Sun, Z., Fan, H.: Deagle: An SMT-based verifier for multi-threaded programs
(competition contribution). In: Proc. TACAS (2). pp. 424–428. LNCS 13244, Springer
(2022). https://doi.org/10.1007/978-3-030-99527-0_25

http://gepris.dfg.de/gepris/projekt/378803395
https://convey.ifi.lmu.de/
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-031-57256-2_31
https://doi.org/10.1007/978-3-031-57256-2_29
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1145/2970276.2970337
https://doi.org/10.1007/978-3-540-24756-2_1
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1145/781131.781153
https://doi.org/10.1109/ICSE-Companion58688.2023.00017
https://doi.org/10.1109/ICSE-Companion58688.2023.00017
https://doi.org/10.5281/zenodo.8383787
https://doi.org/10.1007/978-3-031-57256-2_22
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1007/s10515-020-00270-x
https://doi.org/10.1007/978-3-030-99527-0_25

46 Dirk Beyer and Henrik Wachowitz

15. Alglave, J., Donaldson, A.F., Kröning, D., Tautschnig, M.: Making software verifi-
cation tools really work. In: Proc. ATVA. pp. 28–42. LNCS 6996, Springer (2011).
https://doi.org/10.1007/978-3-642-24372-1_3

16. Garavel, H., ter Beek, M.H., van de Pol, J.: The 2020 expert survey on formal
methods. In: Proc. FMICS. pp. 3–69. LNCS 12327, Springer (2020). https://doi.
org/10.1007/978-3-030-58298-2_1

17. Beyer, D.: Conservation and accessibility of tools for formal meth-
ods. In: Proc. Festschrift Podelski 65th Birthday. Springer (2024),
https://www.sosy-lab.org/research/pub/2024-Podelski65.Conservation_and_
Accessibility_of_Tools_for_Formal_Methods.pdf

18. Beyer, D.: Formal-methods tools repository. https://gitlab.com/sosy-lab/
benchmarking/fm-tools (2023), accessed: 2024-04-10

19. Beyer, D.: State of the art in software verification and witness validation: SV-
COMP 2024. In: Proc. TACAS (3). pp. 299–329. LNCS 14572, Springer (2024).
https://doi.org/10.1007/978-3-031-57256-2_15

20. Beyer, D.: Automatic testing of C programs: Test-Comp 2024. In: TBA. Springer
(2024)

21. Beyer, D., Kanav, S.: CoVeriTeam: On-demand composition of cooperative ver-
ification systems. In: Proc. TACAS. pp. 561–579. LNCS 13243, Springer (2022).
https://doi.org/10.1007/978-3-030-99524-9_31

22. Steffen, B., Margaria, T., Braun, V.: The Electronic Tool Integration plat-
form: Concepts and design. STTT 1(1-2), 9–30 (1997). https://doi.org/10.1007/
s100090050003

23. Beyer, D., Wachowitz, H.: lib-fm-tools repository. https://gitlab.com/sosy-lab/
software/lib-fm-tools (2024), accessed: 2024-07-01

24. Podman. https://github.com/containers/podman, accessed: 2023-02-09
25. crun runtime. https://github.com/containers/crun (2024), accessed: 2024-04-26
26. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements and solutions.

Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019). https://doi.org/10.1007/
s10009-017-0469-y

27. Collection of verification tasks. https://gitlab.com/sosy-lab/benchmarking/
sv-benchmarks, accessed: 2023-04-01

28. Beyer, D., Wachowitz, H.: FM-Weck repository. https://gitlab.com/sosy-lab/
software/fm-weck (2024), accessed: 2024-07-01

29. Beyer, D., Wachowitz, H.: Reproduction package for the FM2024 article ‘FM-
Weck: Containerized execution of formal-methods tools’. Zenodo (2024). https:
//doi.org/10.5281/zenodo.12606323

30. Beyer, D., Wachowitz, H.: Reproduction package for the FM 2024 submission
‘FM-Weck: Containerized execution of formal-methods tools’. Zenodo (2024).
https://doi.org/10.5281/zenodo.12205513

https://doi.org/10.1007/978-3-642-24372-1_3
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1007/978-3-030-58298-2_1
https://www.sosy-lab.org/research/pub/2024-Podelski65.Conservation_and_Accessibility_of_Tools_for_Formal_Methods.pdf
https://www.sosy-lab.org/research/pub/2024-Podelski65.Conservation_and_Accessibility_of_Tools_for_Formal_Methods.pdf
https://gitlab.com/sosy-lab/benchmarking/fm-tools
https://gitlab.com/sosy-lab/benchmarking/fm-tools
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/10.1007/s100090050003
https://doi.org/10.1007/s100090050003
https://gitlab.com/sosy-lab/software/lib-fm-tools
https://gitlab.com/sosy-lab/software/lib-fm-tools
https://github.com/containers/podman
https://github.com/containers/crun
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://gitlab.com/sosy-lab/software/fm-weck
https://gitlab.com/sosy-lab/software/fm-weck
https://doi.org/10.5281/zenodo.12606323
https://doi.org/10.5281/zenodo.12606323
https://doi.org/10.5281/zenodo.12205513

FM-Weck: Containerized Execution of Formal-Methods Tools 47

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line
to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from the copyright
holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	FM-Weck: Containerized Execution of Formal-Methods Tools

