
Bridging Hardware and Software
Formal Verification
(Extended Abstract)

Po-Chun Chien

LMU Munich, Munich, Germany

Abstract. Modern technology relies heavily on the integration of hard-
ware and software systems, from embedded devices in consumer electronics
to safety-critical controllers. Despite their interdependence, the tools and
methods used for verifying the correctness and reliability of these systems
are often segregated, meaning that the advancement in one community
cannot benefit another directly. Addressing this challenge, my dissertation
aims at bridging the gap between hardware and software formal analysis.
This involves translating representations of verification tasks, generat-
ing certificates for verification results, integrating state-of-the-art formal
analysis tools into a cohesive framework, and adapting and combining
model-checking algorithms across domains. By translating word-level hard-
ware circuits into C programs, we found out that software analyzers were
able to identify property violations that well-established hardware verifiers
failed to detect. Moreover, by adopting interpolation-based hardware-
verification algorithms for software analysis, we were able to tackle tasks
unsolvable by existing methods. Our research consolidates knowledge from
both hardware and software domains, paving a pathway for comprehensive
system-level verification.

Keywords: Hardware model checking · Software verification · Represen-
tation translation · Craig interpolation · Transferability · Btor2

1 Introduction
Computing systems are widely-adopted in modern society and ensuring their
functional correctness is of utmost importance. Formal methods, grounded in
theories of logic, automata, and constraint solving, have been applied in real-world
applications and provided safety guarantees with mathematical rigor. With the
ever-increasing interactions among diverse components, such as software programs,
hardware circuits, and cyber-physical devices, formal verification of computing
systems has also become more challenging.

While the research communities for formal methods share common theoretical
foundations, including satisfiability solving [22], Craig interpolation [31], and
abstraction refinement [29], differences in their alignment with distinct compu-
tational models create gaps between these communities. Figure 1 depicts such
differences between hardware and software verification, highlighting a knowledge
gap between the two closely-related fields. We mainly focus on hardware systems

https://orcid.org/0000-0001-5139-5178


2 P.-C. Chien

State-Transition
System

Sequential
Circuit

Imperative
Program

Hardware
Verification

Software
Verification

SAT/SMT [22], Craig Interpolation [31],
Abstraction Refinement [29], Symbolic Representation, . . .

Aiger [19]

Btor2 [38]

Verilog [1]

C [35]

Java

LLVM-IR [36]

ABC [24]

AVR [33]

BtorMC [38]

CPAchecker [16]

Cbmc [30]

Klee [25]

Hardware Software

enc
ode

encode

analyze analyze

underpin underpin

Applicable?

Gap

Fig. 1: The gap between hardware and software verification

represented by sequential circuits and software systems written as imperative
programs, as they are widely used in practice. Both representations encode state-
transition systems, and their verification approaches are underpinned by common
foundations. Despite these similarities, verification tools (bottom-left and -right
corners of Fig. 1) typically consume a specific input format (top-left and -right
corners of Fig. 1). Therefore, applying software verifiers to analyze hardware
systems or vice versa requires considerable engineering effort, which impedes
mutual advancement between communities.

Objectives and Methodology. We plan to bridge the gap between hardware
and software verification by considering the following question: Is hardware
(resp. software) verification algorithms applicable to software (resp.
hardware) systems? To address this, we employ two different strategies:

• Task translation: We translate verification tasks from one representation
to a another, and utilize tools for the latter representation to analyze the
correctness of the systems (see Sect. 2).

• Algorithm adoption: We adopt verification algorithms across domains
and make necessary modifications to the algorithms to cater the needs of
different system representations. The adopted algorithms can then be applied
to verification tasks in the other domain (see Sect. 3).

After developing these strategies, we evaluate their effectiveness through extensive
evaluation on thousands of benchmark tasks from both hardware- and software-
verification communities. With the collected experimental data, we investigate
the performance differences of different verification algorithms and tools across
domains. This helps us further consolidate the knowledge and provides us insight
on how to combine the strengthens of the two communities (see Sect. 4).

The scientific results of the dissertation have been published in three pa-
pers at TACAS [2, 6, 27], one paper at FSE [5], one paper at ASE [7], and one
paper at SPIN [11]. The remainder of the manuscript summarizes the related
work, high-level concepts, achieved results, and ongoing work of each aforemen-
tioned research direction.



Bridging Hardware and Software Formal Verification 3

2 Cross-Applying Hardware and Software Analysis
via Representation Translation

In this section, we described our research on cross-applying hardware and software
analyzers by translating the verification tasks between circuits and programs. We
mainly focus on hardware circuits in the Btor2 format [38] and software programs
in the C language, as they are the standard representations used by the Hardware
Model Checking Competitions (HWMCC) [20] and Competitions on Software
Verification (SV-COMP) [4], respectively, and come with extensive tool support.

Applying Software Analysis to Hardware Circuits. To apply software
verifiers and testers to analyze hardware circuits, we first have to translate the
circuits into programs. Our tool Btor2C [6], is the first translator that translates
a word-level hardware circuit in Btor2 format [38] to a behaviorally-equivalent C
program. We further augment the combination of Btor2C and software analyzers
with a witness translator into a certifying hardware verification framework Btor2-
Cert [2], that can produce certificates (i.e., verification witnesses [15]) for the
derived verification results, to increase trustworthiness of the translation and
verification processes. Our evaluation on a benchmark set consisting of over
1400 Btor2 tasks shows that: (1) It is feasible to translate Btor2 circuits into
C programs. (2) Software analyzers can complement state-of-the-art hardware
verifiers by finding more property violations and uniquely solving dozens of tasks.

Applying Hardware Model Checking to Software Programs. On the
other direction of translation, we implement CPV [27], a circuit-based program
verifier that uses sequential circuits as its intermediate representation. CPV uses
Kratos2 [34] to translate C into Btor2 representation, and invokes hardware
model checkers like ABC [24] and AVR [33] for verification. It can also extract
error paths from Btor2 violation witnesses and export them in software-witness
format [15]. As a first time participant in SV-COMP 2024, CPV attained remark-
able results in the category ReachSafety (ranked 6 out of 26 participants) and
surprisingly outperformed several established software verifiers. Furthermore, we
plan to extend CPV in the following directions: (1) exploring circuit optimization
techniques like combinational rewriting, which have proven effective in reducing
circuit size and could potentially improve verification performance, for circuits
translated from C programs, (2) producing software correctness witnesses through
extracting and translating the fixed points computed by hardware model checkers.

3 Transferring Verification Algorithms Across Domains
Various formal-verification algorithms have been successfully transferred across
domains. For instance, bounded model checking (BMC) [21], k -induction [39], and
IC3/PDR [14, 23] are originally designed for finite-state systems such as sequential
circuits. They have been successfully lifted to software verification [28, 30, 32]
thanks to the commonalities between finite-state and infinite-state model checking.
In this project, we conduct a systematic investigation into the transferability of two
interpolation-based hardware-verification algorithms, interpolation-sequence-based
model checking (ISMC) [40] and dual approximated reachability (DAR) [5], to



4 P.-C. Chien

software verification. Building on previous work on adopting hardware-verification
algorithm via large-block encoding [13, 17], we implement ISMC and DAR within
the configurable program analysis framework CPAchecker [3, 16], and subse-
quently evaluate their performance on more than 8000 benchmark tasks, covering
a broad spectrum of software-verification problems. The experimental results
demonstrate that the characteristics of ISMC and DAR are indeed transferable,
and the two algorithms were able to tackle tasks unsolvable by existing techniques.
This work consolidates the knowledge about the transferability of ISMC and
DAR to software verification and highlight opportunities to enhance software
verification by integrating methods from hardware model checking.

4 Joining Forces of Hardware and Software Verification
Each verification algorithm possesses its own unique strengths and weaknesses. An
algorithm may perform poorly on a particular class of problems that others can
solve efficiently. For example, data-flow analysis is a lightweight scalable technique
that can handle large software systems, and has been employed by various static
analyzers and compilers. However, it may yield overly-weak invariants insufficient
for proving complex properties. There are also more intensive techniques, such
as those based on Craig interpolation [31]. Interpolation-based model checking
(IMC) [37], originally developed for hardware model checking and recently adopted
for software verification [17] (see also Sect. 3), generates stronger invariants from
interpolants, but could suffer from scalability issues due to costly interpolation
procedures. By combining these two families of techniques, we can leverage the
strengths of both to achieve better verification performance. To achieve the synergy,
we propose a method to augment IMC [11] with auxiliary invariants generated
by an interval-based data-flow analysis [7]. These auxiliary invariants help refine
interpolants by pruning unreachable states such that the analysis is focused on
reachable program parts. We implemented this approach within the CPAchecker
framework [16], and evaluated its performance against established SMT-based
methods within CPAchecker and other cutting-edge software verifiers. The
findings show that our approach help reduce the number of interpolation queries
required to prove safety properties and improve the overall runtime efficiency. As a
result, our proposed invariant-injection technique successfully verified challenging
tasks that the plain IMC (without auxiliary invariants), the invariant generator
itself, or other compared tools could not solve.

5 Conclusion
This dissertation has successfully tackled some of the challenges in bridging
hardware and software formal analysis by representation translation and the
adoption of advanced verification algorithms across domains. Projects like Btor2-
Cert and CPV have demonstrated the feasibility and effectiveness of applying
software analysis to hardware systems and vice versa, thereby enlarging the
applicability of formal verification methods. Our research not only promotes to
the integration of traditionally-segregated research communities, but also sets the
stage for future advancements in system-level verification.



Bridging Hardware and Software Formal Verification 5

Data-Availability Statement. All the software projects we developed are
open-source on GitLab (https://gitlab.com/sosy-lab/software/, in reposi-
tories btor2c, btor2-cert, btor2-val, cpv, and cpachecker ). To enhance the
verifiability and transparency of the evaluation results reported in our papers,
all used software, verification tasks, as well as raw and processed experimental
results are available in supplemental reproduction artifacts archived on Zen-
odo [8, 9, 10, 12, 18, 26, 41].

References
1. IEEE standard for Verilog hardware description language (2006). https://doi.org/

10.1109/IEEESTD.2006.99495
2. Ádám, Z., Beyer, D., Chien, P.C., Lee, N.Z., Sirrenberg, N.: Btor2-Cert: A

certifying hardware-verification framework using software analyzers. In: Proc.
TACAS (3). pp. 129–149. LNCS 14572, Springer (2024). https://doi.org/10.1007/
978-3-031-57256-2_7

3. Baier, D., Beyer, D., Chien, P.C., Jankola, M., Kettl, M., Lee, N.Z., Lemberger, T.,
Lingsch-Rosenfeld, M., Spiessl, M., Wachowitz, H., Wendler, P.: CPAchecker 2.3
with strategy selection (competition contribution). In: Proc. TACAS (3). pp. 359–364.
LNCS 14572, Springer (2024). https://doi.org/10.1007/978-3-031-57256-2_21

4. Beyer, D.: State of the art in software verification and witness validation: SV-
COMP 2024. In: Proc. TACAS (3). pp. 299–329. LNCS 14572, Springer (2024).
https://doi.org/10.1007/978-3-031-57256-2_15

5. Beyer, D., Chien, P.C., Jankola, M., Lee, N.Z.: A transferability study of
interpolation-based hardware model checking for software verification. Proc. ACM
Softw. Eng. 1(FSE) (2024). https://doi.org/10.1145/3660797

6. Beyer, D., Chien, P.C., Lee, N.Z.: Bridging hardware and software analysis with
Btor2C: A word-level-circuit-to-C translator. In: Proc. TACAS (2). pp. 152–172.
LNCS 13994, Springer (2023). https://doi.org/10.1007/978-3-031-30820-8_12

7. Beyer, D., Chien, P.C., Lee, N.Z.: CPA-DF: A tool for configurable interval analysis
to boost program verification. In: Proc. ASE. pp. 2050–2053. IEEE (2023). https:
//doi.org/10.1109/ASE56229.2023.00213

8. Beyer, D., Chien, P.C., Lee, N.Z.: Reproduction package for ASE 2023 article ‘CPA-
DF: A tool for configurable interval analysis to boost program verification’. Zenodo
(2023). https://doi.org/10.5281/zenodo.8245821

9. Beyer, D., Chien, P.C., Lee, N.Z.: Reproduction package for TACAS2023 article
‘Bridging hardware and software analysis with Btor2C: A word-level-circuit-to-C
translator’. Zenodo (2023). https://doi.org/10.5281/zenodo.7551707

10. Beyer, D., Chien, P.C., Lee, N.Z.: SoSy-Lab virtual machine (Ubuntu 22.04 LTS).
Zenodo (2023). https://doi.org/10.5281/zenodo.1158641

11. Beyer, D., Chien, P.C., Lee, N.Z.: Augmenting interpolation-based model checking
with auxiliary invariants. In: Proc. SPIN. Springer (2024)

12. Beyer, D., Chien, P.C., Lee, N.Z.: Reproduction package for SPIN 2024 submission
‘Augmenting interpolation-based model checking with auxiliary invariants’. Zenodo
(2024). https://doi.org/10.5281/zenodo.10548594

13. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software
model checking via large-block encoding. In: Proc. FMCAD. pp. 25–32. IEEE (2009).
https://doi.org/10.1109/FMCAD.2009.5351147

14. Beyer, D., Dangl, M.: Software verification with PDR: An implementation of the
state of the art. In: Proc. TACAS (1). pp. 3–21. LNCS 12078, Springer (2020).
https://doi.org/10.1007/978-3-030-45190-5_1

https://gitlab.com/sosy-lab/software/
https://gitlab.com/sosy-lab/software/btor2c
https://gitlab.com/sosy-lab/software/btor2-cert
https://gitlab.com/sosy-lab/software/btor2-val
https://gitlab.com/sosy-lab/software/cpv
https://gitlab.com/sosy-lab/software/cpachecker
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1007/978-3-031-57256-2_7
https://doi.org/10.1007/978-3-031-57256-2_7
https://doi.org/10.1007/978-3-031-57256-2_7
https://doi.org/10.1007/978-3-031-57256-2_7
https://doi.org/10.1007/978-3-031-57256-2_21
https://doi.org/10.1007/978-3-031-57256-2_21
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1145/3660797
https://doi.org/10.1145/3660797
https://doi.org/10.1007/978-3-031-30820-8_12
https://doi.org/10.1007/978-3-031-30820-8_12
https://doi.org/10.1109/ASE56229.2023.00213
https://doi.org/10.1109/ASE56229.2023.00213
https://doi.org/10.1109/ASE56229.2023.00213
https://doi.org/10.1109/ASE56229.2023.00213
https://doi.org/10.5281/zenodo.8245821
https://doi.org/10.5281/zenodo.8245821
https://doi.org/10.5281/zenodo.7551707
https://doi.org/10.5281/zenodo.7551707
https://doi.org/10.5281/zenodo.1158641
https://doi.org/10.5281/zenodo.1158641
https://doi.org/10.5281/zenodo.10548594
https://doi.org/10.5281/zenodo.10548594
https://doi.org/10.1109/FMCAD.2009.5351147
https://doi.org/10.1109/FMCAD.2009.5351147
https://doi.org/10.1007/978-3-030-45190-5_1
https://doi.org/10.1007/978-3-030-45190-5_1


6 P.-C. Chien

15. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Lemberger, T., Tautschnig, M.:
Verification witnesses. ACM Trans. Softw. Eng. Methodol. 31(4), 57:1–57:69 (2022).
https://doi.org/10.1145/3477579

16. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software
verification. In: Proc. CAV. pp. 184–190. LNCS 6806, Springer (2011). https:
//doi.org/10.1007/978-3-642-22110-1_16

17. Beyer, D., Lee, N.Z., Wendler, P.: Interpolation and SAT-based model checking
revisited: Adoption to software verification. J. Autom. Reasoning (2024). https:
//doi.org/10.1007/s10817-024-09702-9

18. Beyer, D., Wendler, P.: CPAchecker release 2.3. Zenodo (2023). https://doi.
org/10.5281/zenodo.10203297

19. Biere, A.: The AIGER And-Inverter Graph (AIG) format version 20071012. Tech.
Rep. 07/1, Institute for Formal Models and Verification, Johannes Kepler University
(2007). https://doi.org/10.35011/fmvtr.2007-1

20. Biere, A., Froleyks, N., Preiner, M.: 11th Hardware Model Checking Competition
(HWMCC 2020). http://fmv.jku.at/hwmcc20/, accessed: 2023-01-29

21. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Advances in Computers 58, 117–148 (2003). https://doi.org/10.1016/
S0065-2458(03)58003-2

22. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

23. Bradley, A.R.: SAT-based model checking without unrolling. In: Proc. VM-
CAI. pp. 70–87. LNCS 6538, Springer (2011). https://doi.org/10.1007/
978-3-642-18275-4_7

24. Brayton, R., Mishchenko, A.: ABC: An academic industrial-strength verification
tool. In: Proc. CAV. pp. 24–40. LNCS 6174, Springer (2010). https://doi.org/10.
1007/978-3-642-14295-6_5

25. Cadar, C., Dunbar, D., Engler, D.R.: Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proc. OSDI. pp. 209–224.
USENIX Association (2008), http://www.usenix.org/events/osdi08/tech/full_
papers/cadar/cadar.pdf

26. Chien, P.C., Lee, N.Z.: CPV: A circuit-based program verifier. Zenodo (2023).
https://doi.org/10.5281/zenodo.10203472, version 0.4

27. Chien, P.C., Lee, N.Z.: CPV: A circuit-based program verifier (competition con-
tribution). In: Proc. TACAS (3). pp. 365–370. LNCS 14572, Springer (2024).
https://doi.org/10.1007/978-3-031-57256-2_22

28. Cimatti, A., Griggio, A.: Software model checking via IC3. In: Proc. CAV. pp. 277–
293. LNCS 7358, Springer (2012). https://doi.org/10.1007/978-3-642-31424-7_
23

29. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Proc. CAV. pp. 154–169. LNCS 1855, Springer (2000).
https://doi.org/10.1007/10722167_15

30. Clarke, E.M., Kröning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Proc. TACAS. pp. 168–176. LNCS 2988, Springer (2004). https://doi.org/10.
1007/978-3-540-24730-2_15

31. Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. Symb.
Log. 22(3), 250–268 (1957). https://doi.org/10.2307/2963593

32. Donaldson, A.F., Haller, L., Kröning, D., Rümmer, P.: Software verification using
k-induction. In: Proc. SAS. pp. 351–368. LNCS 6887, Springer (2011). https:
//doi.org/10.1007/978-3-642-23702-7_26

https://doi.org/10.1145/3477579
https://doi.org/10.1145/3477579
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/s10817-024-09702-9
https://doi.org/10.1007/s10817-024-09702-9
https://doi.org/10.1007/s10817-024-09702-9
https://doi.org/10.1007/s10817-024-09702-9
https://doi.org/10.5281/zenodo.10203297
https://doi.org/10.5281/zenodo.10203297
https://doi.org/10.5281/zenodo.10203297
https://doi.org/10.5281/zenodo.10203297
https://doi.org/10.35011/fmvtr.2007-1
https://doi.org/10.35011/fmvtr.2007-1
http://fmv.jku.at/hwmcc20/
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.5281/zenodo.10203472
https://doi.org/10.5281/zenodo.10203472
https://doi.org/10.1007/978-3-031-57256-2_22
https://doi.org/10.1007/978-3-031-57256-2_22
https://doi.org/10.1007/978-3-642-31424-7_23
https://doi.org/10.1007/978-3-642-31424-7_23
https://doi.org/10.1007/978-3-642-31424-7_23
https://doi.org/10.1007/978-3-642-31424-7_23
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.2307/2963593
https://doi.org/10.2307/2963593
https://doi.org/10.1007/978-3-642-23702-7_26
https://doi.org/10.1007/978-3-642-23702-7_26
https://doi.org/10.1007/978-3-642-23702-7_26
https://doi.org/10.1007/978-3-642-23702-7_26


Bridging Hardware and Software Formal Verification 7

33. Goel, A., Sakallah, K.: AVR: Abstractly verifying reachability. In: Proc.
TACAS. pp. 413–422. LNCS 12078, Springer (2020). https://doi.org/10.1007/
978-3-030-45190-5_23

34. Griggio, A., Jonáš, M.: Kratos2: An SMT-based model checker for imperative
programs. In: Proc. CAV. pp. 423–436. Springer (2023). https://doi.org/10.1007/
978-3-031-37709-9_20

35. ISO/IEC JTC1/SC22: ISO/IEC 9899-2018: Information technology — Program-
ming Languages — C. International Organization for Standardization (2018),
https://www.iso.org/standard/74528.html

36. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program
analysis and transformation. In: Proc. CGO. pp. 75–88. IEEE (2004). https://doi.
org/10.1109/CGO.2004.1281665

37. McMillan, K.L.: Interpolation and SAT-based model checking. In: Proc. CAV. pp. 1–
13. LNCS 2725, Springer (2003). https://doi.org/10.1007/978-3-540-45069-6_1

38. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2, BtorMC, and Boolector
3.0. In: Proc. CAV. pp. 587–595. LNCS 10981, Springer (2018). https://doi.org/
10.1007/978-3-319-96145-3_32

39. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction
and a SAT-solver. In: Proc. FMCAD, pp. 127–144. LNCS 1954, Springer (2000).
https://doi.org/10.1007/3-540-40922-X_8

40. Vizel, Y., Grumberg, O.: Interpolation-sequence based model checking. In: Proc.
FMCAD. pp. 1–8. IEEE (2009). https://doi.org/10.1109/FMCAD.2009.5351148

41. Ádám, Z., Beyer, D., Chien, P.C., Lee, N.Z., Sirrenberg, N.: Reproduction package for
TACAS 2024 article ‘Btor2-Cert: A certifying hardware-verification framework using
software analyzers’. Zenodo (2024). https://doi.org/10.5281/zenodo.10548597

https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/978-3-031-37709-9_20
https://doi.org/10.1007/978-3-031-37709-9_20
https://doi.org/10.1007/978-3-031-37709-9_20
https://doi.org/10.1007/978-3-031-37709-9_20
https://www.iso.org/standard/74528.html
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1109/FMCAD.2009.5351148
https://doi.org/10.1109/FMCAD.2009.5351148
https://doi.org/10.5281/zenodo.10548597
https://doi.org/10.5281/zenodo.10548597

	Bridging Hardware and SoftwareFormal Verification

