
A Transferability Study of Interpolation-Based

Hardware Model Checking for Software Verification

DIRK BEYER, LMU Munich, Germany
PO-CHUN CHIEN, LMU Munich, Germany
MAREK JANKOLA, LMU Munich, Germany
NIAN-ZE LEE, LMU Munich, Germany

Assuring the correctness of computing systems is fundamental to our society and economy, and formal
verification is a class of techniques approaching this issue with mathematical rigor. Researchers have invented
numerous algorithms to automatically prove whether a computational model, e.g., a software program or
a hardware digital circuit, satisfies its specification. In the past two decades, Craig interpolation has been
widely used in both hardware and software verification. Despite the similarities in the theoretical foundation
between hardware and software verification, previous works usually evaluate interpolation-based algorithms
on only one type of verification tasks (e.g., either circuits or programs), so the conclusions of these studies do
not necessarily transfer to different types of verification tasks. To investigate the transferability of research
conclusions from hardware to software, we adopt two performant approaches of interpolation-based hardware
model checking: (1) Interpolation-Sequence-BasedModel Checking (Vizel andGrumberg, 2009) and (2) Intertwined
Forward-Backward Reachability Analysis Using Interpolants (Vizel, Grumberg, and Shoham, 2013) for software
verification. We implement the algorithms proposed by the two publications in the software verifier CPAchecker
because it has a software-verification adoption of the first interpolation-based algorithm for hardware model
checking from 2003, which the two publications use as a comparison baseline. To assess whether the claims
in the two publications transfer to software verification, we conduct an extensive experiment on the largest
publicly available suite of safety-verification tasks in the programming language C. Our experimental results
show that the important characteristics of the two approaches for hardware model checking are transferable
to software verification, and that the cross-disciplinary algorithm adoption is beneficial, as the approaches
adopted from hardware model checking were able to tackle tasks unsolvable by existing methods. This work
consolidates the knowledge in hardware/software verification and provides open-source implementations
to improve the understanding of the compared interpolation-based algorithms.

CCS Concepts: • Software and its engineering→ Formal software verification; Formal methods; • Theory
of computation→ Verification by model checking; Program reasoning; • Hardware→ Model checking.

Additional Key Words and Phrases: Formal Verification, Craig Interpolation, Model Checking, Software
Verification, Transferability, Replicability, Reproducibility

ACM Reference Format:
Dirk Beyer, Po-Chun Chien, Marek Jankola, and Nian-Ze Lee. 2024. A Transferability Study of Interpolation-
Based Hardware Model Checking for Software Verification . Proc. ACM Softw. Eng. 1, FSE, Article 90 (July 2024),
23 pages. https://doi.org/10.1145/3660797

Authors’ Contact Information: Dirk Beyer, LMU Munich, Munich, Germany, dirk.beyer@sosy-lab.org; Po-Chun Chien,
LMU Munich, Munich, Germany, po-chun.chien@sosy.ifi.lmu.de; Marek Jankola, LMU Munich, Munich, Germany, marek.
jankola@sosy.ifi.lmu.de; Nian-Ze Lee, LMU Munich, Munich, Germany, nian-ze.lee@sosy.ifi.lmu.de.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2994-970X/2024/7-ART90
https://doi.org/10.1145/3660797

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 90. Publication date: July 2024.

HTTPS://ORCID.ORG/0000-0003-4832-7662
HTTPS://ORCID.ORG/0000-0001-5139-5178
HTTPS://ORCID.ORG/0009-0008-7961-190X
HTTPS://ORCID.ORG/0000-0002-8096-5595
https://doi.org/10.1109/FMCAD.2009.5351148
https://doi.org/10.1007/978-3-642-36742-7_22
https://doi.org/10.1145/3660797
https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0001-5139-5178
https://orcid.org/0009-0008-7961-190X
https://orcid.org/0000-0002-8096-5595
https://doi.org/10.1145/3660797

90:2 D. Beyer, P.-C. Chien, M. Jankola, and N.-Z. Lee

1 INTRODUCTION

Formal verification aims to analyze computing systems with mathematical rigor. In the past few
decades, it has received attention from both academy and industry. Since the modern society relies
heavily on computing systems, formal verification is an indispensable pillar to assure their quality
and correctness. Among various schools of formal verification, model checking [1] is a class of fully
automatic methods for the following problem: Given a description of a computational model and a
specification for the model as input, decide whether the model satisfies the specification. While
the problem of model checking is undecidable in general, researchers have invented approaches
applicable to practical systems.

Numerous model-checking techniques have been developed for different computational models.
Early studies onmodel checkingmainly target finite-state transition systems [2, 3]. Such a formalism
is suitable for modeling sequential digital circuits. The behavior of a sequential circuit can be
encoded as propositional formulas because of its finite state space, and Boolean satisfiability (SAT)
solvers [4] can be used to reason about the circuit under verification. After the breakthrough in SAT
solving in the early 2000s [5], SAT-based approaches have become mainstream for finite-state model
checking and remained the state of the art up to now. Recent advancements in satisfiability modulo
theories (SMT) [6] have further enabled SMT-based model-checking algorithms for infinite-state
systems, for example, programs. Software verification is an active research field where SMT solving
plays an essential role [7]. Many successful SAT-based techniques for hardware model checking,
such as bounded model checking (BMC) [8], k-induction [9], and IC3/PDR [10], have been adapted
to infinite-state systems and used to verify programs with the help of SMT solving. In addition
to SAT/SMT solving, Craig interpolation [11] is a cornerstone for both hardware and software
verification. It provides model-checking algorithms with the information relevant to an unsatisfiable
formula,1 which the algorithms can leverage to construct invariants of the model.

Despite the common theoretical foundation of hardware and software verification, it is unclear
whether the results and observations reported for hardware model checking are transferable to
software verification, and vice versa. In individual works, a newly proposed algorithm is usually
implemented for one specific type of computational models (e.g., either a circuit or a program), and
the conclusions about the characteristics of the algorithm are drawn solely from verification tasks
of this type. Such a research practice creates a gap in the generalizability of existing publications
and hinders the mutual learning between the two communities. While prior efforts [12–14] in
extending algorithms for hardware model checking to software verification help to fill the gap
partially, systematically investigating the transferability of results between hardware and software
verification is essential for consolidating the knowledge of model checking.

As a step toward the exchange and unification of the knowledge in hardware and software
verification, we perform a transferability study on interpolation-based hardware model checking to
software verification. According to the ACM SIGSOFT Empirical Standards for Software Engineering
Research [15, 16], transferability is defined as “the extent to which a study’s results could plausibly
apply to other sites, people, or circumstances.” Transferability and generalizability of research
results are gaining more and more attention in software engineering [17, 18]. They are especially
important for model checking because (1) software verification is often inspired by hardware
model checking, and the transferability from hardware to software is key to successful adaptation;
(2) formal verification is challenging, and we should embrace every possibility in the literature
by transferring advancements made in one community to others. In the following, we outline the
design of our transferability study and highlight our contributions.

1Given an unsatisfiable formula 𝐴1 ∧𝐴2, a Craig interpolant 𝜏 of the formula satisfies three conditions: (1) 𝐴1 ⇒ 𝜏 is valid,
(2) 𝜏 ∧𝐴2 is unsatisfiable, and (3) 𝜏 only refers to common variables of 𝐴1 and 𝐴2.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 90. Publication date: July 2024.

A Transferability Study of Interpolation-Based Model Checking 90:3

1.1 Design and Outcomes of the Transferability Study

To study how well the results obtained from circuits can be transferred to programs, we select two
publications on interpolation-based hardwaremodel checking that report considerable improvement
over the algorithm interpolation-based model checking (IMC) [19] from 2003, which was the first
approach employing Craig interpolation to verify safety properties of sequential circuits, as the
subjects of our transferability study. The two publications are (1) Interpolation-Sequence-Based
Model Checking [20] from 2009 and (2) Intertwined Forward-Backward Reachability Analysis Using
Interpolants [21] from 2013. The former proposes an algorithm called interpolation-sequence-based
model checking (ISMC), and the latter proposes an algorithm named dual approximated reachability
(DAR). Our goal is to validate the claims about IMC, ISMC, and DAR from the two publications in
the context of software verification. In the rest of this paper, we refer to the algorithms and the
corresponding publications interchangeably with the abbreviations.

Recently, IMC has been adopted to analyze programs and shown to compete well against other
polished algorithms for software verification [22]. The software-verification adoption of IMC is
implemented in an award-winning software verifier CPAchecker [23]. We choose to implement
ISMC and DAR also in CPAchecker because (1) it provides reliable and well-maintained components
needed for the two algorithms and (2) confounding variables (parser, SMT solver, library, etc.) can
be kept to a minimum when ISMC and DAR are compared to IMC. In the following, we briefly
describe the compared algorithms.
IMC unrolls (i.e., duplicating the combinational logic of the circuit) a sequential circuit like

BMC, overapproximates reachable states within certain steps by interpolating unsatisfiable BMC
queries, and attempts to construct a fixed point of the circuit. Similar to IMC, ISMC also unrolls the
input circuit but differs from IMC in the way it performs Craig interpolation. Instead of a single
interpolant, ISMC computes a sequence of interpolants [24, 25] from an unsatisfiable BMC query
and keeps refining overapproximated sets of states by conjoining them with new interpolants.
DAR maintains two sequences of overapproximated state sets and computes interpolants from
both forward and backward directions. It aims to avoid unrolling the input circuit (referred to as
global strengthening in the DAR paper) by posing small and local queries about the circuit. For
the compared interpolation-based algorithms, the convergence length is defined to be the number
of steps for overapproximation required to reach a fixed point.
The main claims in the ISMC [20] and DAR [21] papers are listed below. To assess whether

they can be transferred to software verification, we compare IMC, ISMC, and DAR on the largest
publicly available benchmark suite [26] of safety-verification tasks in the programming language C.
The results of this experiment are reported in Sect. 6. On more than 8 000 verification tasks, we
successfully transfer the important claims about the algorithmic characteristics of ISMC and DAR
to software verification. However, some claims in the original papers do not generalize to our
settings. We use a green check-mark (resp. red question mark) to denote that a claim transfers
(resp. does not transfer) to software verification in our transferability study.

Claims in the ISMC Publication [20]. The authors compared ISMC and IMC on 136 verification
tasks derived from industrial CPU designs. There are 67 tasks with property violation, and the
other 69 tasks satisfy their specifications. Both ISMC and IMC were implemented in the same
framework. A time limit of 10 000 s was imposed on each verification task, and the evaluation was
conducted on a machine with 32GB of memory. The authors draw the following conclusions about
the characteristics of ISMC and IMC from their evaluation.
H1.A: ISMC is faster than IMC on tasks with property violation. (✓)
H1.B: ISMC is faster than IMC when IMC finds a proof only at high unrolling bounds. (?)
H1.C: Overall, ISMC is faster than IMC (by 30 % in this experiment). (?)

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 90. Publication date: July 2024.

90:4 D. Beyer, P.-C. Chien, M. Jankola, and N.-Z. Lee

Claims in the DAR Publication [21]. The authors compared DAR to IMC on 37 verification
tasks derived from real-life industrial designs. There are at least four tasks with property violation.2
All compared approaches were implemented in the same framework. A time limit of 1 800 s was
imposed on each verification task, and the evaluation was conducted on a machine with 24GB
of memory. The authors draw the following conclusions about the characteristics of DAR and
IMC from their evaluation.3

H2.A: For DAR, the ratio between iterations using global strengthening to the total number of
iterations is less than 0.5 in most tasks. (✓)

H2.B: IMC finds a proof slower than DAR in many tasks even though it has a smaller convergence
length. (?)

H2.C: DAR computes more interpolants than IMC. (✓)
H2.D: DAR’s run-time is more sensitive to the sizes of interpolants than IMC. (?)
H2.E: Overall, DAR is faster than IMC (by 36 % in this experiment). (?)

1.2 Our Contributions

The transferability study presented in this paper makes the following contributions:
(1) It is the first systematic investigation of the transferability of the two interpolation-based

algorithms (ISMC [20] and DAR [21]) for hardware model checking to software verification.
(2) Its evaluation confirms the important claims of the studied publications and discovers that

the characteristics of the two algorithms are transferable to software verification.
(3) The study additionally compares IMC, ISMC, and DAR to predicate abstraction [24] and

Impact [25], two interpolation-based approaches originated from the software-verification
community. In the evaluation, the verification algorithms from the hardware domain solved
about 20 % more tasks than predicate abstraction and Impact, showing that transferring
hardware knowledge can improve software model checking.

(4) The open-source implementations of the two competitive algorithms for hardware model
checking in CPAchecker enlarge the body of available software-verification techniques.

These contributions are original because of the new knowledge on the transferability, which was
unknown before our study, and the novel analyses for software verification; They are also impor-
tant as the transferability study consolidates the knowledge about the compared interpolation-based
algorithms for hardware and software computational models. Formal verification is challenging, so
it is imperative to leverage every possibility to advance the state of the art. The results in this paper
can shed light on combining forces from the two research communities to invent more effective
approaches for complex systems involving both hardware and software components.

2 RELATEDWORK

This transferability study on interpolation-based hardware model checking to software verification
is related to the following research areas.

2.1 Reliability and Transferability of Research Findings

Reliability and transferability of research results are fundamental to science and technology, but
findings published in peer-reviewed venues are not always reliable or transferable [27]. This issue
was first noticed in medicine [28] and has received broader attention in computer science and
software engineering [29–33]. To mitigate the situation, empirical standards are proposed to assess
the reliability and transferability of research results [15, 16]. Software-engineering conferences
2This can be seen from Table 1 of the paper [21]. The precise number is not explicitly stated.
3The authors also evaluated IC3/PDR [10]. We drop the claims about IC3/PDR because it is not based on Craig interpolation.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 90. Publication date: July 2024.

A Transferability Study of Interpolation-Based Model Checking 90:5

nowadays encourage or require authors to submit their research artifacts alongwith themanuscripts
and organize a committee to evaluate the artifacts. There are also studies on the quality and
community expectations of software artifacts [34–37] and methodologies to improve the reliability
and transferability of results [17, 18]. Our transferability study contributes to the reliability of model-
checking research on hardware and software. Especially, our open-source implementations of the
compared algorithms offer a solid baseline for future studies. A recent work on Klee [38], a symbolic
execution engine for software testing, emphasizes the importance of a well-maintained software
infrastructure and reports that 27 % of the publications depending on Klee can be questioned [39].

2.2 Interpolation-Based Verification Techniques

Craig interpolation [11] is widely used in hardware and software model checking for abstracting
objects appearing in the process of verification, such as sets of reachable states [19, 25], execution
traces [40], transition relations [41], subroutines [42], and predicates over program variables [24].
Many state-of-the-art hardware model checkers and software verifiers also employ Craig interpola-
tion [23, 43–46]. Therefore, it is important to understand how interpolation-based algorithms work
and how well the results can be transferred from one type of verification tasks to another. Our
transferability study answers this question for the two interpolation-based algorithms ISMC [20]
and DAR [21] when they are adopted for software verification.

2.3 Applying Hardware Model Checking to Software Verification

Thanks to the similarities between finite-state and infinite-state model checking, algorithms for hard-
ware model checking are often lifted to software verification. For example, BMC [8], k-induction [9],
IMC [19], and IC3/PDR [10] are originally conceived for finite-state transition systems like sequen-
tial circuits. After becoming popular in the hardware community, they are also applied to program
analysis [12–14, 22, 47, 48]. Such technology transfer is conducted under the assumption that
the observations made for hardware model checking are likely to hold for software verification. The
successful experiences reported in the above publications strengthen this assumption, but to what
degree the assumption is correct remains unknown. This paper investigates this assumption by
implementing two algorithms for interpolation-based hardware model checking [20, 21] in the soft-
ware verifier CPAchecker [23] and applying them to verify a large set of software-verification tasks.
We successfully transfer the important claims in the original publications about the characteristics
of the two algorithms for hardware model checking to software verification.

3 BACKGROUND

In this section, we provide the preliminaries for the interpolation-based algorithms [19–21] com-
pared in our transferability study and the software-verification framework CPAchecker [23] we
used to implement them. The descriptions of the compared algorithms and their implementations
in CPAchecker will be presented in Sect. 4 and Sect. 5, respectively. Logical connectives ¬, ∨, ∧,
and⇒ are used under their conventional semantics, and we use ⊤ and ⊥ to represent logical true
and false, respectively. A first-order predicate over state variables is interpreted interchangeably
as the set of states satisfying the predicate.

3.1 Model Checking of Reachability Safety

First, we formulate the problem of model checking for a reachability-safety property. To simplify
the presentation of the compared algorithms in Sect. 4, we base our formulation on state-transition
systems. Section 3.3 will outline a generic approach to facilitate the adoption of hardware model
checking to software verification [22].

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 90. Publication date: July 2024.

90:6 D. Beyer, P.-C. Chien, M. Jankola, and N.-Z. Lee

3.1.1 State-Transition System. A state-transition systemM can be described by two predicates 𝐼 (𝑠)
and 𝑇 (𝑠, 𝑠′), where 𝑠 and 𝑠′ are state variables. If state 𝑠 is an initial state ofM, then 𝐼 (𝑠) evaluates
to ⊤, and if state 𝑠 can transit to state 𝑠′ via one step inM, then 𝑇 (𝑠, 𝑠′) evaluates to ⊤.

3.1.2 Reachability-Safety Property. Model checking determines whether a state-transition system
M = (𝐼 ,𝑇) fulfills a certain property. A reachability-safety property forM can be expressed as a
predicate 𝑃 (𝑠) over the state variable 𝑠 , and is expected to hold at every reachable state ofM. A
state 𝑠𝑖 is reachable if there exists a sequence of states ⟨𝑠0, 𝑠1, . . . , 𝑠𝑖⟩ such that 𝐼 (𝑠0) ∧𝑇 (𝑠0, 𝑠1) . . . ∧
𝑇 (𝑠𝑖−1, 𝑠𝑖) evaluates to ⊤, i.e., there is a feasible path from an initial state 𝑠0 to 𝑠𝑖 via 𝑖 transitions.
M satisfies 𝑃 if, for every reachable state 𝑠 ofM, 𝑃 (𝑠) holds. Otherwise,M violates 𝑃 , and a
sequence of states ⟨𝑠′0, 𝑠′1, . . . , 𝑠′𝑗 ⟩ exists such that 𝐼 (𝑠′0) ∧𝑇 (𝑠′0, 𝑠′1) . . .∧𝑇 (𝑠′𝑗−1, 𝑠′𝑗) ∧¬𝑃 (𝑠′𝑗) evaluates
to ⊤. The path from 𝑠′0 to 𝑠′𝑗 is called a counterexample to the reachability-safety property, and
the safety-violating state 𝑠′𝑗 is called a bad state.

3.2 Craig Interpolation

Craig interpolation is the foundation of the compared algorithms in this paper, facilitating the
abstraction of infeasible counterexamples to invariants of the state-transition system. We briefly
describe the properties of a Craig interpolant below.

3.2.1 Craig’s Interpolation Theorem. Let𝐴1 and𝐴2 be two logical formulas. If𝐴1∧𝐴2 is unsatisfiable,
then Craig’s interpolation theorem [11] ensures the existence of an interpolant 𝜏 , which is a logical
formula satisfying the following properties:
• 𝐴1 ⇒ 𝜏 is valid,
• 𝜏 ∧𝐴2 is unsatisfiable, and
• 𝜏 refers only to the common variables of 𝐴1 and 𝐴2.

3.2.2 Inductive Interpolation Sequence. Given a sequence of formulas ⟨𝐴1, . . . , 𝐴𝑛⟩, with
∧𝑛

𝑗=1𝐴 𝑗

being unsatisfiable, a formula sequence ⟨𝜏0, . . . , 𝜏𝑛⟩ is called an inductive interpolation sequence if
• 𝜏0 = ⊤ and 𝜏𝑛 = ⊥,
• 𝜏𝑖−1 ∧𝐴𝑖 ⇒ 𝜏𝑖 is valid for 1 ≤ 𝑖 ≤ 𝑛, and
• 𝜏𝑖 refers only to the common variables of

∧𝑖
𝑗=1𝐴 𝑗 and

∧𝑛
𝑗=𝑖+1𝐴 𝑗 for 1 ≤ 𝑖 < 𝑛.

3.3 Adopting Hardware Model Checking to Software Verification

To adopt a model-checking algorithm designed for hardware, usually depicted as a state-transition
system, extracting the three predicates 𝐼 , 𝑇 , and 𝑃 from a software-verification task is necessary.
We use the conversion proposed in the software-verification adoption of IMC [22], which applies
large-block encoding (LBE) [49] to the program in order to take the its structure into account during
the conversion. Since the conversion and the adoption of IMC [22] are available in CPAchecker [23],
which also offers well-maintained components necessary for the compared algorithms, we chose
CPAchecker as our implementation framework. In the following, we first recap the basic concepts
of CPAchecker and then explain the conversion [22].

3.3.1 Program Representation. An imperative program can be represented graphically as a control-
flow automaton (CFA) C = (𝐿, 𝑙0, 𝐸) [50, 51], where 𝐿 is the set of nodes corresponding to program
locations, 𝑙0 ∈ 𝐿 is the initial program location, and 𝐸 is the set of directed edges between nodes
annotated with program operations. A safety-reachability task of a CFA asks to decide the existence
of a feasible program path from the initial location 𝑙0 to an error location. Without loss of generality,
we assume the CFA has exactly one error location 𝑙𝐸 ∈ 𝐿.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 90. Publication date: July 2024.

A Transferability Study of Interpolation-Based Model Checking 90:7

3.3.2 Configurable Program Analysis. The software verifier CPAchecker is based on the concept
of configurable program analysis (CPA) [52, 53]. A CPA defines an abstract domain for program
analysis. For example, the location CPA L tracks the explicit program location; the loop-bound CPA
LB counts the number of visits to a loop head on a program path; the predicate CPA P encodes
program paths into logical formulas. A CPA has an initial abstract state representing the start
of the program analysis. For example, the initial abstract state of the location CPA is the initial
program location, and the initial abstract state of the predicate CPA uses ⊤ to encode the path
formula because no program paths were traversed.
Multiple CPAs can be combined into a composite CPA, which can be utilized by the CPA++

algorithm [7] for reachability analysis. Given a set of already-reached abstract states (a reached set)
and a list of abstract states to be processed (a wait list), the CPA++ algorithm explores the CFA of
the input program, constructs an abstract reachability graph (ARG) in the abstract domains of the
given CPAs, and returns the updated reached set and wait list. Our implementations of ISMC [20]
and DAR [21] in CPAchecker use a composite CPA of the location, loop-bound, and predicate CPAs.
3.3.3 Software Programs as State-Transition Systems. The software-verification adoption of IMC [22]
employs LBE [49] to obtain a state-transition system from a program. Without loss of generality,
we assume the input program has at most one loop. A multi-loop program can be transformed into
a single-loop program with an equivalent behavior by a standard preprocessing [54, 55] before its
state-transition system is extracted [22]. Considering the loop-head location and the error location
as the end of a large block, LBE constructs path formulas that capture the executions of the program
between its initial location, loop-head location, and error location, from which an analogy to a
state-transition system can be drawn. Specifically, the path formula between the initial program
location and the loop-head location corresponds to the initial states 𝐼 ; the path formula between
two consecutive visits to the loop-head location corresponds to the transition relation 𝑇 ; the path
formula between the loop-head location and the error location corresponds to the negated safety
property ¬𝑃 . The model-checking algorithms based on state-transition systems can be performed
on a program using this analogy without a symbolic program counter.

4 DESCRIPTIONS OF THE COMPARED INTERPOLATION-BASED ALGORITHMS

In this transferability study, we adopt two interpolation-based hardware-model-checking algorithms
ISMC [20] and DAR [21] to verify programs. Both algorithms are compared to IMC [19], the first
model-checking algorithm based on Craig interpolation. Below we explain how these algorithms
work and how they differ from each other.

4.1 Interpolation-Based Model Checking (IMC)

McMillan proposed IMC [19], the first interpolation-based algorithm for hardware model checking,
in 2003. IMC extends BMC to unbounded verification by constructing a fixed point (i.e., inductive
invariant) of the circuit’s state from Craig interpolants. It has inspired numerous interpolation-
based verification approaches, including ISMC [20] and DAR [21]. IMC consists of two nested
computational stages: (1) The outer BMC stage unrolls the state-transition system and checks the
reachability of bad states within some number of transitions; (2) The inner interpolation stage
constructs fixed points via interpolating unsatisfiable BMC queries.
Given an unrolling bound 𝑘 , a transition system is unwound into 𝑘 copies in the BMC stage.

A BMC query encoding all possible paths from an initial state (described by 𝐼 (𝑠)) to a bad state
(described by ¬𝑃 (𝑠)) via at most 𝑘 transitions is then posed to a satisfiability solver:

𝐼 (𝑠0) ∧𝑇 (𝑠0, 𝑠1)︸ ︷︷ ︸
𝐴1 (𝑠0,𝑠1)

∧𝑇 (𝑠1, 𝑠2) ∧ . . . ∧𝑇 (𝑠𝑘−1, 𝑠𝑘) ∧ (¬𝑃 (𝑠1) ∨ . . . ∨ ¬𝑃 (𝑠𝑘))︸ ︷︷ ︸
𝐴2 (𝑠1,𝑠2,...,𝑠𝑘)

, (1)

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 90. Publication date: July 2024.

90:8 D. Beyer, P.-C. Chien, M. Jankola, and N.-Z. Lee

where 𝑠𝑖 denotes the state variable after the 𝑖-th transition. If Eq. (1) is satisfiable, a violation to the
safety property is found. Otherwise, IMC proceeds to the interpolation stage.
During the interpolation stage, IMC tries to prove the safety property by constructing an over-

approximation of reachable states from the unsatisfiable BMC query. According to Craig’s in-
terpolation theorem, an interpolant 𝜏1 (𝑠1) for formulas 𝐴1 and 𝐴2 in Eq. (1) exists and satisfies:
(1) 𝐼 (𝑠0) ∧𝑇 (𝑠0, 𝑠1) ⇒ 𝜏1 (𝑠1) is valid and (2) 𝜏1 (𝑠1) ∧

∧𝑘−1
𝑖=1 𝑇 (𝑠𝑖 , 𝑠𝑖+1) ∧

∨𝑘
𝑖=1 ¬𝑃 (𝑠𝑖) is unsatisfiable.

In other words, 𝜏 is an overapproximation of the set of states that (1) are reachable from an initial
state via one transition and (2) do not violate the safety property within 𝑘 − 1 transitions.
Such overapproximation of states can be generated iteratively and accumulated into a fixed

point. By replacing 𝐼 (𝑠0) by 𝜏1 (𝑠0) in Eq. (1), another BMC query starting form the first interpolant
𝜏1 can be posed. If the query remains unsatisfiable, a second interpolant 𝜏2 (𝑠1) can be derived,
overapproximating the set of states via two transitions from initial states. The routine continues
until, at some iteration 𝑛, 𝐼 ∨∨𝑛

𝑖=1 𝜏𝑖 becomes inductive with respect to the transition relation 𝑇 .
That is, the union of the initial states and all computed interpolants grows into a fixed point. Since
each interpolant satisfies the safety property thanks to the second criterion of Craig’s interpolation
theorem, the fixed point also satisfies the safety property. In this case, IMC proves the system safe
at the unrolling bound of 𝑘 and constructs a fixed point 𝐼 ∨∨𝑛

𝑖=1 𝜏𝑖 at the convergence length of 𝑛.
In the other case, namely, some BMC query in the interpolation stage is satisfiable, we cannot

be certain whether the safety property is violated. The violation could correspond to a spurious
counterexample as the interpolant may contain unreachable states. To decide whether the coun-
terexample is spurious, IMC will increment the unrolling bound 𝑘 and return to the BMC stage,
checking the feasibility of error paths starting from initial states.

4.2 Interpolation-Sequence-Based Model Checking (ISMC)

In 2009, Vizel and Grumberg introduced ISMC [20], which derives inductive interpolation sequences
from unsatisfiable BMC queries to construct fixed points. Similar to IMC, ISMC also has a BMC
stage and an interpolation stage, but the two stages in ISMC are executed sequentially. ISMC can
be seen as a variation of McMillan’s Impact algorithm [25] for software verification from 2006.
After checking there are no bad states in 𝐼 (𝑠), ISMC starts the BMC stage with the unrolling

bound set to one. Given an unrolling bound 𝑘 , a BMC query that depicts all paths from an initial
state to some bad state via exactly 𝑘 transitions is posed:

𝐼 (𝑠0) ∧𝑇 (𝑠0, 𝑠1)︸ ︷︷ ︸
𝐴1 (𝑠0,𝑠1)

∧𝑇 (𝑠1, 𝑠2)︸ ︷︷ ︸
𝐴2 (𝑠1,𝑠2)

∧ · · · ∧𝑇 (𝑠𝑘−1, 𝑠𝑘)︸ ︷︷ ︸
𝐴𝑘 (𝑠𝑘−1,𝑠𝑘)

∧¬𝑃 (𝑠𝑘)︸ ︷︷ ︸
𝐴𝑘+1 (𝑠𝑘)

. (2)

If Eq. (2) is satisfiable, a bad state via 𝑘 transitions from an initial state is discovered. Otherwise,
ISMC proceeds to the interpolation stage.
During the interpolation stage, ISMC constructs a reachability sequence by interpolation se-

quences. A reachability sequence ⟨𝑅1, 𝑅2, . . . , 𝑅𝑘⟩ is a sequence of formulas, with each image 𝑅𝑖
being an overapproximation of the set of states reachable via 𝑖 transitions from an initial state.
ISMC partitions the BMC formula in Eq. (2) into a sequence ⟨𝐴1, 𝐴2, . . . , 𝐴𝑘+1⟩, as indicated un-
der Eq. (2). Since Eq. (2) is unsatisfiable, an inductive interpolation sequence ⟨⊤, 𝜏𝑘1 , 𝜏𝑘2 , . . . , 𝜏𝑘𝑘 ,⊥⟩
can be derived, where the superscript 𝑘 indicates the current unrolling bound. According to the
inductiveness condition, each 𝜏𝑘𝑖 is an overapproximation of reachable states after 𝑖 transitions
from the initial states. Note that the last interpolant 𝜏𝑘

𝑘
contains no bad states because 𝜏𝑘

𝑘
∧ ¬𝑃 is

unsatisfiable. To refine a reachability sequence by these interpolants, ISMC conjoins all interpolants
derived in previous interpolation stages. That is, the image 𝑅𝑖 for the 𝑖-step overapproximation at

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 90. Publication date: July 2024.

A Transferability Study of Interpolation-Based Model Checking 90:9

the current unrolling bound 𝑘 is computed as
∧𝑘

𝑗=𝑖 𝜏
𝑗

𝑖
. Note that each image 𝑅𝑖 does not contain

any bad state because 𝜏𝑖𝑖 ∧ ¬𝑃 is unsatisfiable.
After a reachability sequence ⟨𝑅1, 𝑅2, . . . , 𝑅𝑘⟩ is obtained, ISMC examines whether

∨𝑘
𝑖=1 𝑅𝑖 has

reached a fixed point. Since the images in the reachability sequence do not contain any bad state,
ISMC can then conclude that the transition system satisfies the safety property in this case. If,
nevertheless, the fixed-point check fails, ISMC will increment the unrolling bound by one and
proceed to another BMC stage.

4.3 Dual Approximated Reachability (DAR)

In 2013, Vizel, Grumberg, and Shoham proposed DAR [21], which intertwines forward and back-
ward derivation of Craig interpolants for unbounded formal verification of state-transition systems.
The algorithm maintains two reachability sequences, one in the forward direction and the other
backward, refining and extending the images by interpolation. A forward reachability sequence
⟨𝐹0, 𝐹1, . . . , 𝐹𝑛⟩ (resp. backward reachability sequence ⟨𝐵0, 𝐵1, . . . , 𝐵𝑛⟩) is a sequence of formulas such
that (1) 𝐹0 = 𝐼 (resp. 𝐵0 = ¬𝑃), (2) 𝐹𝑖 contains no bad states (resp. 𝐵𝑖 contains no initial states), and
(3) 𝐹𝑖 overapproximates the set of states reachable from an initial state via 𝑖 transitions (resp. 𝐵𝑖 over-
approximates the set of states that can reach a bad state via 𝑖 transitions). The existence of a forward
or a backward reachability sequence demonstrates that there is no counterexample of length 𝑛.

The computation of DAR is partitioned into two stages: (1) a local strengthening stage that refines
and extends forward and backward reachability sequences via interpolating local queries about
two consecutive steps; (2) a global strengthening stage that unrolls the system when the local
strengthening stage is not strong enough to refute potentially spurious counterexamples. Both
stages refine the reachability sequences by iteratively computing interpolants from a pair of forward
and backward overapproximations, which is called iterative pairwise strengthening.

After checking the initial states do not overlap with the bad states, DAR initializes the forward and
backward reachability sequences as ⟨𝐼 ⟩ and ⟨¬𝑃⟩, respectively, and enters the local strengthening
stage. DAR attempts to find the smallest4 index 𝑖 such that 𝐹𝑖 (𝑠) ∧𝑇 (𝑠, 𝑠′) ∧𝐵𝑛−𝑖 (𝑠′) is unsatisfiable.
If such an index 𝑖 exists, it indicates that every state in 𝐹𝑖 cannot reach a state in 𝐵𝑛−𝑖 via one
transition, i.e., there is no counterexample of length𝑛+1. In this case, DAR invokes iterative pairwise
strengthening to refine and extend the reachability sequences based on this local unsatisfiability.
For each 𝑖 ≤ 𝑗 < 𝑛, an interpolant 𝜏 𝑗+1 between 𝐹 𝑗 (𝑠) ∧ 𝑇 (𝑠, 𝑠′) and 𝐵𝑛− 𝑗 (𝑠′), called a forward
interpolant, is computed and used to refine 𝐹 𝑗+1. Likewise, for each 𝑛 − 𝑖 ≤ 𝑗 < 𝑛, an interpolant
𝜏 ′𝑗+1 between 𝐵 𝑗 (𝑠′) ∧𝑇 (𝑠, 𝑠′) and 𝐹𝑛− 𝑗 (𝑠), called a backward interpolant, is computed and used to
refine 𝐵 𝑗+1. At last, for 𝑗 = 𝑛, the forward and backward interpolants, 𝜏𝑛+1 and 𝜏 ′𝑛+1, are appended
to the forward and backward reachability sequences, respectively.
If such an index 𝑖 cannot be found in the local strengthening stage, DAR enters the global

strengthening stage to precisely analyze the existence of counterexamples of length 𝑛 + 1. It tries to
incrementally unroll the state-transition system and find the smallest unrolling bound𝑚 such that

𝐼 (𝑠0) ∧𝑇 (𝑠0, 𝑠1)︸ ︷︷ ︸
𝐴1 (𝑠0,𝑠1)

∧ · · · ∧𝑇 (𝑠𝑚−1, 𝑠𝑚)︸ ︷︷ ︸
𝐴𝑚 (𝑠𝑚−1,𝑠𝑚)

∧𝐵𝑛−𝑚+1 (𝑠𝑚)︸ ︷︷ ︸
𝐴𝑚+1 (𝑠𝑚)

(3)

is unsatisfiable. If such a bound𝑚 exists, DAR concludes that a counterexample of length 𝑛 + 1
does not exist because it is not possible to reach 𝐵𝑛−𝑚+1 in𝑚 steps. An interpolation sequence
⟨⊤, 𝜏1, . . . , 𝜏𝑚,⊥⟩ is derived from the sequence ⟨𝐴1, 𝐴2, . . . , 𝐴𝑚+1⟩ of formulas, and 𝜏𝑖 is used to refine
the forward reachability image 𝐹𝑖 . Afterwards, iterative pairwise strengthening is invoked to refine

4The algorithm actually works with any such index. We follow the original publication [21] and use the smallest.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 90. Publication date: July 2024.

90:10 D. Beyer, P.-C. Chien, M. Jankola, and N.-Z. Lee

and extend the forward and backward reachability sequences. If such a bound𝑚 does not exist, i.e.,
Eq. (3) is satisfiable for𝑚 = 𝑛 + 1, DAR discovers a counterexample of length 𝑛 + 1 and terminates.

If both reachability sequences are refined and extended to ⟨𝐹0, 𝐹1, . . . 𝐹𝑛+1⟩ and ⟨𝐵0, 𝐵1, . . . 𝐵𝑛+1⟩
with the newly derived forward and backward interpolants, DAR examines whether the accumulated
overapproximation of reachable states has grown into a fixed point in either direction. That is,
DAR checks whether

∨𝑛+1
𝑖=0 𝐹𝑖 or

∨𝑛+1
𝑖=0 𝐵𝑖 is inductive. Since every forward reachability image 𝐹𝑖

(except 𝐹0) is initialized by some interpolant 𝜏𝑖 , with 𝜏𝑖 ∧¬𝑃 being unsatisfiable, 𝐹𝑖 does not contain
any bad state. Similarly, every backward reachability image 𝐵𝑖 does not contain any initial state.
Therefore, DAR successfully proves the system safe at a convergence length of 𝑛 + 1, and∨𝑛+1

𝑖=0 𝐹𝑖
or ¬(∨𝑛+1

𝑖=0 𝐵𝑖) is a safe invariant of the system. If a fixed point has not yet been reached, DAR
will enter the local strengthening stage again.

4.4 Differences Between the Three Algorithms

Although IMC [19], ISMC [20], and DAR [21] all depend on Craig interpolation for abstracting
reachable states, they differ in how the satisfiability queries are posed and how the overapproxima-
tions are constructed. IMC, ISMC, and DAR pose different BMC queries as shown in Eq. (1), Eq. (2),
and Eq. (3), respectively. Unlike IMC and ISMC, which unroll the system when the currently com-
puted overapproximated images fail to reach a fixed point, DAR tries to find a shorter unsatisfiable
BMC query in order to avoid additional unrolling of the system. For constructing overapproxima-
tions, IMC forgets the previously computed abstractions and derives a new one from scratch after
increasing the unrolling bound. By contrast, ISMC and DAR accumulate all interpolants derived
throughout their executions. Furthermore, DAR poses local queries that involve only one copy of
the transition relation, whereas IMC and ISMC rely solely on global queries of complete unrolling.
The algorithmic differences of these algorithms result in their distinct strengths, which we will
study in a large-scale empirical evaluation and report its results in Sect. 6.

5 ADOPTING ISMC AND DAR TO SOFTWARE VERIFICATION IN CPACHECKER

This section discusses the implementation details of ISMC [20] and DAR [21] in CPAchecker [23].
Both algorithms assume as inputs single-loop programs and apply a standard single-loop transfor-
mation [54, 55] to multi-loop programs as preprocessing. We utilize a composite CPA D of location,
predicate, and loop-bound CPAs as well as other supportive CPAs5 and the CPA++ algorithm [7] to
unroll the program. The predicate CPA is configured to use LBE [49] for extracting the predicates
𝐼 , 𝑇 , and 𝑃 from the input program.

5.1 Interpolation-Sequence-Based Model Checking (ISMC)

The main procedure of ISMC is summarized in Alg. 1. The algorithm CPA++ [7] unrolls the CFA of an
input program into an ARG up to the given unrolling bound 𝑘 . The subroutine extract_formulas()
is used to collect the formulas for the initial states, transition relation, and (negated) safety property
from the ARG [22], as discussed in Sect. 3.3.

After obtaining the formulas for the initial and bad states, ISMC inspects whether they intersect
with each other at line 6. If not, ISMC initializes a reachability sequence images and tries to construct
a fixed-point in the loop starting from line 9. Given an unrolling bound 𝑘 , a BMC query at line 13 is
posed to examine whether a counterexample of length 𝑘 exists. If the query is unsatisfiable, ISMC
enters the interpolation stage (lines 15 to 18) and computes an inductive interpolation sequence
to refine and extend the reachability sequence. After the refinement, ISMC checks whether the

5These helper CPAs deal with features specific to software, such as the call stack and function pointers. We leave out the
discussion on these CPAs to ease the presentation of the algorithm implementations.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 90. Publication date: July 2024.

A Transferability Study of Interpolation-Based Model Checking 90:11

Algorithm 1 ISMC: main procedure
Input: a composite CPA D of L, P, and LB
Output: true if the program is proven to be safe; false if a feasible error path is found
1: 𝑘 ← 0;
2: 𝑒0 ← (L.get_initial(), P.get_initial(),LB.get_initial()); // Create an initial abstract state
3: reached← waitlist← {𝑒0};
4: reached,waitlist← CPA++(D, reached,waitlist, 𝑘);
5: ⟨𝐼 (𝑠0),¬𝑃 (𝑠0)⟩ ← extract_formulas(reached);
6: if sat(𝐼 (𝑠0) ∧ ¬𝑃 (𝑠0)) then
7: return false; // Initial state set contains bad states
8: images← ⟨⊥⟩; // Initialize a reachability sequence with ⊥ at the 0th step6
9: while (true) do
10: 𝑘 ← 𝑘 + 1;
11: reached,waitlist← CPA++(D, reached,waitlist, 𝑘); // Unroll program
12: ⟨𝐼 (𝑠0),𝑇 (𝑠0, 𝑠1), . . . ,𝑇 (𝑠𝑘−1, 𝑠𝑘),¬𝑃 (𝑠𝑘)⟩ ← extract_formulas(reached);
13: if sat(𝐼 (𝑠0) ∧𝑇 (𝑠0, 𝑠1) ∧ . . . ∧𝑇 (𝑠𝑘−1, 𝑠𝑘) ∧ ¬𝑃 (𝑠𝑘)) then
14: return false; // BMC finds a feasible error path
15: ⟨⊤, 𝜏1, . . . , 𝜏𝑘 ,⊥⟩ ← interpolate(𝐼 (𝑠0) ∧𝑇 (𝑠0, 𝑠1),𝑇 (𝑠1, 𝑠2), . . . ,𝑇 (𝑠𝑘−1, 𝑠𝑘),¬𝑃 (𝑠𝑘));

// Compute inductive interpolation sequence
16: for (𝑖 ← 1; 𝑖 < 𝑘 ; 𝑖 ← 𝑖 + 1) do
17: images⟨𝑖⟩ ← images⟨𝑖⟩ ∧ 𝜏𝑖 ; // Refine reachability sequence
18: images.append(𝜏𝑘); // Extend reachability sequence
19: if check_fixed_point(images) then
20: return true; // Fixed point reached

Algorithm 2 check_fixed_point (used in both Alg. 1 and Alg. 3)
Input: a reachability sequence images
Output: true if the accumulated reachability images form a fixed point; false otherwise
1: _ ← images⟨0⟩; // Accumulation of reachability images
2: for (𝑖 ← 1; 𝑖 < images.len(); 𝑖 ← 𝑖 + 1) do
3: if ¬sat(images⟨𝑖⟩ ∧ ¬_) then
4: return true; // images⟨𝑖⟩ is contained in the accumulation _

5: _ ← _ ∨ images⟨𝑖⟩; // Accumulate images
6: return false

current reachability sequence has converged to a fixed-point by the subroutine check_fixed_point()
at line 19. If so, ISMC concludes the program is safe. Otherwise, it increments the unrolling bound
by one and starts another iteration.
Algorithm 2 outlines the fixed-point checking procedure used by ISMC (and DAR in Alg. 3). It

iterates the given reachability sequence and checks whether the image at the frontier is contained in
the union of all previous images at line 3. A fixed point is found if the check succeeds. Otherwise, the
frontier image is added to the union at line 5, and the check continues. In case no check succeeded
after iterating the whole reachability sequence, the subroutine reports to the main procedure that
a fixed point has not been reached.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 90. Publication date: July 2024.

90:12 D. Beyer, P.-C. Chien, M. Jankola, and N.-Z. Lee

Algorithm 3 DAR: main procedure
Input: a composite CPA D of L, P, and LB
Output: true if the program is proven to be safe; false if a feasible error path is found
1: 𝑘 ← 0;
2: 𝑒0 ← (L.get_initial(), P.get_initial(),LB.get_initial()); // Create an initial abstract state
3: reached← waitlist← {𝑒0};
4: reached,waitlist← CPA++(D, reached,waitlist, 𝑘);
5: ⟨𝐼 (𝑠0),¬𝑃 (𝑠0)⟩ ← extract_formulas(reached);
6: if sat(𝐼 (𝑠0) ∧ ¬𝑃 (𝑠0)) then
7: return false; // Initial state set contains bad states
8: for_seq← ⟨𝐼 ⟩; back_seq← ⟨¬𝑃⟩; // Initialize forward and backward sequences
9: 𝑘 ← 1;
10: reached,waitlist← CPA++(D, reached,waitlist, 𝑘); // Unroll once more to get 𝑇 (𝑠, 𝑠′)
11: ⟨𝐼 (𝑠0),𝑇 (𝑠0, 𝑠1),¬𝑃 (𝑠1)⟩ ← extract_formulas(reached);
12: while ¬check_fixed_point(for_seq) ∧ ¬check_fixed_point(back_seq) do
13: 𝑖 ← find_smallest_unsat_index(for_seq, back_seq,𝑇 (𝑠, 𝑠′)); // Find local unsatisfiability
14: if 𝑖 = −1 then // −1 indicates index unfound: enter global strengthening stage
15: 𝑛 ← for_seq.len();
16: for (𝑖 ← 1; 𝑖 ≤ 𝑛; 𝑖 ← 𝑖 + 1) do
17: if 𝑖 > 𝑘 then // If additional program unrolling is required
18: 𝑘 ← 𝑖;
19: reached,waitlist← CPA++(D, reached,waitlist, 𝑘); // Unroll program
20: ⟨𝐼 (𝑠0),𝑇 (𝑠0, 𝑠1), . . . ,𝑇 (𝑠𝑖−1, 𝑠𝑖),¬𝑃 (𝑠𝑖)⟩ ← extract_formulas(reached);
21: if ¬𝑠𝑎𝑡 (𝐼 (𝑠0) ∧𝑇 (𝑠0, 𝑠1) ∧ . . . ∧𝑇 (𝑠𝑖−1, 𝑠𝑖) ∧ back_seq⟨𝑛 − 𝑖⟩(𝑠𝑖)) then
22: break; // No feasible error path of length 𝑛
23: if 𝑖 = 𝑛 then // The check in line 21 is precise: a feasible error path found
24: return false;
25: ⟨⊤, 𝜏1, . . . , 𝜏𝑖 ,⊥⟩ ← interpolate(𝐼 (𝑠0) ∧𝑇 (𝑠0, 𝑠1), . . . ,𝑇 (𝑠𝑖−1, 𝑠𝑖), back_seq⟨𝑛 − 𝑖⟩(𝑠𝑖));

// Compute inductive interpolation sequence
26: for (𝑗 ← 1; 𝑗 ≤ min(𝑖, 𝑛 − 1); 𝑗 ← 𝑗 + 1) do
27: for_seq⟨ 𝑗⟩ ← for_seq⟨ 𝑗⟩ ∧ 𝜏 𝑗 ; // Refine forward reachability sequence
28: 𝑖 ← 𝑖 − 1; // Decrement 𝑖 to match the precondition of iterative_strengthen()
29: iterative_strengthen(for_seq, back_seq,𝑇 (𝑠, 𝑠′), 𝑖); // Iterative pariwise strengthening
30: return true; // Fixed point reached

5.2 Dual Approximated Reachability (DAR)

We sketch the procedure of DAR in Alg. 3. Similar to ISMC, DAR first inspects if the initial
states overlap with the bad states at line 6. If not, it initializes the forward reachability sequence
for_seq with 𝐼 and the backward reachability sequence back_seq with ¬𝑃 at line 8. DAR unrolls
the program one more time at line 10 to obtain the formula of the transition relation, required
in the local strengthening stage at line 13. Before entering the local strengthening stage, DAR
performs fixed-point checks (outlined in Alg. 2) on the forward and backward reachability sequences,
respectively, at line 12. If either of the checks succeeds, DAR determines the program safe and
terminates at line 30. Otherwise, it attempts to strengthen the reachability sequences locally.

In the local strengthening stage, given the forward and backward reachability sequences for_seq
and back_seq of length𝑛 (which indicate no counterexample up to length𝑛−1 exists), DAR searches
6The initial states 𝐼 can also be used at the 0th step; We use ⊥ for consistency with the ISMC paper [20].

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 90. Publication date: July 2024.

A Transferability Study of Interpolation-Based Model Checking 90:13

Algorithm 4 iterative_strengthen
Input: sequences for_seq and back_seq of length 𝑛 for forward and backward reachability, respec-

tively, a transition relation 𝑇 (𝑠, 𝑠′), and an index 𝑖 such that the formula
for_seq⟨𝑖⟩(𝑠) ∧𝑇 (𝑠, 𝑠′) ∧ back_seq⟨𝑛 − 1 − 𝑖⟩(𝑠′) is unsatisfiable

1: 𝑛 ← for_seq.len();
2: for_seq.append(⊤);
3: for (𝑗 ← 𝑖; 𝑗 < 𝑛; 𝑗 ← 𝑗 + 1) do
4: ⟨⊤, 𝜏,⊥⟩ ← interpolate(for_seq⟨ 𝑗⟩(𝑠) ∧𝑇 (𝑠, 𝑠′), back_seq⟨𝑛 − 1 − 𝑗⟩(𝑠′));
5: for_seq⟨ 𝑗 + 1⟩ ← for_seq⟨ 𝑗 + 1⟩ ∧ 𝜏 ; // Strengthened by forward interpolant
6: back_seq.append(⊤);
7: for (𝑗 ← 𝑛 − 1 − 𝑖; 𝑗 < 𝑛; 𝑗 ← 𝑗 + 1) do
8: ⟨⊤, 𝜏,⊥⟩ ← interpolate(back_seq⟨ 𝑗⟩(𝑠′) ∧𝑇 (𝑠, 𝑠′), for_seq⟨𝑛 − 1 − 𝑗⟩(𝑠));
9: back_seq⟨ 𝑗 + 1⟩ ← back_seq⟨ 𝑗 + 1⟩ ∧ 𝜏 ; // Strengthened by backward interpolant

for the smallest index 𝑖 such that the formula for_seq⟨𝑖⟩(𝑠) ∧𝑇 (𝑠, 𝑠′) ∧ back_seq⟨𝑛 − 1 − 𝑖⟩(𝑠′) is
unsatisfiable. Such an index 𝑖 indicates that it is impossible to transit via one step from any state
reachable via 𝑖 steps from an initial state to a state that can reach a bad state via 𝑛 − 𝑖 − 1 steps. In
other words, this local unsatisfiable query shows that no counterexample of length 𝑛 exists. Such
local infeasibility of counterexamples is then leveraged by the iterative pairwise strengthening
procedure at line 29 to refine and extend the reachability sequences.
The procedure of iterative pairwise strengthening is summarized in Alg. 4. Given the forward

and backward reachability sequences for_seq and back_seq of length 𝑛, the transition relation,
and an index 𝑖 such that for_seq⟨𝑖⟩(𝑠) ∧ 𝑇 (𝑠, 𝑠′) ∧ back_seq⟨𝑛 − 1 − 𝑖⟩(𝑠′) is unsatisfiable, the
procedure computes forward and backward interpolants from pairs of forward and backward
images in conjunction with the transition relation and uses the interpolants to refine and extend
the reachability sequences in both directions. In lines 2 to 5 (resp. lines 6 to 9), the forward (resp.
backward) sequence is extended and strengthened by forward (resp. backward) interpolants.

DAR repeats the process of identifying local infeasibility and iterative strengthening until either
of the reachability sequences converges to a fixed point, or the sequences no longer demonstrate
such local unsatisfiability. In the latter case, DAR enters the global strengthening stage from line 14,
where counterexamples of length 𝑛 are searched with multiple copies of the transition relation.
Instead of directly posing the precise BMC query of length 𝑛, which is potentially expensive, DAR
leverages the backward reachability sequence and gradually increases the number of transitions in
the query at line 21 to show that the states that can reach a bad state in 𝑛−𝑖 steps (overapproximated
by back_seq⟨𝑛 − 𝑖⟩) are unreachable via 𝑖 steps from the initial states. This query overapproximates
the precise BMC query, namely, no counterexample of length 𝑛 exists if it is unsatisfiable. Additional
program unrolling is performed at line 19 when needed.

If the query at line 21 is unsatisfiable for some number 𝑖 ≤ 𝑛, DAR refines the forward reachability
sequence by the derived inductive interpolation sequence and invokes the iterative pairwise
strengthening procedure at line 29 with 𝑖 decremented by 1 at line 28 because it follows from the
unsatisfiable query that for_seq⟨𝑖−1⟩(𝑠)∧𝑇 (𝑠, 𝑠′)∧back_seq⟨𝑛−1−(𝑖−1)⟩(𝑠′) is also unsatisfiable.
The query becomes the precise BMC query when 𝑖 = 𝑛, and DAR finds a counterexample of length 𝑛
at line 24 if the query is satisfiable.

5.3 Design Choices in the Implementations

Two relevant design choices we made in the implementations are (1) the extraction of a transition
relation from a program and (2) the encoding and solving of path formulas.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 90. Publication date: July 2024.

90:14 D. Beyer, P.-C. Chien, M. Jankola, and N.-Z. Lee

To extract a transition relation, we also tried a straightforward approach using single-block
encoding with a symbolic program counter. However, the conversion based on LBE [22] outper-
formed the straightforward method in our evaluation because it takes the program structure into
account. To encode the path formulas, we follow the default settings of CPAchecker [23] and use
the SMT theory of equality with uninterpreted functions, arrays, bit-vectors, and floats. The SMT
solver MathSAT5 [56] is used because it supports interpolation on the theory. This configuration of
CPAchecker has been extensively evaluated and shown to perform well on our benchmark set [26].

We tried our best to faithfully implement the compared algorithms. Unfortunately, to our knowl-
edge, there are no publicly available reference implementations of ISMC [20] and DAR [21], against
which we can check our adoptions to software verification.

6 EVALUATION

To assess whether the claims listed in Sect. 1.1 about IMC, ISMC, and DAR are transferable to
software verification or not, we evaluated the implementations of the three algorithms in the
software verifier CPAchecker on a large set of safety-verification tasks in the programming language C.
We used a much larger input data set than those in the original papers to make the experimental
results more robust. In addition to examining the claims in the original papers [20, 21], we compared
IMC, ISMC, and DAR to predicate abstraction (PredAbs) [24] and Impact [25], two state-of-the-art
interpolation-based algorithms for software verification, to explore how the approaches originated
from hardware model checking benefit conventional program analysis.

6.1 Benchmark Set

We used tasks from the 2023 Competition on Software Verification (SV-COMP ’23) [26] in our
evaluation. We considered the tasks whose safety property is the reachability of an error location
and excluded the tasks from the categories ReachSafety-Recursive and ConcurrencySafety-Main
because the implementations currently do not support them. In total, the benchmark set consists of
8 813 tasks, among which 2 793 contain a feasible execution path to the error location (referred to
as unsafe), and the rest 6 020 are assumed to satisfy their specifications (referred to as safe). The
benchmark set includes subcategories Arrays, BitVectors, ControlFlow, ECA, Floats, Heap, Loops, Pro-
ductLines, Sequentialized, XCSP, Combinations, andHardware from the category ReachSafety and sub-
categories AWS-C-Common-ReachSafety, BusyBox-ReachSafety, DeviceDriversLinux64-ReachSafety,
DeviceDriversLinux64Large-ReachSafety, and uthash-ReachSafety from the category SoftwareSystems.

6.2 Experimental Settings

All the five compared approaches (IMC, ISMC, DAR, PredAbs, and Impact) were implemented
with a unifying framework in CPAchecker [7] to minimize confounding variables, such as the
frontend parser and backend SMT solver, in the evaluation. CPAchecker at revision 45787 of branch
itp-mc-with-slt was used in the evaluation, and the SMT solver MathSAT5 [56] was employed
to handle all the SMT queries.
We ran the experiments on machines with a 3.40GHz CPU (Intel Xeon E3-1230 v5) having

8 processing units and 32GB of memory. The operating system was Ubuntu 22.04 (64 bit) running
Linux 5.15 and OpenJDK 17.0. The resource limits imposed on each verification task were two CPU
cores, 15GB of memory, and 1 800 s of CPU time. The benchmarking framework BenchExec [57]
was used to control the computational resources and process the measurement data.

6.3 Assessment of the Claims about ISMC

Table 1 shows a summary of the three interpolation-based algorithms in our evaluation. Like the
polished IMC implementation, the new implementations of ISMC and DAR did not report any

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 90. Publication date: July 2024.

https://svn.sosy-lab.org/software/cpachecker/branches/itp-mc-with-slt@45787

A Transferability Study of Interpolation-Based Model Checking 90:15

Table 1. Summary of the experimental results for 8 813 safety-verification tasks

Algorithm (#tasks) IMC ISMC DAR

Correct results 8 813 2 791 2 723 2 791
proofs 6 020 1 886 1 713 1 815
alarms 2 793 905 1 010 976

Incorrect results 2 2 2
proofs 0 0 0
alarms 2 2 2

Timeouts 2 367 2 257 2 281
Out of memory 437 662 524
Other inconclusive 3 216 3 169 3 215

1 10 100 1000
1

10

100

1000

IMC (s)

IS
M
C
(s
)

Both solved
IMC TO
ISMC TO

(a) Alarms

1 10 100 1000
1

10

100

1000

IMC (s)

IS
M
C
(s
)

IMC low bound
IMC high bound
IMC TO
ISMC TO

(b) Proofs

Fig. 1. Comparing the CPU time of ISMC and IMC on (a) unsafe and (b) safe tasks (TO: timeout)

incorrect proofs. All three analyses reported incorrect alarms on two verification tasks. These wrong
alarms are related to the program encoding of CPAchecker and not caused by our implementations
as other mature approaches in CPAchecker, like PredAbs [24], cannot solve them correctly, either.

Based on the data collected in our evaluation, we investigate whether the claims in the ISMC [20]
and DAR [21] papers can be transferred to software verification below.

H1.A: ISMC is faster than IMC on tasks with property violation (✓). Figure 1a compares the
CPU time ISMC (on the y-axis) and IMC (on the x-axis) took to report alarms in the verification
tasks. Observe that more data points are below the diagonal, indicating that ISMC is faster than
IMC at bug hunting. Moreover, there are 127 tasks (orange marks) for which IMC reached the
time limit but ISMC can find a bug. There are only 27 tasks (blue crosses) the other way around.
Therefore, we conclude that this claim holds in our evaluation.

H1.B: ISMC is faster than IMC when IMC finds a proof only at high unrolling bounds (?).
Figure 1b compares the CPU time ISMC (on the y-axis) and IMC (on the x-axis) took to find proofs
in the verification tasks. The proofs found by completely unrolling the loops in the programs
instead of deriving fixed points were excluded. Because the original claim did not specify what a
high unrolling bound for IMC is, we interpret it as the first quantile (i.e., higher than 75 %) of the
unrolling bounds required by IMC to find fixed points on the whole benchmark set. These tasks
are labelled with red triangles in Fig. 1b. Since most of the red triangles are above the diagonal,
IMC is still faster than ISMC even it finds a proof at high unrolling bounds. Therefore, we conclude

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 90. Publication date: July 2024.

90:16 D. Beyer, P.-C. Chien, M. Jankola, and N.-Z. Lee

Table 2. Comparing the CPU time of IMC vs. ISMC/DAR on tasks they both correctly solved (time unit: s)

CPU time CPU time
#tasks IMC ISMC ratio #tasks IMC DAR ratio

Total 2 549 143 000 167 000 1.17 2 631 163 000 180 000 1.10
Proofs 1 676 49 400 99 700 2.02 1 762 72 200 95 800 1.34
Alarms 873 93 300 67 300 0.72 869 90 400 84 400 0.93

0 200 400 600 800 1000
1

10

100

1000

n-th fastest correct alarm

CP
U
tim

e
(s
)

IMC
ISMC
DAR

(a) Alarms

0 500 1000 1500 2000
1

10

100

1000

n-th fastest correct proof

CP
U
tim

e
(s
)

IMC
ISMC
DAR

(b) Proofs

Fig. 2. Quantile plots for all correct (a) alarms and (b) proofs of IMC, ISMC, and DAR

that this claim does not hold according to our interpretation of high unrolling bounds. It is also
worth noting that IMC never had a higher unrolling bound than ISMC in our evaluation.

H1.C: Overall, ISMC is faster than IMC (?). The authors of the ISMC paper [20] report that
ISMC was overall faster than IMC by 30 % in their experiment. We decompose the assessment
into finding alarms and proofs. In the left half of Table 2, we report the numbers of alarms and
proofs found by both IMC and ISMC as well as the summation of CPU time they took to solve these
tasks. ISMC is faster than IMC by 27 % at bug hunting but twice slower at delivering proofs. The
quantile plots in Fig. 2 also show that ISMC is faster at bug hunting but slower at proof finding.
Overall, ISMC spent 17 % more CPU time than IMC to solve these tasks, so we conclude that this
claim does not hold in our evaluation.

6.4 Assessment of the Claims about DAR

H2.A: For DAR, the ratio between iterations using global strengthening to the total number
of iterations is less than 0.5 in most tasks (✓). DAR is designed to avoid large and expensive
BMC queries as much as possible. It achieves this goal by first trying to show that the BMC query is
unsatisfiable with shorter and possibly cheaper satisfiability checks in the local strengthening stage.
Out of the 1 815 safe tasks DAR correctly solved, 979 were proven by constructing fixed points,
while the rest were proven by completely unrolling the loops in the programs. In the tasks where
fixed points were derived, the average ratio of the number of iterations in which DAR entered the
global strengthening stage to the number of total iterations is 0.097. Specifically, there are 785 tasks
in which DAR never performed global strengthening in any iteration. Therefore, we conclude that
the claim holds in our evaluation and that DAR’s key insight of using local checks to avoid large
and expensive BMC queries is transferable to software verification.

H2.B: IMC finds a proof slower than DAR in many tasks even though it has a smaller
convergence length (?). Figure 3b shows a scatter plot of the CPU time elapsed for DAR (on the
y-axis) and IMC (on the x-axis) to find proofs by reaching fixed points. The plot confirms that IMC

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 90. Publication date: July 2024.

A Transferability Study of Interpolation-Based Model Checking 90:17

1 10 100 1000
1

10

100

1000

IMC (s)

D
A
R
(s
)

Both solved
IMC TO
DAR TO

(a) Alarms

1 10 100 1000
1

10

100

1000

IMC (s)

D
A
R
(s
)

IMC lower conv-len
DAR lower conv-len
IMC TO
DAR TO

(b) Proofs

Fig. 3. Comparing the CPU time of DAR and IMC on (a) unsafe and (b) safe tasks (TO: timeout)

1 10 100 1000
1

10

100

1000

#IMC-interpolants

#D
A
R-
in
te
rp
ol
an
ts

(a) Numbers of interpolants of DAR vs. IMC

1 10 100 1000
1

10

100

1000

CPU time (s)

Av
er
ag
e
si
ze

of
in
te
rp
ol
an
ts

IMC
DAR

(b) Size of interpolants vs. CPU time

Fig. 4. (a) The numbers of interpolants derived by DAR and IMC; (b) The size of interpolants (measured by
average numbers of atoms) versus the CPU time elapsed to solve a task

usually has a smaller convergence length than DAR (the data points shaped as green circles). In
fact, DAR found a proof with a smaller convergence length than IMC only in 16 tasks. However,
the scatter plot contradicts the claim that DAR is faster than IMC. In our evaluation, IMC usually
found a proof faster than DAR, as shown by the large number of data points above the diagonal.
Therefore, we conclude that this claim does not hold in our evaluation.

H2.C: DAR computes more interpolants than IMC (✓). Figure 4a is a scatter plot of the
numbers of interpolants derived during the computation of DAR and IMC, showing that IMC
never computed more interpolants than DAR on all tasks. Therefore, we conclude that the claim
holds in our evaluation.

H2.D: DAR’s run-time is more sensitive to the sizes of interpolants than IMC (?). To assess
this claim, we define the size of an interpolant as the number of atoms it contains. An atom is a
predicate applied to terms without any boolean connectives. To evaluate if the CPU time of DAR

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 90. Publication date: July 2024.

90:18 D. Beyer, P.-C. Chien, M. Jankola, and N.-Z. Lee

Table 3. Summary of the experimental results for 4 790 tasks consisting of programs with at most one loop

Algorithm (#tasks) IMC ISMC DAR Impact PredAbs

Correct results 4 790 2 439 2 372 2 446 2 107 2 026
proofs 3 188 1 755 1 592 1 691 1 433 1 438
alarms 1 602 684 780 755 674 588

Incorrect results 2 2 2 1 1
proofs 0 0 0 0 0
alarms 2 2 2 1 1

Timeouts 1 878 1 778 1 828 1 823 2 231
Out of memory 317 535 401 368 82
Other inconclusive 154 103 113 491 450

Co
rr
ec
tr
es
ul
ts
by

ca
te
go

ry ReachSafety-ECA 1 263 562 546 582 571 492
proofs 783 431 319 384 398 362
alarms 480 131 227 198 173 130

ReachSafety-Sequentialized 461 281 251 245 255 204
proofs 131 45 23 19 27 13
alarms 330 236 228 226 228 191

ReachSafety-Loops 445 157 174 172 110 117
proofs 314 93 105 101 79 85
alarms 131 64 69 71 31 32

Other categories 2 621 1 439 1 401 1 447 1 171 1 213

is more sensitive to the sizes of its interpolants, we plot the CPU time and the average sizes of
interpolants needed by DAR and IMC to solve a task in Fig. 4b.

From the plot, we observe for both DAR and IMC that the CPU time elapsed to solve a task and
average sizes of interpolants are positively co-related. However, the plot does not indicate that one
algorithm is more sensitive to the size of interpolants than the other. We also evaluated this claim
with different metrics for measuring the size of an interpolant, including the numbers of Boolean
operations and variables in it, but did not find clear evidence to support the claim. Therefore, we
conclude that the claim does not hold in our evaluation.

H2.E: Overall, DAR is faster than IMC (?). The authors of the DAR paper [20] report that
DAR was overall faster than IMC by 36 % in their experiment. In the right half of Table 2, we
report the numbers of alarms and proofs found by both IMC and DAR as well as the summation of
CPU time they took to solve these tasks. DAR is faster than IMC by 7 % at bug hunting but 34 %
slower at delivering proofs. The quantile plots in Fig. 2 and the scatter plots in Fig. 3 also show
that DAR performs similarly to IMC for finding bugs and that IMC is more efficient in finding
proofs. Overall, DAR spent 10 % more CPU time than IMC to solve these tasks, so we conclude
that this claim does not hold in our evaluation.

6.5 Comparison with Other Interpolation-Based Software-Verification Approaches

Besides validating the claims in previous publications [20, 21], we compare IMC, ISMC, and DAR to
PredAbs [24] and Impact [25]. Note that PredAbs and Impact are inherently able to handle multi-loop
programs, whereas IMC, ISMC, and DAR require single-loop transformation as preprocessing.
Therefore, to eliminate the difference in program encoding caused by the transformation, we focus
the comparison on benchmark tasks consisting of programs with at most one loop.

Table 3 summarizes the results of the five compared algorithms on 4 790 safety-verification tasks,
among which 3 188 are safe and 1 602 are unsafe. In the evaluation, DAR was able to solve the most
tasks in total, IMC found the most proofs, and ISMC was the best bug-hunting algorithm. Notably,

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 90. Publication date: July 2024.

A Transferability Study of Interpolation-Based Model Checking 90:19

0 200 400 600 800
1

10

100

1000

n-th fastest correct alarm

CP
U
tim

e
(s
)

IMC
ISMC
DAR
Impact
PredAbs

(a) Alarms

0 500 1000 1500 2000
1

10

100

1000

n-th fastest correct proof

CP
U
tim

e
(s
)

IMC
ISMC
DAR
Impact
PredAbs

(b) Proofs

Fig. 5. Quantile plots for all correct (a) alarms and (b) proofs on the tasks with at most one loop

all three hardware-verification algorithms produced more correct results than both software-
verification algorithms, and the overall increase in the correct results is about 20 %. IMC, ISMC and
DAR were able to solve 512, 572, and 528 tasks that were unsolvable by either Impact or PredAbs,
respectively. On nearly 300 tasks, PredAbs and Impact posed SMT queries that MathSAT5 encountered
errors, which results in their high numbers of “Other inconclusive” in Table 3. For the two tasks
where IMC, ISMC, and DAR reported incorrect alarms, PredAbs and Impact delivered an incorrect
alarm on one and failed during SMT solving on the other. The quantile plots in Fig. 5 further
demonstrate that the three hardware-verification algorithms are not only more effective but also
more efficient than the two software-verification algorithms.

To gain more insights on the strengths of hardware-verification algorithms, we conducted a de-
tailed analysis on selected subcategories of the benchmark set. The results divided by subcategories
are shown in the second half of Table 3. The subcategory ReachSafety-ECA consists of 1263 programs
modeling event-condition-action systems [58]. IMC and ISMC showcased their unique capabilities
in this subcategory by finding the most proofs and alarms, respectively. In comparison, PredAbs
solved the fewest tasks in the subcategory. Profiling its run-time, we found that the abstraction
computation of PredAbs, which involves an expensive model-enumeration step [7, 59], took up a
significant amount of its CPU time and led to timeouts in many tasks. IMC and ISMC avoid the
expensive abstraction computation by taking the union of interpolants as overapproximations.
The subcategory ReachSafety-Sequentialized is another example where IMC demonstrated its

outstanding proof-finding ability. The 461 programs in this subcategory were obtained by sequen-
tializing the execution of concurrent multi-threaded programs [60, 61]. IMC was able to delivered
11 proofs that none of the other four algorithms could find. In the subcategory ReachSafety-Loops,
all three hardware-verification algorithms outperformed the two software-verification algorithms
at both proof finding and bug hunting. Particularly, on several programs involving nonlinear
arithmetics, IMC, ISMC, and DAR were able to detect bugs, while PredAbs and Impact got stuck
at some difficult interpolation queries.

Our detailed analysis shows that the algorithms originated from hardware model checking can
improve the state of the art of software verification by more than 40 % in some benchmark families,
demonstrating the importance of systematically transfer knowledge between the two communities.

6.6 Threats to Validity

External Validity. The conclusions of our study are based on the used benchmark set, which is the
largest and most diverse open-source collection of verification tasks in the programming language C.
Although our experiments show that IMC is faster than ISMC and DAR, the benchmark set contains

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 90. Publication date: July 2024.

90:20 D. Beyer, P.-C. Chien, M. Jankola, and N.-Z. Lee

many more safe than unsafe tasks. Therefore, the improvement of ISMC and DAR over IMC is
biased since IMC is more effective in finding proofs.
We adopted algorithms that were originally designed for hardware circuits to software, and it

was unclear which of the claims in the original papers will hold for software. Our study shows
that the characteristics of the algorithms are transferable to software on the used benchmark set
and that the investigated algorithms are robust regarding the representation of the verification
tasks. However, it is still unclear which claims will hold for software with different features that
are not covered in the used benchmark set. The comparison in Sect. 6.5 was performed on a subset
of benchmark tasks containing at most one loop. Therefore, it is possible that the performance
characteristics of the evaluated algorithms are different on multi-loop programs.

Internal Validity. To minimize confounding variables in the evaluation, the implementations of the
two algorithms and the compared approaches are all realized in the mature and well-maintained
software verifier CPAchecker. The evaluation is performed on more than 8 000 software-verification
tasks to make the results more robust. Note that the number of verification tasks in our evaluation
is much larger than the two previous works [20, 21].
For executing the experiments, we used the popular benchmarking framework BenchExec [57],

which employs modern features of the Linux kernel, such as cgroups for resource measurement
and control, name spaces for process isolation to prevent interference, and overlay file systems
to prevent experiment runs from changing the state of the system. To mitigate interference from
shared hardware resources, we make sure to never run two executions on the same physical cores
(no hyper-threading across executions). However, the effectivity is more important than the CPU
time in our experiments, therefore, the impact is limited. We set the CPU time limit to 1 800 s as
in the DAR paper. In principle, we could use 10 000 s as in the ISMC paper, but the experiments
will require considerably more time given the size of our benchmark set.

7 CONCLUSION

Hardware and software verification techniques deal with the same problem conceptually and rely
on common theoretical cornerstones such as satisfiability and Craig interpolation. Even though the
areas are closely related, there is a knowledge gap in howwell the results obtained in one community
are transferable to the other. This transferability study contributed to filling this gap. ISMC [20]
and DAR [21] are two successful interpolation-based algorithms for hardware model checking. We
implemented them in the software verifier CPAchecker to analyze C programs. To observe which
claims about their characteristics in the original papers are transferable to software verification, we
evaluated them against the software-verification adoption [22] of IMC [19], the baseline approach
used in the original studies. The experiments were executed on an extensive benchmark set.
From the results, we confirmed the claims about the characteristics of the two algorithms for

software verification: ISMC was faster than IMC to find bugs in programs, and local strengthening
was often enough to refute spurious error paths and avoid expensive BMC queries in DAR. However,
the claims in the original papers about the speedup of ISMC and DAR over IMC did not transfer to
software verification. Overall, IMC was the fastest among the three algorithms on the software-
verification benchmark set used in our evaluation. When compared to the state-of-the-art software-
verification algorithms, IMC, ISMC, and DAR demonstrated superior effectiveness and efficiency.
Most importantly, all three algorithms were able to solve tasks that the others could not, proving
their indispensable values for software verification. Our work improves the knowledge about the
transferability of ISMC and DAR to software verification and reveals the potential for improving
software verification by adopting methods from hardware model checking. Our results will shed
light on exchanging and unifying research findings between the two areas in both directions.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 90. Publication date: July 2024.

A Transferability Study of Interpolation-Based Model Checking 90:21

DATA-AVAILABILITY STATEMENT

A reproduction package [62] for the transferability study, including the implementations of the
algorithms in CPAchecker, the evaluated benchmark set, and the resulting experimental data, is
available on Zenodo. Additional information is available at https://www.sosy-lab.org/research/dar-
ismc-transferability/.

FUNDING STATEMENT

This project was funded in part by the Deutsche Forschungsgemeinschaft (DFG) – 378803395
(ConVeY).

REFERENCES

[1] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem. 2018. Handbook of Model Checking. Springer. https://doi.org/10.
1007/978-3-319-10575-8

[2] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. 1990. Symbolic model checking: 1020 states and
beyond. In Proc. LICS. IEEE, 428–439. https://doi.org/10.1109/LICS.1990.113767

[3] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. 1990. Sequential circuit verification using symbolic model
checking. In Proc. DAC. ACM, 46–51. https://doi.org/10.1145/123186.123223

[4] A. Biere, M. Heule, H. van Maaren, and T. Walsh (Eds.). 2009. Handbook of Satisfiability. Frontiers in Artificial
Intelligence and Applications, Vol. 185. IOS Press. ISBN: 978-1-58603-929-5

[5] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. 2001. Chaff: Engineering an efficient SAT solver. In
Proc. DAC. ACM, 530–535. https://doi.org/10.1145/378239.379017

[6] C. Barrett and C. Tinelli. 2018. Satisfiability modulo theories. In Handbook of Model Checking. Springer, 305–343.
https://doi.org/10.1007/978-3-319-10575-8_11

[7] D. Beyer, M. Dangl, and P. Wendler. 2018. A unifying view on SMT-based software verification. J. Autom. Reasoning
60, 3 (2018), 299–335. https://doi.org/10.1007/s10817-017-9432-6

[8] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. 1999. Symbolic model checking without BDDs. In Proc. TACAS
(LNCS 1579). Springer, 193–207. https://doi.org/10.1007/3-540-49059-0_14

[9] M. Sheeran, S. Singh, and G. Stålmarck. 2000. Checking safety properties using induction and a SAT-solver. In Proc.
FMCAD. Springer, 127–144. https://doi.org/10.1007/3-540-40922-X_8

[10] A. R. Bradley. 2011. SAT-based model checking without unrolling. In Proc. VMCAI (LNCS 6538). Springer, 70–87.
https://doi.org/10.1007/978-3-642-18275-4_7

[11] W. Craig. 1957. Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. Symb. Log. 22, 3 (1957), 250–268.
https://doi.org/10.2307/2963593

[12] E. M. Clarke, D. Kröning, and F. Lerda. 2004. A tool for checking ANSI-C programs. In Proc. TACAS (LNCS 2988).
Springer, 168–176. https://doi.org/10.1007/978-3-540-24730-2_15

[13] A. F. Donaldson, L. Haller, D. Kröning, and P. Rümmer. 2011. Software verification using k-induction. In Proc. SAS
(LNCS 6887). Springer, 351–368. https://doi.org/10.1007/978-3-642-23702-7_26

[14] A. Cimatti and A. Griggio. 2012. Software model checking via IC3. In Proc. CAV (LNCS 7358). Springer, 277–293.
https://doi.org/10.1007/978-3-642-31424-7_23

[15] P. Ralph. 2021. ACM SIGSOFT empirical standards released. ACM SIGSOFT Softw. Eng. Notes 46, 1 (2021), 19.
https://doi.org/10.1145/3437479.3437483

[16] P. Ralph, S. Baltes, D. Bianculli, Y. Dittrich, M. Felderer, R. Feldt, A. Filieri, C. A. Furia, D. Graziotin, P. He, R. Hoda,
N. Juristo, B. A. Kitchenham, R. Robbes, D. Méndez, J. S. Molléri, D. Spinellis, M. Staron, K. Stol, D. A. Tamburri,
M. Torchiano, C. Treude, B. Turhan, and S. Vegas. 2021. Empirical standards for software engineering research.
arXiv/CoRR 2010, 03525 (March 2021). https://doi.org/10.48550/arXiv.2010.03525

[17] K. Petersen and Ç. Gencel. 2013. Worldviews, research methods, and their relationship to validity in empirical
software engineering research. In Proc. IWSM-Mensura. IEEE Computer Society, 81–89. https://doi.org/10.1109/IWSM-
MENSURA.2013.22

[18] K.-J. Stol and B. Fitzgerald. 2018. The ABC of software engineering research. ACM Trans. Softw. Eng. Methodol. 27, 3
(2018), 11:1–11:51. https://doi.org/10.1145/3241743

[19] K. L. McMillan. 2003. Interpolation and SAT-based model checking. In Proc. CAV (LNCS 2725). Springer, 1–13.
https://doi.org/10.1007/978-3-540-45069-6_1

[20] Y. Vizel and O. Grumberg. 2009. Interpolation-sequence based model checking. In Proc. FMCAD. IEEE, 1–8. https:
//doi.org/10.1109/FMCAD.2009.5351148

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 90. Publication date: July 2024.

https://www.sosy-lab.org/research/dar-ismc-transferability/
https://www.sosy-lab.org/research/dar-ismc-transferability/
http://gepris.dfg.de/gepris/projekt/378803395
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1109/LICS.1990.113767
https://doi.org/10.1145/123186.123223
https://www.worldcat.org/isbn/978-1-58603-929-5
https://doi.org/10.1145/378239.379017
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.2307/2963593
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-642-23702-7_26
https://doi.org/10.1007/978-3-642-31424-7_23
https://doi.org/10.1145/3437479.3437483
https://doi.org/10.48550/arXiv.2010.03525
https://doi.org/10.1109/IWSM-MENSURA.2013.22
https://doi.org/10.1109/IWSM-MENSURA.2013.22
https://doi.org/10.1145/3241743
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1109/FMCAD.2009.5351148
https://doi.org/10.1109/FMCAD.2009.5351148

90:22 D. Beyer, P.-C. Chien, M. Jankola, and N.-Z. Lee

[21] Y. Vizel, O. Grumberg, and S. Shoham. 2013. Intertwined forward-backward reachability analysis using interpolants.
In Proc. TACAS (LNCS 7795). Springer, 308–323. https://doi.org/10.1007/978-3-642-36742-7_22

[22] D. Beyer, N.-Z. Lee, and P. Wendler. 2022. Interpolation and SAT-based model checking revisited: Adoption to software
verification. arXiv/CoRR 2208, 05046 (July 2022). https://doi.org/10.48550/arXiv.2208.05046

[23] D. Beyer and M. E. Keremoglu. 2011. CPAchecker: A tool for configurable software verification. In Proc. CAV
(LNCS 6806). Springer, 184–190. https://doi.org/10.1007/978-3-642-22110-1_16

[24] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. 2004. Abstractions from proofs. In Proc. POPL. ACM,
232–244. https://doi.org/10.1145/964001.964021

[25] K. L. McMillan. 2006. Lazy abstraction with interpolants. In Proc. CAV (LNCS 4144). Springer, 123–136. https:
//doi.org/10.1007/11817963_14

[26] D. Beyer. 2023. SV-Benchmarks: Benchmark set for software verification and testing (SV-COMP 2023 and Test-Comp
2023). Zenodo. https://doi.org/10.5281/zenodo.7627783

[27] M. Baker. 2016. 1,500 scientists lift the lid on reproducibility. Nature 533 (2016), 452–454. https://doi.org/10.1038/533452a
[28] J. P. A. Ioannidis. 2005. Why most published research findings are false. PLoS medicine 2, 8 (2005), e124:0696–e124:0701.

https://doi.org/10.1371/journal.pmed.0020124
[29] S. Krishnamurthi and J. Vitek. 2015. The real software crisis: Repeatability as a core value. Commun. ACM 58, 3 (2015),

34–36. https://doi.org/10.1145/2658987
[30] N. Juristo and O. S. Gómez. 2012. Replication of software engineering experiments. In Empirical Software Engineering

and Verification. Springer, 60–88. https://doi.org/10.1007/978-3-642-25231-0_2
[31] A. Brooks, M. Roper, M. Wood, J. Daly, and J. Miller. 2008. Replication’s role in software engineering. In Guide to

Advanced Empirical Software Engineering. Springer, 365–379. https://doi.org/10.1007/978-1-84800-044-5_14
[32] C. S. Collberg and T. A. Proebsting. 2016. Repeatability in computer-systems research. Commun. ACM 59, 3 (2016),

62–69. https://doi.org/10.1145/2812803
[33] J. Vitek and T. Kalibera. 2011. Repeatability, reproducibility, and rigor in systems research. In Proc. EMSOFT. ACM,

33–38. https://doi.org/10.1145/2038642.2038650
[34] S. Winter, C. S. Timperley, B. Hermann, J. Cito, J. Bell, M. Hilton, and D. Beyer. 2022. A retrospective study of one

decade of artifact evaluations. In Proc. ESEC/FSE. ACM, 145–156. https://doi.org/10.1145/3540250.3549172
[35] R. Heumüller, S. Nielebock, J. Krüger, and F. Ortmeier. 2020. Publish or perish, but do not forget your software artifacts.

Empirical Software Engineering 25 (2020), 4585–4616. https://doi.org/10.1007/s10664-020-09851-6
[36] B. Hermann, S. Winter, and J. Siegmund. 2020. Community expectations for research artifacts and evaluation processes.

In Proc. ESEC/FSE. ACM, 469–480. https://doi.org/10.1145/3368089.3409767
[37] C. S. Timperley, L. Herckis, C. L. Goues, and M. Hilton. 2021. Understanding and improving artifact sharing in software

engineering research. Empirical Software Engineering 26, 4 (2021). https://doi.org/10.1007/s10664-021-09973-5
[38] C. Cadar, D. Dunbar, and D. R. Engler. 2008. Klee: Unassisted and automatic generation of high-coverage tests for

complex systems programs. In Proc. OSDI. USENIX Association, 209–224. https://dl.acm.org/doi/10.5555/1855741.
1855756

[39] E. F. Rizzi, S. Elbaum, and M. B. Dwyer. 2016. On the techniques we create, the tools we build, and their misalignments:
A study of Klee. In Proc. ICSE. ACM, 132–143. https://doi.org/10.1145/2884781.2884835

[40] M. Heizmann, J. Hoenicke, and A. Podelski. 2009. Refinement of trace abstraction. In Proc. SAS (LNCS 5673). Springer,
69–85. https://doi.org/10.1007/978-3-642-03237-0_7

[41] R. Jhala and K. L. McMillan. 2005. Interpolant-based transition relation approximation. In Proc. CAV (LNCS 3576).
Springer, 39–51. https://doi.org/10.1007/11513988_6

[42] O. Sery, G. Fedyukovich, and N. Sharygina. 2012. Interpolation-based function summaries in bounded model checking.
In Proc. HVC (LNCS 7261). Springer, 160–175. https://doi.org/10.1007/978-3-642-34188-5_15

[43] R. Brayton and A. Mishchenko. 2010. ABC: An academic industrial-strength verification tool. In Proc. CAV (LNCS 6174).
Springer, 24–40. https://doi.org/10.1007/978-3-642-14295-6_5

[44] A. Goel and K. Sakallah. 2020. AVR: Abstractly verifying reachability. In Proc. TACAS (LNCS 12078). Springer, 413–422.
https://doi.org/10.1007/978-3-030-45190-5_23

[45] M. Heizmann, J. Hoenicke, and A. Podelski. 2013. Software model checking for people who love automata. In Proc.
CAV (LNCS 8044). Springer, 36–52. https://doi.org/10.1007/978-3-642-39799-8_2

[46] A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas. 2015. The SeaHorn verification framework. In Proc. CAV
(LNCS 9206). Springer, 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[47] D. Beyer, M. Dangl, and P. Wendler. 2015. Boosting k-induction with continuously-refined invariants. In Proc. CAV
(LNCS 9206). Springer, 622–640. https://doi.org/10.1007/978-3-319-21690-4_42

[48] T. Lange, M. R. Neuhäußer, T. Noll, and J. Katoen. 2020. IC3 software model checking. Int. J. Softw. Tools Technol.
Transf. 22, 2 (2020), 135–161. https://doi.org/10.1007/S10009-019-00547-X

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 90. Publication date: July 2024.

https://doi.org/10.1007/978-3-642-36742-7_22
https://doi.org/10.48550/arXiv.2208.05046
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1145/964001.964021
https://doi.org/10.1007/11817963_14
https://doi.org/10.1007/11817963_14
https://doi.org/10.5281/zenodo.7627783
https://doi.org/10.1038/533452a
https://doi.org/10.1371/journal.pmed.0020124
https://doi.org/10.1145/2658987
https://doi.org/10.1007/978-3-642-25231-0_2
https://doi.org/10.1007/978-1-84800-044-5_14
https://doi.org/10.1145/2812803
https://doi.org/10.1145/2038642.2038650
https://doi.org/10.1145/3540250.3549172
https://doi.org/10.1007/s10664-020-09851-6
https://doi.org/10.1145/3368089.3409767
https://doi.org/10.1007/s10664-021-09973-5
https://dl.acm.org/doi/10.5555/1855741.1855756
https://dl.acm.org/doi/10.5555/1855741.1855756
https://doi.org/10.1145/2884781.2884835
https://doi.org/10.1007/978-3-642-03237-0_7
https://doi.org/10.1007/11513988_6
https://doi.org/10.1007/978-3-642-34188-5_15
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/S10009-019-00547-X

A Transferability Study of Interpolation-Based Model Checking 90:23

[49] D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani. 2009. Software model checking via large-block
encoding. In Proc. FMCAD. IEEE, 25–32. https://doi.org/10.1109/FMCAD.2009.5351147

[50] D. Beyer, S. Gulwani, and D. Schmidt. 2018. Combining model checking and data-flow analysis. In Handbook of Model
Checking. Springer, 493–540. https://doi.org/10.1007/978-3-319-10575-8_16

[51] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. 2007. The software model checker Blast. Int. J. Softw. Tools
Technol. Transfer 9, 5-6 (2007), 505–525. https://doi.org/10.1007/s10009-007-0044-z

[52] D. Beyer, T. A. Henzinger, and G. Théoduloz. 2007. Configurable software verification: Concretizing the convergence
of model checking and program analysis. In Proc. CAV (LNCS 4590). Springer, 504–518. https://doi.org/10.1007/978-3-
540-73368-3_51

[53] D. Beyer, T. A. Henzinger, and G. Théoduloz. 2008. Program analysis with dynamic precision adjustment. In Proc. ASE.
IEEE, 29–38. https://doi.org/10.1109/ASE.2008.13

[54] A. V. Aho, R. Sethi, and J. D. Ullman. 1986. Compilers: Principles, Techniques, and Tools. Addison-Wesley.
ISBN: 978-0-201-10088-4

[55] A. F. Donaldson, D. Kröning, and P. Rümmer. 2011. Automatic analysis of DMA races using model checking and
k-induction. FMSD 39, 1 (2011), 83–113. https://doi.org/10.1007/s10703-011-0124-2

[56] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani. 2013. TheMathSAT5 SMT solver. In Proc. TACAS (LNCS 7795).
Springer, 93–107. https://doi.org/10.1007/978-3-642-36742-7_7

[57] D. Beyer, S. Löwe, and P. Wendler. 2019. Reliable benchmarking: Requirements and solutions. Int. J. Softw. Tools
Technol. Transfer 21, 1 (2019), 1–29. https://doi.org/10.1007/s10009-017-0469-y

[58] F. Howar, M. Isberner, M. Merten, B. Steffen, and D. Beyer. 2012. The RERS grey-box challenge 2012: Analysis of event-
condition-action systems. In Proc. ISoLA (LNCS 7609). Springer, 608–614. https://doi.org/10.1007/978-3-642-34026-0_45

[59] T. Ball, A. Podelski, and S. K. Rajamani. 2001. Boolean and Cartesian abstraction for model checking C programs. In
Proc. TACAS (LNCS 2031). Springer, 268–283. https://doi.org/10.1007/3-540-45319-9_19

[60] A. Cimatti, A. Micheli, I. Narasamdya, and M. Roveri. 2010. Verifying SystemC: A software model checking approach.
In Proc. FMCAD. FMCAD Inc., 51–59. https://ieeexplore.ieee.org/document/5770933

[61] O. Inverso, E. Tomasco, B. Fischer, S. La Torre, and G. Parlato. 2014. Bounded model checking of multi-threaded C
programs via lazy sequentialization. In Proc. CAV (LNCS 8559). Springer, 585–602. https://doi.org/10.1007/978-3-319-
08867-9_39

[62] D. Beyer, P.-C. Chien, M. Jankola, and N.-Z. Lee. 2024. Reproduction package for FSE 2024 article ‘A transferability
study of interpolation-based hardware model checking for software verification’. Zenodo. https://doi.org/10.5281/
zenodo.11070973

Received 2023-09-28; accepted 2024-04-16

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 90. Publication date: July 2024.

https://doi.org/10.1109/FMCAD.2009.5351147
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1109/ASE.2008.13
https://www.worldcat.org/isbn/978-0-201-10088-4
https://doi.org/10.1007/s10703-011-0124-2
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-642-34026-0_45
https://doi.org/10.1007/3-540-45319-9_19
https://ieeexplore.ieee.org/document/5770933
https://doi.org/10.1007/978-3-319-08867-9_39
https://doi.org/10.1007/978-3-319-08867-9_39
https://doi.org/10.5281/zenodo.11070973
https://doi.org/10.5281/zenodo.11070973

	Abstract
	1 Introduction
	1.1 Design and Outcomes of the Transferability Study
	1.2 Our Contributions

	2 Related Work
	2.1 Reliability and Transferability of Research Findings
	2.2 Interpolation-Based Verification Techniques
	2.3 Applying Hardware Model Checking to Software Verification

	3 Background
	3.1 Model Checking of Reachability Safety
	3.2 Craig Interpolation
	3.3 Adopting Hardware Model Checking to Software Verification

	4 Descriptions of the Compared Interpolation-Based Algorithms
	4.1 Interpolation-Based Model Checking (IMC)
	4.2 Interpolation-Sequence-Based Model Checking (ISMC)
	4.3 Dual Approximated Reachability (DAR)
	4.4 Differences Between the Three Algorithms

	5 Adopting ISMC and DAR to Software Verification in CPAchecker
	5.1 Interpolation-Sequence-Based Model Checking (ISMC)
	5.2 Dual Approximated Reachability (DAR)
	5.3 Design Choices in the Implementations

	6 Evaluation
	6.1 Benchmark Set
	6.2 Experimental Settings
	6.3 Assessment of the Claims about ISMC
	6.4 Assessment of the Claims about DAR
	6.5 Comparison with Other Interpolation-Based Software-Verification Approaches
	6.6 Threats to Validity

	7 Conclusion
	References

