
Regression-Test History Data for Flaky-Test Research
Philipp Wendler

LMU Munich
Germany

Stefan Winter
LMU Munich
Germany

ABSTRACT
Due to their random nature, flaky test failures are difficult to study.
Without having observed a test to both pass and fail under the same
setup, it is unknown whether a test is flaky and what its failure
rate is. Thus, flaky-test research has greatly benefited from data
records of previous studies, which provide evidence for flaky test
failures and give a rough indication of the failure rates to expect.
For assessing the impact of the studied flaky tests on developers’
work, it is important to also know how flaky test failures manifest
over a regression test history, i.e., under continuous changes to
test code or code under test. While existing datasets on flaky tests
are mostly based on re-runs on an invariant code base, the actual
effects of flaky tests on development can only be assessed across the
commits in an evolving commit history, against which (potentially
flaky) regression tests are executed. In our presentation, we outline
approaches to bridge this gap and report on our experiences follow-
ing one of them. As a result of this work, we contribute a dataset
of flaky test failures across a simulated regression test history.

KEYWORDS
Flaky Tests, Regression Testing, Test Result Histories, Dataset
ACM Reference Format:
Philipp Wendler and Stefan Winter. 2024. Regression-Test History Data for
Flaky-Test Research. In 2024 International Flaky Tests Workshop 2024 (FTW
’24), April 14, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3643656.3643901

1 INTRODUCTION
Flaky tests can both pass and fail without changes to test code or
code under test (CUT). This makes them problematic for regression
testing, because flaky regression tests can falsely indicate defects in
the CUT and thereby block further development and integration.

Flaky test detection approaches typically employ test re-executions
on an unchanged code base (see [6] for an overview).While research
projects commonly use repetition counts in the hundreds (e.g., [4])
or even tens of thousands [1], for many practitioners long detection
latencies from many repetitions are impractical. To this end, repeti-
tion counts in the single or lower double digit range are used and
identified flaky tests subsequently quarantined (instead of repaired).

This difference causes a gap between academic and practical
approaches to cope with flaky tests. It is unclear to which degree

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FTW ’24, April 14, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0558-8/24/04. . . $15.00
https://doi.org/10.1145/3643656.3643901

the flaky tests that are identified with targeted academic detection
approaches overlap with the flaky tests that plague developers most
in their daily work. In other words: Flaky tests that are detected
with an academic tool may not necessarily be the ones that cause
most friction in continuous integration (CI). Closing this gap would
help researchers to focus their work (if desired) on the most painful
practical manifestations of flaky tests.

However, to assess how a detected flaky test affects CI, the be-
havior of this test in the regression test history of the project must
be known, i.e., along a changing test and CUT code base and not
just across a number of re-executions on the same commit. While
this information is available in the software projects plagued by
flaky tests, it is not part of the flaky test datasets that academic
research is often based on. To take a first step in solving this prob-
lem, we outline different possibilities for obtaining such a flaky
regression-test history, i.e., a regression test history that includes
flaky tests, and propose a dataset of simulated flaky regression test
histories for Maven projects in IDoFT [3].

2 OBTAINING FLAKY REGRESSION-TEST
HISTORIES

To the best of our knowledge, only one dataset of regression test
histories with flaky tests exists to date. Gruber et al. proposed an
approach for practical flaky test detection on the basis of regression
test histories and code features [2] and published a dataset of test
result histories for 200 tests. As the histories have been obtained
from an industry collaborator, the dataset is redacted. Test names,
implementations, etc. are missing and their test suites and execu-
tion environments are unknown. This makes the dataset suitable
for “black-box” assessments that solely rely on the published test
features, but its applicability beyond that scenario remains limited.

We have identified several options for obtaining flaky regression-
test histories based on different data sources, which fall in two
classes. In essence, one can either (1) start from regression test
datasets and search for flaky tests or (2) start from flaky test datasets
and simulate regression test histories.

Regression Test Datasets. Regminer [7] aims to extract re-
gressions from commit histories. The dataset accompanying the
Regminer paper contains projects that are also found in flaky test
datasets, e.g., Apache Ambari and Hadoop.

In a study of “orange” CI jobs that intermittently pass or fail (in
builds or tests), Lampel et al. [5] present a dataset scraped from
Mozilla treeherder. The system provides a dedicated view for in-
termittent test failures1, which may be leveraged, but only keeps
records for 3 weeks, so that building a dataset from this source
requires continuous monitoring.

FlakyTestDatasets. IDoFT [3] provides a comprehensive dataset
of flaky tests identified with different detectors. Similar datasets
exists for individual research projects.
1https://treeherder.mozilla.org/intermittent-failures

https://orcid.org/0000-0002-5139-341X
https://orcid.org/0000-0001-8244-995X
https://doi.org/10.1145/3643656.3643901
https://doi.org/10.1145/3643656.3643901
https://treeherder.mozilla.org/intermittent-failures

FTW ’24, April 14, 2024, Lisbon, Portugal Philipp Wendler and Stefan Winter

Table 1: Dataset summary: Slug (Module) – the Maven project’s GitHub slug and module name (if applies), FIC hash – flakiness
introducing commit, tests/commit counts, average commits per test (as tests may be introduced/removed), nr. of tests flaky in
≥ 1 commit, nr. of tests consistently failing in ≥ 1 commit, nr. of distinct histories that can be generated from the dataset.

Slug (Module) FIC Hash Tests Commits Avg. Commits/Test Flaky Tests Tests w/ Consistent Fails Distinct Histories

TooTallNate/Java-WebSocket 822d40f5 146 75 75.0 24 1 2.6 × 109
apereo/java-cas-client (cas-client-core) 5e36559b 157 65 61.7 3 2 1.0 × 107
eclipse-ee4j/tyrus (tests/e2e/standard-config) ce3b8c76 185 16 16.0 12 0 261
feroult/yawp (yawp-testing/yawp-testing-appengine) abae1782 1 191 191.0 1 1 8
fluent/fluent-logger-java 5fd46383 19 131 105.6 11 2 8.0 × 1032
fluent/fluent-logger-java 87e957ae 19 160 122.4 11 3 2.1 × 1031
javadelight/delight-nashorn-sandbox d0d651ff 81 113 100.6 2 5 4.2 × 1010
javadelight/delight-nashorn-sandbox d19eeeab 81 93 83.5 1 5 2.6 × 109
sonatype-nexus-community/nexus-repository-helm 5517c8e6 18 32 32.0 0 0 18
spotify/helios (helios-services) 0232600b 190 448 448.0 0 37 190
spotify/helios (helios-testing) 78a86465 43 474 474.0 0 7 43

Dataset Construction. We construct a dataset of possible flaky
regression-test histories based on IDoFT, as it contains informa-
tion for “flakiness-introducing commits” (FICs) and commits on
which tests have originally been identified as flaky (“iDFlakies com-
mit” [4]) for a subset of flaky tests in the dataset. These commits
can conveniently serve as boundaries for the test result histories
we construct. Specifically, we

• select projects from IDoFT with tests that have a known FIC,
• filter out projects, for which we are not able to build and test
the Maven modules in the IDoFT dataset in the iDFlakies
commit (e.g., due to broken dependencies),

• run the modules’ test suites on each commit in the commit
history between the FIC and the iDFlakies commit, and

• repeat the test execution across these commits 30 times to
increase the likelihood of observing flakiness and increasing
the dataset: With 30 repetitions across 𝑛 commits for each
module, we obtain 30𝑛 possible regression test histories.

3 INITIAL RESULTS AND FUTUREWORK
So far, we have successfully applied the outlined dataset construc-
tion methodology to 11 module/FIC combinations across 8 Maven
projects. The dataset2 contains 28 200 test result histories for 840 tests
with history lengths ranging from 1 to 474 commits. The key take-
aways from our initial assessment of the dataset are:

Result history variations across 30 repetitions exist, but
they are limited. On hindsight, this is an intuitive result. If test re-
sults were changing at a high rate across repetitions, the developers
would have likely addressed the problem (e.g., by test exclusion).

Using richer result encodings than binary pass/fail yields
different results.We observe 5 cases of deviating classifications
for binary (pass/fail) and non-binary (result type, exception type,
exception message) result encodings in our dataset. In all of these
cases, a test in the dataset fails consistently across 30 repetitions on
some commit. However, it fails with different exceptions (3 cases) or
the same exception but different messages (2 cases). From a manual
investigation, these tests are flaky, but do not become visible as
such if a binary result encoding is applied, as it then consistently
fails across all repetitions. The following observations are based on
the non-binary encoding.

2https://doi.org/10.5281/zenodo.10639030

Simulated regression test histories mix flaky failures with
regression failures. We find 57 tests in 7 modules that fail con-
sistently across all 30 repetitions in one or more commits, out of
which 4 tests exhibit both consistent and flaky failures. This makes
the dataset a good starting point for assessing the discriminative
power of flaky test classifiers like FLAST [8] or FlakeFlagger [1]
across flaky- and consistent-failing tests/commits.

Failure distributions vary across commits. Out of 58 sim-
ulated flaky test histories that fail on more than a single commit
in our dataset, 31 show significantly (Fisher’s exact test, 𝛼 = 0.05,
12 𝑝-values via Monte-Carlo simulation) differing failure distribu-
tions across commits. This may hint at an opportunity for better
debugging of flaky tests, for which higher failure rates are favorable.
However, this is an early-stage result based on 30 repetitions and
requires further investigation on how commits with higher failure
rates can be identified without numerous re-runs.

ACKNOWLEDGMENTS
We appreciate Qingyu Li’s help in the data collection process. The
authors are supported by the Deutsche Forschungsgemeinschaft
(DFG) – 496588242 (IDEFIX) and the LMU Postdoc Support Fund.

REFERENCES
[1] Abdulrahman Alshammari, Christopher Morris, Michael Hilton, and Jonathan

Bell. 2021. FlakeFlagger: Predicting Flakiness Without Rerunning Tests. In Proc.
ICSE. IEEE, 1572–1584. https://doi.org/10.1109/ICSE43902.2021.00140

[2] Martin Gruber, Michael Heine, Norbert Oster, Michael Philippsen, and Gordon
Fraser. 2023. Practical Flaky Test Prediction using Common Code Evolution and
Test History Data. In Proc. ICST. IEEE, 210–221. https://doi.org/10.1109/ICST57152.
2023.00028

[3] Wing Lam. 2020. International Dataset of Flaky Tests (IDoFT). http://mir.cs.
illinois.edu/flakytests Accessed: 2023-12-07.

[4] Wing Lam, Stefan Winter, Anjiang Wei, Tao Xie, Darko Marinov, and Jonathan
Bell. 2020. A Large-Scale Longitudinal Study of Flaky Tests. Proc. ACM Program.
Lang. 4, OOPSLA, Article 202 (2020), 29 pages. https://doi.org/10.1145/3428270

[5] Johannes Lampel, Sascha Just, Sven Apel, and Andreas Zeller. 2021. When Life
Gives You Oranges: Detecting and Diagnosing Intermittent Job Failures at Mozilla.
In Proc. ESEC/FSE. ACM, 1381–1392. https://doi.org/10.1145/3468264.3473931

[6] Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn. 2021.
A Survey of Flaky Tests. ACM Trans. Softw. Eng. Methodol. 31, 1, Article 17 (2021),
74 pages. https://doi.org/10.1145/3476105

[7] Xuezhi Song, Yun Lin, Siang Hwee Ng, Yijian Wu, Xin Peng, Jin Song Dong, and
Hong Mei. 2022. RegMiner: Towards Constructing a Large Regression Dataset
from Code Evolution History. In Proc. ISSTA. ACM, 314–326. https://doi.org/10.
1145/3533767.3534224

[8] Roberto Verdecchia, Emilio Cruciani, Breno Miranda, and Antonia Bertolino. 2021.
Know You Neighbor: Fast Static Prediction of Test Flakiness. IEEE Access 9 (2021),
76119–76134. https://doi.org/10.1109/ACCESS.2021.3082424

https://github.com/TooTallNate/Java-WebSocket/
https://github.com/TooTallNate/Java-WebSocket/commit/822d40f50f07ee408ab517e2bef7247cf70f1f43
https://github.com/apereo/java-cas-client/
https://github.com/apereo/java-cas-client/tree/master/cas-client-core
https://github.com/apereo/java-cas-client/commit/5e36559b15c3077253f6548bc9dd00c471a372a2
https://github.com/eclipse-ee4j/tyrus/
https://github.com/eclipse-ee4j/tyrus/tree/master/tests/e2e/standard-config
https://github.com/eclipse-ee4j/tyrus/commit/ce3b8c76c8e25d6f60463c6ec544330aee6c6b3b
https://github.com/feroult/yawp/
https://github.com/feroult/yawp/tree/master/yawp-testing/yawp-testing-appengine
https://github.com/feroult/yawp/commit/abae1782b0a0b1f1be33659ded4d4b690392baa6
https://github.com/fluent/fluent-logger-java/
https://github.com/fluent/fluent-logger-java/commit/5fd46383ed0bf599e01d6d24cabf2a0e5c4d0cfa
https://github.com/fluent/fluent-logger-java/
https://github.com/fluent/fluent-logger-java/commit/87e957ae22ff470ccc66f68b16f279044b7ee47f
https://github.com/javadelight/delight-nashorn-sandbox/
https://github.com/javadelight/delight-nashorn-sandbox/commit/d0d651ff3dc49878ac4faa4acebceab73412d4c0
https://github.com/javadelight/delight-nashorn-sandbox/
https://github.com/javadelight/delight-nashorn-sandbox/commit/d19eeeab22efa109f337f7b34e7ef687ce2d63ba
https://github.com/sonatype-nexus-community/nexus-repository-helm/
https://github.com/sonatype-nexus-community/nexus-repository-helm/commit/5517c8e6c792d9a82d803737c40c7bfc3ba5033b
https://github.com/spotify/helios/
https://github.com/spotify/helios/tree/master/helios-services
https://github.com/spotify/helios/commit/0232600ba1f71e0a8b01267e0bb1dba644a22359
https://github.com/spotify/helios/
https://github.com/spotify/helios/tree/master/helios-testing
https://github.com/spotify/helios/commit/78a86465212167f276c0f1586c91fd458949e425
https://doi.org/10.5281/zenodo.10639030
http://gepris.dfg.de/gepris/projekt/496588242
https://doi.org/10.1109/ICSE43902.2021.00140
https://doi.org/10.1109/ICST57152.2023.00028
https://doi.org/10.1109/ICST57152.2023.00028
http://mir.cs.illinois.edu/flakytests
http://mir.cs.illinois.edu/flakytests
https://doi.org/10.1145/3428270
https://doi.org/10.1145/3468264.3473931
https://doi.org/10.1145/3476105
https://doi.org/10.1145/3533767.3534224
https://doi.org/10.1145/3533767.3534224
https://doi.org/10.1109/ACCESS.2021.3082424

	Abstract
	1 Introduction
	2 Obtaining Flaky Regression-Test Histories
	3 Initial Results and Future Work
	References

