
The Transformation Game:
Joining Forces for Verification

Dirk Beyer and Nian-Ze Lee

LMU Munich, Munich, Germany

Abstract. Transformation plays a key role in verification technology,
conveying information across different abstraction layers and underpin-
ning the correctness, efficiency, and usability of formal-methods tools.
Nevertheless, transformation procedures are often tightly coupled with
individual verifiers, and thus, hard to reuse across different tools. The lack
of modularity incurs repeated engineering effort and the risk of bugs in
the process of ‘reinventing the wheel’. It can be seen as a new paradigm to
construct verification technology by employing standardized formats and
interfaces for information exchange, and by building modular transformers
between verification artifacts. Following this paradigm of modular trans-
formation, recent works have (1) enhanced and complemented the state
of the art by transforming verification tasks and applying tools for other
modeling languages or specifications, (2) built new tools by combining
mature ones via standardized formats for exchanging verification artifacts,
and (3) communicated certificates of verification results to improve usabil-
ity and explainability. In this paper, we survey existing transformation
procedures and advocate the paradigm of modular transformation and
exchange formats. Our vision is an ecosystem of reusable verification
components that supports joining forces of all available techniques, allows
agile development of new tools, and provides a common ground to evaluate
and compare future scientific advancements: via modular transformation.

Keywords: Formal verification · Model checking · Transformation · Stan-
dard exchange format · Intermediate representation · Verification witness
· Component-based design · Modularity · Quality

1 Introduction

Formal verification, including model checking [1], is an important technology
to examine with mathematical rigor whether a computational model satisfies a
given specification. It has attracted significant attention not only in academia
but also in industry and helped to find potential errors or delivered correctness
guarantees of practical computing systems [2, 3, 4, 5, 6, 7]. The challenges for formal
verification in the modern era have escalated due to multiple reasons, including
the ever-increasing system complexity, emerging applications with domain-specific
modeling languages, interactions among heterogeneous computing components,
and the usage of generative artificial intelligence to aid the implementation of

https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0002-8096-5595

2 Dirk Beyer and Nian-Ze Lee

systems. Therefore, formal-methods researchers and practitioners have to consider
the following essential question: How can we continue to improve existing
tools and develop new tools to tackle the aforementioned challenges
while keeping up with the ever-increasing development pace?

To approach this question, we observe that formal-methods tools heavily
rely on transformation. For example, consider the following three-step approach:
a model in a frontend modeling language and a specification are transformed to
an intermediate representation used by a tool, the semantics of the intermediate
representation is transformed to mathematical formulas in the logic used by a
prover, and the answer of a prover is transformed back to a certificate in the
frontend language to help users to understand the verification results. Various
transformation procedures connect different abstraction layers in formal-methods
tools and play a key role in their correctness, efficiency, and usability. This
‘transformation game’ can be made explicit, and the steps could be decomposed
such that the components implementing each step can be reused.

Technologies that can be used as library, such as SAT [8] and SMT [9] solvers,
usually have standardized input formats and application programming interfaces
to facilitate their usage by formal-methods tools in an off-the-shelf manner. On the
contrary, the transformation procedures in verification tools are often integrated
and hard-wired in individual tools. The lack of modularity and reusability makes
the development of formal-methods tools error-prone, because developers often
need to re-implement the same techniques. For example, a new verifier for the
programming language C [10] often needs to implement the functionality to
interpret the semantics of C [11] (e.g., as logical formulas in SMT-LIB 2 format [12])
and can hardly reuse the transformation procedures in other mature software
verifiers. This slows down the progress pace in the development of verification
tools and the growth of the importance of formal methods. The goal of this paper
is to advocate transformation as a means to decompose verification tools.

1.1 Transformation as a Paradigm to Develop Formal-Methods Tools

We advocate the possibility to construct verification tools by means of trans-
formation, to continue the success story of formal verification while facing the
contemporary challenges. The paradigm of modular transformation calls for using
or inventing exchange formats to represent verification artifacts, building modular
transformers based on the exchange formats, and employing transformers as
building blocks to develop new tools.

A related paradigm to modular transformation is cooperative verification [13],
which advocates that several tools should work together to solve a task by exchang-
ing information. A framework has been developed to facilitate the combination
and collaboration of tools [14]. Modular transformation differs from cooperation
verification in its emphasis on the transformation components of verification tools.
While cooperative verification investigates how different tools can solve a verifica-
tion task together, modular transformation deals with the design of transformation
components such that they are maximally reusable and can be easily combined
to construct new verification tools, with or without cooperation. A major goal of

The Transformation Game: Joining Forces for Verification 3

modular transformation is to decompose tightly integrated monolithic tools for
modularity. The following two ingredients are essential to achieve the goal:

1. standard exchange formats for communicating via verification artifacts and
2. composable standalone transformers based on verification artifacts.

The terms verification artifact and transformer are taken from previous work
on cooperative verification [13], and we will define and extend them for modular
transformation in Sect. 2.

Modular transformation follows the well-known principles of single responsibil-
ity [15] and separation of concerns in component-based software engineering [16].
The merits of these principles have been witnessed in different application domains,
including various utility programs in the Unix operating system [17] (i.e., the
Unix philosophy [18]) and numerous dialects and translators in the Llvm/MLIR
compilation infrastructure [19, 20]. In the area of formal verification, research
works that follow the paradigm of modular transformation have contributed to

1. combine multiple tools via standard exchange formats for verification [21, 22],
validation [23, 24], and testing [25, 26],

2. advance the state of the art by transforming verification tasks and applying
tools or algorithms for other modeling languages [27, 28, 29] or specifica-
tions [30, 31, 32], and

3. enhance the explainability of verification results by transforming certifi-
cates [33, 34, 35].

1.2 Our Vision: Composition through Transformation

How can modular transformation help to address the modern challenges of formal
verification? Using the verification of emerging computational models as an exam-
ple, we illustrate the paradigm’s potential below. Suppose we need to build a new
verifier for computational models described in a domain-specific language (DSL),
which is unsupported by any existing formal-methods tool. To leverage mature
verification technology, for example, verifiers for the programming language C,
we develop a standalone transformer to translate the DSL to the programming
language C. Following the modular transformation paradigm, a new verifier for the
DSL can be constructed by combining the translator with state-of-the-art verifiers
for C programs in an off-the-shelf manner. This strategy uses the C language as
the exchange format to connect the translator with verifiers for C programs and
saves the effort to repeatedly implement a frontend for the DSL in every C verifier.
Of course, it is also possible to develop a dedicated verifier from scratch that
works directly on the DSL. This approach may leverage specific characteristics
of the DSL and yield more powerful verifiers. However, the composition of the
translator and existing, highly tuned verifiers for C programs can serve as baseline
for performance comparison. For example, a recent study [27] compares dedicated
verifiers for the Btor2 language [36], a DSL to describe model-checking problems
of hardware circuits, to compositional verifiers formed by a Btor2-to-C translator
and verifiers for C programs. While the dedicated Btor2 verifiers are better at

4 Dirk Beyer and Nian-Ze Lee

C [11]

Btor2 [36]

Llvm-IR [19]

New Language

CPAchecker [37] SeaHorn [38]

AVR [39] New Verifier

Fig. 1: Transformation network for joining forces via translating verification tasks

proving the safety of hardware circuits, the compositional verifiers reveal bugs
in hardware circuits that the dedicated verifiers overlook.

Next we explain how transformation networks bring us closer to the modular
transformation paradigm, and how to join forces for formal verification. We
illustrate this in Fig. 1 on the programming language C, the Llvm intermediate
representation [19], and the hardware modeling language Btor2 [36] as examples.
The transformation network bridges the gaps between various verification com-
munities by translating frontend modeling languages and applying all available
backend tools to verify a task. For example, a hardware circuit in the Btor2
language can be translated to a program in C or the Llvm [19] intermediate
representation (IR) and given to verifiers for C, e.g., CPAchecker [37], or Llvm,
e.g., SeaHorn [38], respectively. A program in C or Llvm can also be translated
to a Btor2 circuit and verified by hardware model checkers, such as AVR [39].

In the transformation paradigm, an emerging new modeling language can
leverage state-of-the-art verifiers for different languages once the corresponding
translators are constructed, which also provides a common ground to evaluate
future research advancements. Thanks to the emphasis on standard exchange
formats and interfaces in the transformation paradigm, developing new tools
as combinations of existing ones becomes easier. The principles of single re-
sponsibility and separation of concerns facilitate the participation of community
members in the implementation and maintenance of transformers because they
are compact and extensible.

While transformation procedures frequently appear in the verification lit-
erature, the modular transformation paradigm encourages to decompose the
verification into modular components that are easier to develop and maintain.
The scope of transformation procedures extends beyond models and specifications
to certificates, invariants, and counterexamples. The modular transformation
paradigm can significantly increase our performance in developing new verification
tools: It will guide us to achieve a more reusable and robust infrastructure for for-
mal verification, avoid bugs in the process of reimplementing standard verification
components, and facilitate combination and cooperation between tools through
standard exchange formats and interfaces (cf. community discussion [40, 41]).

https://www.iso.org/standard/74528.html
https://github.com/Boolector/btor2tools
https://llvm.org/
https://cpachecker.sosy-lab.org/
https://seahorn.github.io/
https://github.com/aman-goel/avr

The Transformation Game: Joining Forces for Verification 5

We humbly contribute this article to the Festschrift on the occasion of Joost-
Pieter Katoen’s 60th birthday, in order to trigger discussion in the community
and draw attention to the modular-transformation paradigm as a potential so-
lution to the modern challenges of formal verification. The rest of this article
is organized as follows: Section 2 defines verification artifacts and transformers,
Sect. 3 surveys various transformers, either modular or tightly integrated ones,
in formal-methods tools, Sect. 4 highlights the construction of new verification
tools using transformers, Sect. 5 discusses prospective benefits and impacts of the
modular-transformation paradigm, before we conclude in Sect. 6.

2 Verification Artifacts and Transformers

As foundation for the discussion in the rest of this paper, we define verification
artifacts and transformers in this section. The definitions below refine the notions
used in the context of cooperative verification [13].

Definition 1. A verification artifact is (1) an input, output, or intermediate
object consumed or produced by a formal-methods tool and (2) can be represented
in an exchange format defined for communicating information among the tool’s
internal components or with other formal-methods tools.

Note that a verification artifact is required to be representable in an exchange
format devised for verification purposes. Although exchange formats do not need
to be human-readable (e.g., the binary AIGER format [42] for hardware model
checking), serializing an object to a byte stream does not qualify the object
as a verification artifact because serialization protocols such as Java Object
Serialization Specification are not designed specifically for formal verification.

Table 1 lists the most common and important types of verification artifacts.
A model M ∈ M is a description of the system under verification. It can be
written in a high-level modeling language used by human designers or an IR
used by tools. A specification φ ∈ Φ defines the expected behavior of the system
under verification. A model M and a specification φ jointly form a verification
task, which is given to a formal verifier as input. A verdict r ∈ R is a verifier’s
decision on a verification task. A verifier may produce three different verdicts:
TRUE, meaning that M |= φ; FALSE, meaning that M ̸|= φ; and UNKNOWN, meaning
that the verification was inconclusive. A witness ω ∈ Ω is a certificate produced
by a tool to explain its verdict on a verification task. We interpret witnesses
more flexibly than verification witnesses [43] for verifiers and also consider test
cases as witnesses from test-case generators. Tools that produce witnesses for
their analysis results are said to be certifying [44, 45]. A verification condition
vc ∈ VC is an intermediate object produced by a verifier to encode a partial
or the complete behavior of the model as a set of constraints in the logic of an
underlying prover used to decide the satisfiability of vc.

Definition 2. A transformer is a procedure that consumes one or more verifica-
tion artifacts as input and produces one or more verification artifacts as output
in polynomial time.

https://docs.oracle.com/en/java/javase/22/docs/specs/serialization/index.html
https://docs.oracle.com/en/java/javase/22/docs/specs/serialization/index.html

6 Dirk Beyer and Nian-Ze Lee

Table 1: Examples of important verification artifacts

Type Notation Usage
Model M Description of the system under verification
Specification Φ Expected behavior of the system under verification
Verdict R Decision on whether a model satisfies a specification
Witness Ω Certificate explaining the verdict of a tool
Verification
condition

VC Set of constraints that encode the behavior of a model

To capture a transformer’s essence of being simple and fast compared to
a prover or a verifier (called analyzer in cooperative verification [13, 14]), we
require it to produce output artifacts in time polynomial in the size of the
input artifacts. The definition can be relaxed in other scenarios, e.g., when a
transformation component runs faster than the main verification process but
not in polynomial time.

Table 2 lists the most common and important types of transformers. A trans-
lator consumes a model M and produces a behaviorally equivalent model M ′

in a different modeling language. An encoder consumes a model M and pro-
duces a verification condition vc that describes partial or complete behavior
of M . A specification transformer consumes a model M and a specification φ
and produces a transformed model M ′ and a different specification φ′ such that
M |= φ ⇐⇒ M ′ |= φ′ (i.e., the two verification tasks are equisatisfiable).
A witness transformer consumes a model M and a witness ω and produces a
transformed witness ω′ for other purposes, e.g., by making it more precise to
replay a counterexample. A slicer cuts off some parts of the consumed model M
that do not affect the satisfiability of the specification φ by M and produces a
sliced model M ′. A splitter decomposes a verification task (M,φ) into smaller
tasks, where the number of split tasks is polynomial in the sizes of M and φ.
A pruner removes irrelevant parts of the consumed model M according to a
witness ω and produces a simplified model M ′ (e.g., by deleting paths marked
as fully explored in ω from M). An annotator augments the consumed model M
according to a witness ω and produces an augmented model M ′ (e.g., by label-
ing the invariants recorded in ω as assumptions to M). A reducer consumes a
model M and produces a model M ′ that is in the same modeling language and
easier to verify. An instrumentor expands a model M and produces a model M ′

in the same modeling language to record information for further analysis, e.g.,
by adding run-time monitors to M .

The key difference between a pruner and a reducer (resp. an annotator and
an instrumentor) in the above classification is the presence of a witness as an
input to the transformer. A pruner or an annotator relies on the information in
the witness to transform the input model, whereas a reducer or an instrumentor
transforms the model without taking a witness into account.

The Transformation Game: Joining Forces for Verification 7

Table 2: Examples of important transformers

Type Signature Functionality
Translator M 7→ M Translates a model to a behaviorally equivalent

one in a different language
Encoder M 7→ VC Describes partial or complete behavior of a model

as a verification condition
Specification
transformer

M× Φ 7→ M× Φ Converts a verification task to an equisatisfiable
one with a different specification

Witness
transformer

M×Ω 7→ Ω Transforms a witness for a model to another
witness, e.g., by making it more precise

Slicer M× Φ 7→ M Removes some parts of the model that do not
affect the satisfiability of the specification

Splitter M×Φ 7→ (M×Φ)+ Decomposes a verification task into a polynomial
number of smaller tasks

Pruner M×Ω 7→ M Removes irrelevant or fully-explored parts of a
model based on a witness

Annotator M×Ω 7→ M Augments (e.g., annotating invariants) a model
based on a witness

Reducer M 7→ M Simplifies a model (in the same language) so that
it is easier to verify

Instrumentor M 7→ M Expands a model (in the same language) to
record information for further analysis

3 Transformers in Formal-Methods Tools

In this section, we survey transformation approaches and tools developed for
formally verifying hardware and software computational models. Following the
classification of transformers discussed in Sect. 2, our survey aims to cover
representative transformers of different types in the literature. Table 3 lists
the transformers discussed in this section (and the tools constructed by using
transformers, which will be discussed in Sect. 4).

3.1 Translators

A translator consumes a model as input and produces a behaviorally equivalent
model in a different modeling language. We first look at translators whose outputs
are in a high-level language used by human engineers to design the system and
then discuss translators whose outputs are an intermediate representation used
in or consumed by other tools.

Translators can also be used to construct analyzers for the source language via
their combinations with tools for the target language as backend [27, 28, 33, 46].
Such translators can help with comparing and bridging verification approaches
for different computational models and will be covered in Sect. 4.1.

8 Dirk Beyer and Nian-Ze Lee

To High-Level Modeling Languages. Models for digital sequential circuits
can be represented in hardware-description languages at the register-transfer level,
such as Verilog [47]. A Verilog circuit can be translated into a behaviorally
equivalent C program to leverage analysis techniques for software. For example,
Verilator [48] translates Verilog circuits to multi-threaded C++ programs,
which can be compiled and executed for efficient circuit simulation. VHD2CA [49]
translates VHDL [50] circuits to counter automata, which can be dumped as
C programs and checked by software analyzers.

To Intermediate Representations. Intermediate representations are used by
tools to exchange information among their internal components or with external
tools. They usually have a simple syntax to facilitate parser development of the
tools and precise semantics to underpin formal reasoning of the models. Many IRs
have been proposed as the input format for formal verifiers. For example, SMV [51]
is a language to describe finite-state transition systems and allows properties
to be specified in CTL; AIGER [42] is used to describe a bit-level and-inverter
graph with memory elements; Btor2 [36] lifts AIGER to the word level by
inheriting operations from the SMT-LIB 2 format [12]. These three formats are
mainstream in the community of hardware model checking and often used as target
languages by translators. For example, Verilog2SMV [52] and Ver2Smv [53]
translate a Verilog circuit to an SMV model, which can be given to nuxmv [54]
for verification. A word-level circuit in the Btor2 language can be bit-blasted to
an AIGER circuit by Btor2AIGER from the Btor2 tool suite [55] to leverage
bit-level model checkers, such as ABC [56]. CIRCT [57] is an open-source tool
chain for electronic design automation based on the MLIR [20] framework, offering
various IRs and tools to represent and translate hardware circuits.

In the community of software analysis, Boolean programs [58] and Goto pro-
grams have been used by pioneering verifiers, e.g., Slam [2, 59] and Cbmc [60], as
the internal problem representation. To facilitate the analysis of C code, Cil [61],
the C Intermediate Language, decomposes complex constructs of C into simpler
ones but still works at a higher level than the assembly code. Since the inven-
tion of Llvm [19], some software analyzers rely on its rapidly-growing compilers,
including Clang, as frontend to translate the source programming language
to Llvm-IR, used as the internal data structure. For example, Llbmc [62] and
SeaBmc [63] translate C to Llvm-IR and perform bit-precise BMC with SMT
solving. Klee [64] is an Llvm-based symbolic-execution engine for test-case gener-
ation. Symbiotic [65, 66] extends Klee with program slicing and instrumentation
to implement a full-fledged software verifier. SeaHorn [38] uses Clang as its
frontend and generates verification conditions from Llvm-IR. Smack [67] trans-
lates Llvm-IR to Boogie [68], an intermediate verification language, and relies
on verifiers for Boogie as backend. MLIR [20] is an extension of Llvm to flexibly
define “dialects” of Llvm-IR and automatically generate translators between the
dialects. In a similar spirit, the software verifier Infer [5] uses an IR called SIL [69]
to decouple the frontend and backend development.

The Transformation Game: Joining Forces for Verification 9

3.2 Encoders

An encoder consumes a model M and produces a verification condition vc that
describes partial or complete behavior of M in terms of the logic used by some
prover. Commonly used logics for formal verification include propositional logic [8],
first-order logic with background theories [9], and constrained Horn clauses
(CHC) [70], a fragment of first-order logic. Formulas in propositional logic are
described in DIMACS format [71] and given to Boolean Satisfiability (SAT) solvers.
Formulas in first-order logic modulo some background theory are described in
SMT-LIB 2 format [12] and given to Satisfiability Modulo Theory (SMT) solvers
that support the theory. CHC formulas are also described in SMT-LIB 2 format
and given to Horn solvers [72, 73, 74, 75].

While prover-based verifiers have an encoding procedure from their IRs to
the logic of the prover, the procedure is often tightly integrated with the verifiers
and hardly reusable in other tools. We highlight several tools that can dump
verification conditions and be used as standalone encoders. EBMC [76] takes as
input a Verilog circuit or an SMV model, unrolls the model, then generates
verification conditions for the behavior of the unrolled model as SAT or SMT
formulas. Llbmc [62] and SeaBmc [63] consume a program in Llvm-IR and produce
formulas for bounded model checking as SMT formulas. SeaHorn [38] consumes
Llvm-IR and produces verification conditions as CHC formulas. Boogie [68] and
Viper [77] are intermediate languages for verification, accompanied by encoders
from a Boogie or Viper program to SMT formulas.

Besides the logics discussed above, linear programming and its variants have
also been used to encode verification conditions for analyzing software pro-
grams [78] or neural networks [79, 80].

3.3 Specification Transformers

A specification transformer consumes a verification task (M,φ) and produces
another verification task (M ′, φ′) such that (1) φ ̸= φ′ and (2) M |= φ ⇐⇒
M ′ |= φ′. Since reachability-safety analysis has received much (if not most) atten-
tion, and many mature tools are available, several approaches have been invented
to transform verification tasks with other specifications to reachability safety.

Schuppan and Biere proposed a transformation for finite-state transition
systems with a liveness specification [30]. The key observation is that a counterex-
ample to a liveness specification in a finite-state model has a “lasso” shape, which
consists of a prefix of finite length leading to the entry of a loop. By enlarging the
state space of the original model with a shadow variable to record visited states
and introducing an additional input as an oracle to detect the entry of a lasso’s
loop, the approach transforms a verification task with a liveness specification to
another task with a reachability-safety specification to find a lasso.

CCured is a type system to infer the memory safety of a program [81]. For
pointers whose safety cannot be statically inferred, CCured inserts run-time
checks in the original program, which can be used as error locations and checked
by model checkers, such as Blast [31].

10 Dirk Beyer and Nian-Ze Lee

Lal and Reps proposed a transformation from programs with a concurrency-
safety specification to sequential programs with a single-thread reachability-safety
specification [32]. The main idea is to limit the number of context switches in
the concurrent program and simulate the behavior of the concurrent program
with a sequential program.

Testability transformation [82] studies mappings from a model M and a
coverage specification (also called test-adequacy criterion) φ to a model M ′ and a
coverage specification φ′ such that for any set T of tests, T is adequate for M
w.r.t. φ if and only if T is adequate for M ′ w.r.t. φ′. Testability transformation
is used to facilitate generation of test cases.

It was also suggested to partition a conjunctive specification into its conjoined
parts and verify the program several times with smaller specifications [83].

3.4 Witness Transformers

Verification witnesses [43] were introduced as justifications for the verification
verdict. In particular, there is no prescribed level of abstraction for verification
witnesses. For example, violation witnesses can be very abstract by only avoiding
some parts of the program, or they can be as concrete as a test case by assigning
explicit values to inputs. The model checker Blast contains a procedure to
internally transform a counterexample, which can be seen as a violation witness
in the form of a feasible error path, to test cases [84]. We will discuss several
witness transformers and how they can be used to combine tools in Sect. 4.2.

3.5 Slicers

A slicer consumes a verification task (M,φ) and produces a model M ′ by cutting
off the parts in M that do not affect its satisfaction of φ. For hardware model
checking, slicing computes the cone of influence of the asserted signals and removes
the circuitry outside the cones from the original circuit. For software verification,
slicing [85] removes program operations that do not touch variables on which
the assertions depend directly or indirectly.

Slicing has been shown to be an effective technique for software verifica-
tion [86]. The tool Symbiotic [65, 66] applies slicing and instrumentation as
modular transformations, before a symbolic-execution backend like Klee [64]
is asked to perform a reachability analysis.

A project by Joost-Pieter Katoen studied the application of tools for software
model checking to automotive code [87]. This project also investigated the impact
of slicing, and confirmed the conclusion from the above study on Symbiotic.
Slicing had a significant impact on the performance and effectiveness of several
software verifiers [88, Sect. 4.8 “The Effect of Static Analysis”].

3.6 Splitters

A splitter decomposes a verification task (M,φ) into several smaller tasks such
that (1) M |= φ can be derived from the verification results of the smaller

The Transformation Game: Joining Forces for Verification 11

tasks and (2) the number of the smaller verification tasks is polynomial in
the sizes of M and φ.

Splitting was first studied for logic programs to decompose them into a
bottom part and a top part to simplify the computation of answer sets [89].
It has been used also to scale symbolic execution by splitting program paths
into several ranges (i.e., sets of paths) and exploring path ranges in parallel [90].
Ranged symbolic execution can be further generalized to run different analyses
on different ranges [91]. Splitting has also been used to accelerate data-flow
analysis by decomposing a control-flow graph into several subgraphs, applying
data-flow analysis to each subgraph, and combining the resulting invariants from
each subgraph [92, 93].

A program can also be decomposed into a set of straight-line programs that
correspond to the verification conditions of a Hoare-style proof of correctness. This
strategy has been implemented in the verification tool chain VST-T [94]. Later the
same strategy has been used by the witness validator LIV [24], which decomposes
a C program into a set of C programs that can be verified with off-the-shelf
verifiers for C. Also the verifier Bubaak-Split [95] splits programs into parts that
can be verified in parallel. However, it is not clear if Bubaak-Split’s splitting can
be done in polynomial time, because it involves a lightweight verification pass.

3.7 Pruners and Annotators

Pruners and annotators are dual to each other. While they share the same
signature M×Ω 7→ M, the former use the information in witnesses to remove
or simplify irrelevant parts of the model, and the latter add hints to the model
for further analyses.

For example, data-flow analysis can be combined with a pruner that transforms
the control-flow graph [96]. Propagating variables with constant values discovered
in data-flow analysis (which can be stored as a witness), the pruner simplifies the
original control-flow graph to a subgraph to speedup the analysis. In Sect. 4.3,
we will discuss how a pruner [22] can be used to turn any off-the-shelf model
checker into a conditional model checker [97].

Program annotators have been used to coordinate static model checkers and
test-case generators by explicitly documenting the assumptions made by model
checkers in the program under verification to guide test-case generators, such
as symbolic execution, to explore unverified parts of the program [98, 99]. They
have also been used to orchestrate automatic and interactive verifiers [35, 100].
More details will be discussed in Sect. 4.3.

3.8 Reducers and Instrumentors

Reducers and instrumentors are dual to each other. While they share the same
signature M 7→ M, the former simplify the model to make it easier to verify, and
the latter expand the model by adding functionalities, e.g., run-time monitors, to
record information for further analyses. In contrast to reducers, instrumentors
usually slightly increase the workload for verifiers.

12 Dirk Beyer and Nian-Ze Lee

Acceleration [101, 102], shrinking [103], and abstraction [104, 105, 106] are three
important techniques to reduce programs with loops. Loop acceleration replaces a
loop with its transitive closure to speed up the convergence to a fixed point. Loop
shrinking reduces a loop that processes a large array to an overapproximating
but much smaller loop, which can be handled by bounded model checking. Loop
abstraction overapproximates a loop by, for example, havocing variables modified
in the loop. The key idea behind the three reducers is to produce a program
with simplified computation in loops that overapproximates the original program,
such that the correctness of the simplified program (which is easier to prove)
implies the correctness of the original program.

Program instrumentors add auxiliary functionalities to a model to record
more information for further analyses. For example, Symbiotic [65, 66] checks
memory safety by instrumenting C code that tracks allocated memory regions
to the original program [107].

4 Constructing Formal-Methods Tools using Transformers

In this section, we discuss how the modular-transformation paradigm outlined
in Sect. 1.1, which emphasizes standardized exchange formats for verification
artifacts and modular transformers, can help to construct new formal-methods
tools in an agile and reliable way by combining existing ones with transformers.
We will highlight tool combinations using translators and witness transformers,
because they can help to unify and join forces of various verification techniques,
such as hardware model checking vs. software verification and automatic model
checking vs. interactive verification.

To facilitate tool combination, CoVeriTeam [14] is a domain-specific language
and tool to combine off-the-shelf executable components. Transformers can be
composed with other components to implement a composite verification tool.
For example, it was used to compose several components to construct tools us-
ing algorithm selection and portfolios [108]. CoVeriTeam has also been used
to implement approaches like ranged analysis [91], circuit-based program verifi-
cation [29], cooperative test-case generation [109], conditional testing [25], and
component-based CEGAR [21].

4.1 Combining Tools with Translators

As mentioned in Sect. 1, one challenge to formal verification in the modern era is
to handle systems with heterogeneous computational models, including hardware
circuits, software programs, and cyber-physical devices. Although formal methods
for different computational models share similar concepts and techniques, their
alignment with distinct modeling languages creates gaps between the research
communities. These gaps hinder one community from enjoying the advancements
of the others, and the potential of leveraging techniques developed in related
areas to improve the state of the art may be overlooked. Transformers, especially
translators, can help to bridge the gaps between communities and provide a
common ground to compare approaches from different communities.

The Transformation Game: Joining Forces for Verification 13

For example, the tool v2c [110] translates a Verilog circuit to a cycle-
accurate and bit-precise C program, which can be consumed by software verifiers
to analyze the properties of the Verilog circuit. A circuit model can also be
represented in an intermediate representation designed for verification, e.g., the
Btor2 modeling language [36], the input format in the Hardware Model-Checking
Competitions (HWMCC) [111, 112]. The tool Btor2C [27] translates a Btor2
model to an equivalent C program, enabling head-to-head comparison between
hardware model checkers from HWMCC and software verifiers for C programs in
the Competitions on Software Verification (SV-COMP) [113]. The evaluation shows
that software verifiers can detect more hardware bugs than mature hardware
model checkers [27]. Similarly, Btor2MLIR [28] defines a dialect for Btor2 in
the MLIR [20] framework and translates a Btor2 model into Llvm-IR. Software
analyzers consuming Llvm-IR, such as SeaHorn [38], Smack [67], and Klee [64],
can then be used to examine properties of Btor2 circuits.

Translation from the other direction, i.e., from software to hardware, has also
been investigated. For example, c2v [114] translates a C program to a Verilog
circuit by first compiling it to Llvm-IR [19] and translating the IR to Verilog.
Hardware model checkers can be applied to the translated circuit to analyze
properties of the original C program. The model checker Kratos2 [115] uses the
K2 language as its intermediate representation for C programs and can be used
as a translator to fold a C program into a sequential circuit in SMV, Btor2, or
AIGER formats. Using Kratos2 as a translator, the software verifier CPV [29]
employs award-winning verifiers in HWMCC, such as ABC [56] and AVR [39], as
its backend and participated in SV-COMP 2024. As a first-time participant, CPV
performed better than many mature and fine-tuned software verifiers, indicating
the potential of using hardware model checkers for program analysis.

VMT [116] and MoXI [46, 117] are two IRs for infinite-state transition systems.
They both add constructs to define a transition system on top of the SMT-
LIB 2 format [12] and offer translators from various modeling languages to
themselves and vice versa. Their goal is to provide a common ground for comparing
formal-methods tools and exchanging verification tasks: A verification task can
be translated to other modeling languages through them and solved by tools
from other domains. Tools for different modeling languages can be compared
directly by using their translators as preprocessing. Recently, the first direct model
checker for MoXI, MoXIchecker [118], has been proposed, which supports various
background theories to describe model-checking problems without translating
them to other modeling languages.

4.2 Combining Tools with Witness Transformers

Witnesses can be transformed to improve the explainability and usability of
analysis results. For example, a more abstract violation witness can be testified step
by step to a more concrete one [119]. CPA-witness2test implements the approach
of execution-based validation [34, 84] and transforms violation witnesses to test
cases. With the help of CPA-witness2test, witness-generating software verifiers
can be combined with debuggers to exempt programmers from figuring out how to

14 Dirk Beyer and Nian-Ze Lee

interpret violation witnesses and maximize the benefits of formal-methods tools in a
standard software-development environment. Note that, while stepwise testification
may not run in polynomial time,1 it is usually much faster than the verification
process, and hence we also consider stepwise testification as a transformer.

Witness transformers can also convert the information of witnesses produced
by verifiers for different modeling languages to other domains. For example, a
standalone witness transformer from automata-based software witnesses [43] to
hardware witnesses in the Btor2 language [36] is used to combine software
verifiers and Btor2 witness validators into a certifying hardware model checker
Btor2-Cert [33]. The software verifier CPV [29] also has a witness transformer
from Btor2 witnesses to software witnesses to combine hardware model checkers
and software witness validators.

Witness transformers can also be used to combine automatic and interactive
software verifiers [35]. Invariants found by automatic verifiers and recorded in
correctness witnesses can be transformed to program annotations, e.g., in the
ACSL language [120], and verified by interactive verifiers like Frama-C [121].
Vice versa, the proof obligations discharged by an interactive verifier can be
transformed to a correctness witness, and an automatic witness validator can
be invoked to check the proof obligations.

4.3 Combining Tools with Other Transformers

Transformers can be used to combine tools to cooperatively solve a complex
problem via leveraging their unique strengths. For example, conditional model
checking for software verification [97] uses condition automata (which can be
seen as witnesses in our categorization) to mark the already-explored paths in
a program and instruct subsequent verifiers to work on unexplored paths. To
be used for conditional model checking, a verifier needs to take a condition
automaton into account during its analysis, which incurs extra engineering effort
and hinders a wider adoption of the idea.

Following the modular transformation paradigm, researchers proposed a stan-
dalone pruner to remove the explored parts from a program based on a condition
automaton, which produces a residual program that can be consumed directly
by off-the-shelf verifiers [22]. Using this pruner for preprocessing, any verifier
can become a new conditional model checker without extra engineering effort.
A similar pruner has also been developed for test-case generators [25], where
already-hit test goals are removed from the original program by the pruner to
form a residual program for subsequent test-case generation runs.

Transformers also enable verifiers to be used as building blocks for other
applications beyond their original use cases, such as test-case generation and
witness validation. Using a specification transformer to convert test goals to
error locations for a reachability-safety specification, CoVeriTest [26] generates
test cases by invoking off-the-shelf software verifiers to find counterexamples that

1 E.g., when the testifier resorts to satisfiability solving to refute a violation witness
without feasible error paths.

The Transformation Game: Joining Forces for Verification 15

reach the error locations (i.e., the test goals). The witness validator MetaVal [23]
validates verification witnesses by using an annotator to label the information
in a witness as assumptions (to guide the counterexample search for violation
witnesses) or assertions (to check the invariants for correctness witnesses) in
the original program and invoking software verifiers to analyze the annotated
program. To validate correctness witnesses, LIV [24] uses an annotator to label
a program with invariants and a splitter to decompose the annotated program
into several straight-line subprograms. An off-the-shelf verifier is invoked on the
split programs to check the inductivity of the invariants.

Transformers can also benefit or facilitate the development of verifiers. For
example, to leverage techniques for loop acceleration [101, 102], shrinking [103],
or abstraction [104, 105], developers of verifiers often need to implement the
successful approaches in their own tools again. To mitigate the risk of bugs for
reinventing the wheel, CEGAR-PT [106] is a standalone reducer that implements
various abstraction techniques at the source-code level and can be used by other
verifiers for program transformation. A transformed program is returned as an
ordinary input program to a verifier and can be readily analyzed. To facilitate
transforming witnesses produced by hardware model checkers to witnesses for
programs, the software verifier CPV [29] uses an instrumentor to augment
input C programs before verification.

5 Applications of Transformation to Construct
Modular Tools: Benefits and Impact

Table 3 summarizes the transformers and tools using transformers discussed so far
in this paper. The collected entries in the table are not meant to be comprehensive
because they are limited by the space in this article and by our knowledge. The
table is an initial attempt to draw the community’s attention to the problem of
decomposing verification tools by making transformation modular and explicit. We
also call out the members in the verification community to contribute and maintain
a data base for various transformers and verification tools. Such an effort has been
started recently with a collection of tools for formal methods [122, 123], and we
have added the used transformers to the meta data of the tools that are available
there. In the following, we would like to mention a few example approaches of
modular transformation together with their benefits and potential impact.

Modular Construction of Verification Tools. Modular construction from
components ideally supports agile development processes, which are focussed on
increments. If the solution consists of several independent components, the devel-
opment can also be more independent. This has also two immediate consequences:
First, a system built from loosely coupled components (ideally independent exe-
cutables) is easy to extend, due to the reduced set of preconditions (such as having
to use the same programming language for implementation). Second, a system that
is modularly built using transformers can be more reliable, because the components
might be developed, used, tested, and improved by different and large user groups.

16 Dirk Beyer and Nian-Ze Lee

Table 3: Transformers and formal-methods tools using transformers (column
“Type” is the type of the transformer used by the tool)

Approach/Tool Type Description Ref.
Btor2AIGER Translator From Btor2 to AIGER for

verification
[55]

Btor2C Translator From Btor2 to C for verification [27]
Btor2MLIR Translator From Btor2 to Llvm-IR for

verification
[28]

C2BP (part of
Slam)

Translator From C to a Boolean program for
verification

[2, 58, 59]

c2v Translator From C to Verilog for verification [114]
Cil Translator From C to Cil for analysis [61]
CIRCT Translator Compiler from various hardware

description languages to hardware
IRs

[57]

Cbmc (part of
CProver)

Translator From C to a Goto program for
verification

[60]

Infer Translator From Java, C, C++ to SIL for
verification

[5, 69]

Kratos2 Translator From C to K2 language for
verification

[115]

Llvm Translator Compiler from various programming
languages to Llvm-IR

[19]

MLIR Translator Translate Llvm dialects [20]
MoXI Translator Translation between SMV, Btor2,

and MoXI
[46, 117]

Smack Translator From Llvm-IR to Boogie [67]
v2c Translator From Verilog to C for verification [110]
Ver2Smv Translator From Verilog to SMV for

verification
[53]

Verilator Translator From Verilog to C++ for
simulation

[48]

Verilog2SMV Translator From Verilog to SMV for
verification

[52]

VHD2CA Translator From VHDL to counter automata
and C for verification

[49]

VMT Translator Translation between SMV, Btor2,
and VMT

[116]

Boogie Encoder From Boogie programs into SMT
formulas

[68]

EBMC Encoder From hardware circuits into SAT or
SMT formulas

[76]

Llbmc Encoder From Llvm-IR into SMT formulas [62]
SeaBmc Encoder From Llvm-IR into SMT formulas [63]
SeaHorn Encoder From Llvm-IR into CHC formulas [38]

The Transformation Game: Joining Forces for Verification 17

Approach/Tool Type Description Ref.
Viper Encoder From Viper programs into SMT

formulas
[77]

CoVeriTest Spec.
transformer

From test goals to error locations
and use reachability analyzers to
generate tests

[26]

CSeq Spec.
transformer

From concurrent programs to
sequential programs by limiting
context switches

[32, 126]

Liveness to
reachability

Spec.
transformer

From liveness specification to
reachability specification

[30]

Memory-safety to
reachability

Spec.
transformer

From memory checking to
reachability

[31, 81]

Specification
decomposition

Spec.
transformer

Partition into several smaller
specifications

[83]

Testability
transformation

Spec.
transformer

Improve testability by transforming
the program and coverage
specification

[82]

ACSL2Witness Witness
transformer

Convert ACSL annotations to a
software witness

[35]

Blast Witness
transformer

Convert a counterexample to a test
case

[84]

Btor2-Cert Witness
transformer

Convert a software witness based on
automata to a Btor2 witness

[33]

CPA-witness2test Witness
transformer

Convert a witness to a test case [34]

CProver-
witness2test

Witness
transformer

Convert a witness to a test case [34]

CPV Witness
transformer
and Instru-
mentor

Convert a Btor2 hardware witness
to an automata-based software
witness via instrumentation

[29]

Witness
testification

Witness
transformer

Convert a witness to one with more
information to replay the error path

[119]

Program slicing Slicer Slice a program while maintaining
its functionalities

[85]

Symbiotic Slicer Apply slicing before symbolic
execution

[65, 66]

Bubaak-Split Splitter Split a program and verify in
parallel

[95]

Conditional
data-flow analysis

Splitter Structurally decompose CFA to
accelerate data-flow analysis

[92]

LIV Splitter and
Annotator

Annotate a program and split into
straight-line programs for witness
validation

[24]

Program splitting Splitter Split a program into bottom and top [89]

18 Dirk Beyer and Nian-Ze Lee

Approach/Tool Type Description Ref.
Ranged analysis Splitter Split program paths into sets and

run different analyses
[91]

Ranged symbolic
execution

Splitter Split program paths into sets to
scale symbolic execution

[90]

VST-T Splitter Split a program into straight-line
programs for verification

[94]

Conditional model
checking

Pruner Prune explored parts of a program
based on witnesses

[22, 97]

Conditional testing Pruner Prune already-hit test goals based
on test suites

[25]

Data-flow with
transformation

Pruner Simplify control-flow graph by
propagating constant values

[96]

Cooperative
automatic and
interactive verifiers

Annotator Exchange information between
automatic and interactive tools via
annotations

[35, 100]

Cooperative model
checking and
testing

Annotator Annotate assumptions of model
checkers to guide testers

[98, 99]

MetaVal Annotator Annotate a program with a witness
and call verifiers for witness
validation

[23]

CEGAR-PT Reducer Standalone framework for
transforming loops in a program

[106]

Loop abstraction Reducer Abstract loop structures, e.g., by
havocing variables in the loop

[104, 105]

Loop acceleration Reducer Replace loops with transitive
closures to speed up convergence

[101, 102]

Loop shrinking Reducer Reduce the iterations of loops while
maintaining overapproximation

[103]

Symbiotic for
memory safety

Instrumentor Add code to track allocated memory
regions

[107]

Cooperative Verification. Cooperation between tools is a key to enable sharing the
workload between components or tools. CoVeriTest [26, 124, 125] is an approach
to combine two different approaches to program analysis, where the two compo-
nents work on a shared data structure to explore the reachable abstract states.
One component is a predicate analysis and the other is an explicit-value analysis,
both having different strengths and performance characteristics. Cooperation
leads to joining forces and obtaining an overall stronger analysis.

Conditional model checking [97, 127] is a technique to instruct a conditional
model checker that parts described by a given input condition are to be considered
correct and the model checker should verify only the state space that is outside
the state space described by the input condition. The conditional model checker
also produces an output condition, which describes the state space that it proved
correct. The model checker does not make any claims about the state space

The Transformation Game: Joining Forces for Verification 19

outside the condition, and leaves this (cooperatively) to another conditional model
checker, which is in turn fed with the produced condition. Besides this sequential
composition of conditional model checkers, the state space can also be split into
two parts, one described by a condition and the other by its negation. Then,
two conditional model checkers can run in parallel and verify the state space
given to them in isolation, while contributing to a modular proof of correctness.
The idea of conditional model checking was later also applied to testing [25].
Pruner-based conditional model checking [22] uses a transformation to prune a
given C program according to a given condition to the state space that is not
yet proven correct. Conditional model checking can be used to split a verification
tasks into several smaller ones (see also [91]) and also to let each verifier verify
the part of the program that matches its strengths.

Verifier Development. Already the first software model checker, Slam [128], was
developed using the transformation approach, where the information exchange was
done using Boolean programs. CEGAR was executed as follows: In a given CEGAR
step, the component C2BP abstracted the C program to a Boolean program,
using a given set of abstraction predicates (the precision). Then, the component
Bebop [129] performed a model-checking pass on the Boolean program. If Bebop
found a program path to the error, the path was checked for feasibility. If the path
was feasible, a bug was found, if not, the infeasible path was further analyzed and
the reason for infeasibility was used to refine the Boolean program, which was then
given to the model checker. This approach has an easy-to-understand architecture,
but the next decades set a high priority on performance tuning, for which it was
easier to use a monolithic implementations in one tool, such as in Blast [130] or
Cbmc [60]. We hope for a renaissance of transformation-based verification.

The software model checker for termination analysis Terminator [131, 132]
also uses existing technology as components: Terminator uses the tool Rank-
Finder [133] to generalize the counterexample, and then it refines the transition
invariants with this generalization. For checking the validity of the transition
invariants, Terminator reduces the problem to a reachability query, which can be
solved by standard reachability verifiers. This work has shown that for tackling a
problem as hard as analysis of software termination it is imperative to build on
existing components, and that such an architecture can be successful.

C-CEGAR [21] demonstrates how to decompose counterexample-guided ab-
straction refinement (CEGAR) [128, 134] into its three major components, abstract-
model exploration, feasibility check, and precision refinement. Instead of integrat-
ing those components inside one tool, the three components are implemented as
three executable and independent tools, with a well-defined interface (in contrast
to Slam, information is passed from component to component as verification
witnesses [43], or using special-purpose file formats for paths and precisions). This
construction from executable components makes it easier to substitute improved
versions or alternatives for each of the three components.

CEGAR-based loop abstraction [105] is a technique to abstract and refine the
control flow: in a coarse abstract model, loops are represented by their abstractions,
and if the model turns out to be too imprecise, then the loops are refined, perhaps

20 Dirk Beyer and Nian-Ze Lee

by approximations, and on the most precise level by their original implementation.
The tool CEGAR-PT [106] implements this approach as a sequence of program
transformation, where the loop abstraction is applied to the original program,
then the abstract program is given to a software verifier for exploration, then,
if an infeasible counterexample is found, the program is transformed to a more
refined program by using a more precise loop abstraction, and then given to the
software verifier again, and so on. Implementing the loop abstraction as program
transformation makes it possible to apply the loop abstraction as a preprocessing
step to any standard software verifier. The transformation separates the concern
of loop abstraction from the concern of program analysis.

Validator Development. After the first four validators for verification witnesses had
been implemented, the first transformation-based witness validator was developed:
MetaVal [23]. The idea was to reduce the problem of witness validation to the
problem of reachability-safety analysis, by annotating the information from the
witness into the program. The overall tool confirms a correctness (resp. violation)
witness if the verifier can prove (resp. disprove) the safety of the program using
the annotated information from the witness. This approach has the advantage
that any safety verifier for C programs can be used as backend for MetaVal. This
means, the development of witness validators can concentrate on the annotation,
while the highly-tuned and already available verifiers can be used for verification.

LIV [24] goes one step further: It splits the input C program into straight-line
programs [94], which are loop-free C programs, and those straight-line programs
are handed off to a verification tool. While normal SMT-based verification tools
compose verification conditions in a logic format, such as SMT-LIB 2 [12], LIV
uses the standard programming language C to write the verification conditions
in the form of straight-line programs. Since no loop is contained, even bounded
model checkers can be used for verifying straight-line programs. Furthermore,
this approach can be parallelized, because each straight-line program can be
verified independently from the others.

Bridging Verification Communities. Formal verification is a large research
area, and there are many different communities (according to the application
domain) to which formal methods can be applied. It is understood in the research
area that knowledge transfer between the communities is necessary. Such a transfer
between communities can lead to unification and improvements of the state of
the art. The transfer can occur in two forms, either the knowledge is transferred
and applied to different domains (algorithms for hardware verification might be
re-implemented for software verification, e.g., PDR [135], IMC [136], DAR [137]),
or off-the-shelf tools are adapted to different domains.

Applying Software Verifiers to Hardware Problems. Btor2C [27] is a translator that
takes as input a system written as hardware circuit in the language Btor2 [36] and
produces as output a system written as a software program in the language C [10].
This makes it possible to use many verifiers for C programs (68 such verifiers are
listed in an overview paper [138]), and experiments show that such new verifiers
for hardware (that are based on transformation and software verification) can find

The Transformation Game: Joining Forces for Verification 21

bugs in hardware circuits that state-of-the-art hardware verifiers such as ABC [56]
and AVR [39] were not able to find. This creates a new problem: Witnesses [43, 139]
(also known as certificates) for correctness or violation must be transformed back
to refer to the original model, but there are solutions for this problem [33]. The
transformation paradigm is a solution that makes it possible to apply advancements
in software verification immediately to the hardware domain, without the need of
transferring the implementations of the algorithms to the new domain.

Applying Hardware Verifiers to Software Problems. CPV is a software verifier
for C programs that uses Btor2 as intermediate language and solves the given
input verification problem by a two-step approach: First, it translates the input
C program to a Btor2 circuit using Kratos2 [115]. Second, it uses the hard-
ware model checkers ABC [56] and AVR [39] to solve the verification problem.
Verification witnesses are transferred back to witnesses that refer to the original
input C program. The hardware model checkers are configured to run several
different algorithms, including IC3/PDR, interpolation-based model checking, and
k-induction, in a portfolio manner. The transformation paradigm is a solution that
makes it possible to apply advancements in hardware verification immediately to
the software domain, again, without the need of transferring the implementations
of the algorithms to the new domain.

Communicating via Verification Witnesses. Verification witnesses were
originally introduced with the goal to justify the verification result and to be able
to independently validate the result using the witness (with tools called witness
checkers [44, 119, 140]). But it was quickly discovered that witnesses are much
more important, enabling explainability and understandability by visualizing
the content of the witnesses (e.g., supporting debugging [141]), and enabling
communication between verification components (e.g., as explained above for
C-CEGAR [21], or in CoVEGI [142]). All those approaches increase the overall
usability of verification technology. In the following, we explain a few examples.

Witness to Test. Once a verification tool proves that the specification is violated,
and a violation witness describes an error path through the program, it should be
interesting to transform the violation witness to a test vector. The execution of
the program on the test vector then exposes the specification violation at runtime.
This approach of execution-based witness validation [34] is implemented in the
tools CPA-witness2test (based on the CPAchecker verification framework) and
CProver-witness2test (based on the CProver verification framework). This
approach makes it possible to bridge the gap between verification and testing.
Testing is already well integrated into development workflows, and the results of
verification runs that resulted in discovered bugs can be integrated easily into the
existing testing workflow by adding the generated test vectors to the test suite.

Translating Software Witnesses to Hardware Witnesses. Witnesses are also impor-
tant to communicate the justification of verification results from one language
for systems to others. A witness always refers to the model (e.g., to values or
relations of the variables used in the model). For example, Btor2-Cert [33]
has a component that translates the software witness produced by a software

22 Dirk Beyer and Nian-Ze Lee

verifier (referring to the C program that the verifier analyzed) to a hardware
witness (referring to the original Btor2 circuit). In the opposite direction, the tool
CPV [29] must deliver software witnesses, but uses hardware model checkers as
backend, and thus, needs to translate hardware witnesses to software witnesses,
such that the resulting witness refers to the input C program.

Cooperation of Automatic and Interactive Verifiers. Verification witnesses also
open up many opportunities to connect automatic and interactive verifiers. For
example, automatic verifiers write their invariants into witnesses, while interactive
verifiers ask the users to insert their invariants as annotations into the program.
Interactive verifiers can benefit from invariants that were generated from automatic
verifiers. Researchers developed annotators [35] that, for example, take as input
a C program and a correctness witness (with invariants) and produce as output
a C program with ACSL [120] annotations. This annotated program can be
given as input to the interactive verifier Frama-C [121]. The experiments of the
study [35] report that Frama-C can verify more programs with the help of the
automatically produced annotations. This translation makes it possible to use any
automatic verifier to produce invariants (or contracts) in order to help the users
of an interactive verifier with information that can be derived automatically.

6 Conclusion

Formal verification is a hard problem and we need to leverage all possible ap-
proaches to solve this important problem. We advocate the approach of modular
transformation, which uses standalone components for transformation in order
to apply verification technology. We introduce the necessary notions and survey
several approaches and tools that use transformation, in order to illustrate that
this paradigm can be useful. We make a case for verification by transformation
by explaining some applications of transformation to construct modular tools for
formal verification and give hints on their benefits and impact. We hope that
readers find this view on formal verification inspiring and either contribute more
transformations or use some of the existing transformations.

Data-Availability Statement. We have added the transformers used by the
tools in the FM-Tools Repository to their respective meta data under key used_-
actors. A generated web site is available at: https://fm-tools.sosy-lab.org/

Funding Statement. This project was funded in part by the Deutsche
Forschungsgemeinschaft (DFG) – 536040111 (Bridge) and 378803395 (ConVeY),
as well as by the LMU PostDoc Support Fund.

Acknowledgement. We would like to thank Joost-Pieter Katoen for his signifi-
cant contributions to research tools, including his own tools and his support of
tool development in the community. For example, he was involved in establishing
the ETAPS Test-of-Time Tool Award to emphasize the importance of reliable
and well-maintained research tools. We also thank the reviewers of our article for
their constructive comments on how to extend our work on this.

https://gitlab.com/sosy-lab/benchmarking/fm-tools/-/tree/2.1
https://fm-tools.sosy-lab.org/
http://gepris.dfg.de/gepris/projekt/536040111
http://gepris.dfg.de/gepris/projekt/378803395
https://etaps.org/awards/test-of-time-tool/

The Transformation Game: Joining Forces for Verification 23

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT (2008), https://www.
worldcat.org/isbn/978-0-262-02649-9

2. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: Slam and Static Driver Verifier:
Technology transfer of formal methods inside Microsoft. In: Proc. IFM. pp. 1–20.
LNCS 2999, Springer (2004). https://doi.org/10.1007/978-3-540-24756-2_1

3. Khoroshilov, A.V., Mutilin, V.S., Petrenko, A.K., Zakharov, V.: Establishing Linux
driver verification process. In: Proc. Ershov Memorial Conference. pp. 165–176.
LNCS 5947, Springer (2009). https://doi.org/10.1007/978-3-642-11486-1_14

4. Cook, B.: Formal reasoning about the security of Amazon web services. In: Proc.
CAV (2). pp. 38–47. LNCS 10981, Springer (2018). https://doi.org/10.1007/
978-3-319-96145-3_3

5. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M.,
O’Hearn, P., Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving fast with
software verification. In: Proc. NFM. pp. 3–11. LNCS 9058, Springer (2015).
https://doi.org/10.1007/978-3-319-17524-9_1

6. Li, X., Li, X., Dall, C., Gu, R., Nieh, J., Sait, Y., Stockwell, G.: Design and
verification of the Arm confidential compute architecture. In: Proc. OSDI. pp.
465–484. USENIX Association (2022), https://www.usenix.org/system/files/
osdi22-li.pdf

7. Fox, A.C.J., Stockwell, G., Xiong, S., Becker, H., Mulligan, D.P., Petri, G., Chong,
N.: A verification methodology for the Arm confidential computing architecture:
From a secure specification to safe implementations. Proc. ACM Program. Lang.
7(OOPSLA1), 376–405 (2023). https://doi.org/10.1145/3586040

8. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS (2009)

9. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Handbook of
Model Checking, pp. 305–343. Springer (2018). https://doi.org/10.1007/
978-3-319-10575-8_11

10. Kernighan, B., Ritchie, D.: The C Programming Language. Prentice Hall (1978)
11. ISO/IEC JTC1/SC22: ISO/IEC 9899-2018: Information technology — Program-

ming Languages — C. International Organization for Standardization (2018),
https://www.iso.org/standard/74528.html

12. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0.
Tech. rep., University of Iowa (2010), https://smtlib.cs.uiowa.edu/papers/
smt-lib-reference-v2.0-r10.12.21.pdf

13. Beyer, D., Wehrheim, H.: Verification artifacts in cooperative verification: Survey
and unifying component framework. In: Proc. ISoLA (1). pp. 143–167. LNCS 12476,
Springer (2020). https://doi.org/10.1007/978-3-030-61362-4_8

14. Beyer, D., Kanav, S.: CoVeriTeam: On-demand composition of cooperative
verification systems. In: Proc. TACAS. pp. 561–579. LNCS 13243, Springer (2022).
https://doi.org/10.1007/978-3-030-99524-9_31

15. DeMarco, T.: Structured Analysis and System Specification. Prentice Hall, facsimile
edn. (1979)

16. Szyperski, C.A., Gruntz, D., Murer, S.: Component Software: Beyond Object-
Oriented Programming. Addison-Wesley, 2nd edn. (2002)

17. Ritchie, D., Thompson, K.: The UNIX time-sharing system. Commun. ACM 17(7),
365–375 (1974). https://doi.org/10.1145/361011.361061

18. Raymond, E.S.: The Art of UNIX Programming. Addison-Wesley, 1st edn. (2003)

https://www.worldcat.org/isbn/978-0-262-02649-9
https://www.worldcat.org/isbn/978-0-262-02649-9
https://doi.org/10.1007/978-3-540-24756-2_1
https://doi.org/10.1007/978-3-642-11486-1_14
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-319-17524-9_1
https://www.usenix.org/system/files/osdi22-li.pdf
https://www.usenix.org/system/files/osdi22-li.pdf
https://doi.org/10.1145/3586040
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://www.iso.org/standard/74528.html
https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r10.12.21.pdf
https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r10.12.21.pdf
https://doi.org/10.1007/978-3-030-61362-4_8
https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/10.1145/361011.361061

24 Dirk Beyer and Nian-Ze Lee

19. Lattner, C., Adve, V.S.: Llvm: A compilation framework for lifelong program
analysis and transformation. In: Proc. CGO. pp. 75–88. IEEE (2004). https:
//doi.org/10.1109/CGO.2004.1281665

20. Lattner, C., Amini, M., Bondhugula, U., Cohen, A., Davis, A., Pienaar, J., Riddle,
R., Shpeisman, T., Vasilache, N., Zinenko, O.: MLIR: Scaling compiler infrastructure
for domain-specific computation. In: Proc. CGO. pp. 2–14. IEEE (2021). https:
//doi.org/10.1109/CGO51591.2021.9370308

21. Beyer, D., Haltermann, J., Lemberger, T., Wehrheim, H.: Decomposing software
verification into off-the-shelf components: An application to CEGAR. In: Proc.
ICSE. pp. 536–548. ACM (2022). https://doi.org/10.1145/3510003.3510064

22. Beyer, D., Jakobs, M.C., Lemberger, T., Wehrheim, H.: Reducer-based construction
of conditional verifiers. In: Proc. ICSE. pp. 1182–1193. ACM (2018). https://doi.
org/10.1145/3180155.3180259

23. Beyer, D., Spiessl, M.: MetaVal: Witness validation via verification. In: Proc.
CAV. pp. 165–177. LNCS 12225, Springer (2020). https://doi.org/10.1007/
978-3-030-53291-8_10

24. Beyer, D., Spiessl, M.: LIV: A loop-invariant validation using straight-line programs.
In: Proc. ASE. pp. 2074–2077. IEEE (2023). https://doi.org/10.1109/ASE56229.
2023.00214

25. Beyer, D., Lemberger, T.: Conditional testing: Off-the-shelf combination of test-
case generators. In: Proc. ATVA. pp. 189–208. LNCS 11781, Springer (2019).
https://doi.org/10.1007/978-3-030-31784-3_11

26. Beyer, D., Jakobs, M.C.: Cooperative verifier-based testing with CoVeriTest.
Int. J. Softw. Tools Technol. Transfer 23(3), 313–333 (2021). https://doi.org/
10.1007/s10009-020-00587-8

27. Beyer, D., Chien, P.C., Lee, N.Z.: Bridging hardware and software analysis with
Btor2C: A word-level-circuit-to-C translator. In: Proc. TACAS (2). pp. 152–172.
LNCS 13994, Springer (2023). https://doi.org/10.1007/978-3-031-30820-8_12

28. Tafese, J., Garcia-Contreras, I., Gurfinkel, A.: Btor2MLIR: A format and
toolchain for hardware verification. In: Proc. FMCAD. pp. 55–63. IEEE (2023).
https://doi.org/10.34727/2023/ISBN.978-3-85448-060-0_13

29. Chien, P.C., Lee, N.Z.: CPV: A circuit-based program verifier (competition con-
tribution). In: Proc. TACAS (3). pp. 365–370. LNCS 14572, Springer (2024).
https://doi.org/10.1007/978-3-031-57256-2_22

30. Schuppan, V., Biere, A.: Liveness checking as safety checking for infinite state
spaces. Electr. Notes Theor. Comput. Sci. 149(1), 79–96 (2006). https://doi.
org/10.1016/j.entcs.2005.11.018

31. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: Checking memory safety
with Blast. In: Proc. FASE. pp. 2–18. LNCS 3442, Springer (2005). https:
//doi.org/10.1007/978-3-540-31984-9_2

32. Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to
sequential analysis. Formal Methods Syst. Des. 35(1), 73–97 (2009). https://doi.
org/10.1007/S10703-009-0078-9

33. Ádám, Z., Beyer, D., Chien, P.C., Lee, N.Z., Sirrenberg, N.: Btor2-Cert: A
certifying hardware-verification framework using software analyzers. In: Proc.
TACAS (3). pp. 129–149. LNCS 14572, Springer (2024). https://doi.org/10.
1007/978-3-031-57256-2_7

34. Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses:
Execution-based validation of verification results. In: Proc. TAP. pp. 3–23.
LNCS 10889, Springer (2018). https://doi.org/10.1007/978-3-319-92994-1_1

https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1145/3510003.3510064
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1109/ASE56229.2023.00214
https://doi.org/10.1109/ASE56229.2023.00214
https://doi.org/10.1007/978-3-030-31784-3_11
https://doi.org/10.1007/s10009-020-00587-8
https://doi.org/10.1007/s10009-020-00587-8
https://doi.org/10.1007/978-3-031-30820-8_12
https://doi.org/10.34727/2023/ISBN.978-3-85448-060-0_13
https://doi.org/10.1007/978-3-031-57256-2_22
https://doi.org/10.1016/j.entcs.2005.11.018
https://doi.org/10.1016/j.entcs.2005.11.018
https://doi.org/10.1007/978-3-540-31984-9_2
https://doi.org/10.1007/978-3-540-31984-9_2
https://doi.org/10.1007/S10703-009-0078-9
https://doi.org/10.1007/S10703-009-0078-9
https://doi.org/10.1007/978-3-031-57256-2_7
https://doi.org/10.1007/978-3-031-57256-2_7
https://doi.org/10.1007/978-3-319-92994-1_1

The Transformation Game: Joining Forces for Verification 25

35. Beyer, D., Spiessl, M., Umbricht, S.: Cooperation between automatic and interactive
software verifiers. In: Proc. SEFM. p. 111–128. LNCS 13550, Springer (2022).
https://doi.org/10.1007/978-3-031-17108-6_7

36. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2, BtorMC, and Boolector
3.0. In: Proc. CAV. pp. 587–595. LNCS 10981, Springer (2018). https://doi.org/
10.1007/978-3-319-96145-3_32

37. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software
verification. In: Proc. CAV. pp. 184–190. LNCS 6806, Springer (2011). https:
//doi.org/10.1007/978-3-642-22110-1_16

38. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
framework. In: Proc. CAV. pp. 343–361. LNCS 9206, Springer (2015). https:
//doi.org/10.1007/978-3-319-21690-4_20

39. Goel, A., Sakallah, K.: AVR: Abstractly verifying reachability. In: Proc.
TACAS. pp. 413–422. LNCS 12078, Springer (2020). https://doi.org/10.1007/
978-3-030-45190-5_23

40. Garavel, H., ter Beek, M.H., van de Pol, J.: The 2020 expert survey on formal
methods. In: Proc. FMICS. pp. 3–69. LNCS 12327, Springer (2020). https://doi.
org/10.1007/978-3-030-58298-2_1

41. Alglave, J., Donaldson, A.F., Kröning, D., Tautschnig, M.: Making software verifi-
cation tools really work. In: Proc. ATVA. pp. 28–42. LNCS 6996, Springer (2011).
https://doi.org/10.1007/978-3-642-24372-1_3

42. Biere, A.: The AIGER And-Inverter Graph (AIG) format version 20071012. Tech.
Rep. 07/1, Institute for Formal Models and Verification, Johannes Kepler University
(2007). https://doi.org/10.35011/fmvtr.2007-1

43. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Lemberger, T., Tautschnig, M.:
Verification witnesses. ACM Trans. Softw. Eng. Methodol. 31(4), 57:1–57:69 (2022).
https://doi.org/10.1145/3477579

44. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms.
Computer Science Review 5(2), 119–161 (2011). https://doi.org/10.1016/j.
cosrev.2010.09.009

45. Besson, F., Jensen, T.P., Pichardie, D.: Proof-carrying code from certified abstract
interpretation and fixpoint compression. TCS 364(3), 273–291 (2006). https:
//doi.org/10.1016/j.tcs.2006.08.012

46. Johannsen, C., Nukala, K., Dureja, R., Irfan, A., Shankar, N., Tinelli, C.,
Vardi, M.Y., Rozier, K.Y.: The MoXI model exchange tool suite. In: Proc.
CAV. pp. 203–218. LNCS 14681, Springer (2024). https://doi.org/10.1007/
978-3-031-65627-9_10

47. IEEE standard for Verilog hardware description language (2006). https://doi.
org/10.1109/IEEESTD.2006.99495

48. Snyder, W.: Verilator. https://www.veripool.org/verilator/, accessed: 2023-
01-29

49. Smrcka, A., Vojnar, T.: Verifying parametrised hardware designs via counter
automata. In: Proc. HVC. pp. 51–68. LNCS 4899, Springer (2007). https://doi.
org/10.1007/978-3-540-77966-7_8

50. IEEE standard for VHDL language reference manual (2019). https://doi.org/
10.1109/IEEESTD.2019.8938196

51. McMillan, K.L.: Symbolic Model Checking. Springer (1993). https://doi.org/10.
1007/978-1-4615-3190-6

52. Irfan, A., Cimatti, A., Griggio, A., Roveri, M., Sebastiani, R.: Verilog2SMV:
A tool for word-level verification. In: Proc. DATE. pp. 1156–1159 (2016), https:
//ieeexplore.ieee.org/document/7459485

https://doi.org/10.1007/978-3-031-17108-6_7
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1007/978-3-642-24372-1_3
https://doi.org/10.35011/fmvtr.2007-1
https://doi.org/10.1145/3477579
https://doi.org/10.1016/j.cosrev.2010.09.009
https://doi.org/10.1016/j.cosrev.2010.09.009
https://doi.org/10.1016/j.tcs.2006.08.012
https://doi.org/10.1016/j.tcs.2006.08.012
https://doi.org/10.1007/978-3-031-65627-9_10
https://doi.org/10.1007/978-3-031-65627-9_10
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/IEEESTD.2006.99495
https://www.veripool.org/verilator/
https://doi.org/10.1007/978-3-540-77966-7_8
https://doi.org/10.1007/978-3-540-77966-7_8
https://doi.org/10.1109/IEEESTD.2019.8938196
https://doi.org/10.1109/IEEESTD.2019.8938196
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/978-1-4615-3190-6
https://ieeexplore.ieee.org/document/7459485
https://ieeexplore.ieee.org/document/7459485

26 Dirk Beyer and Nian-Ze Lee

53. Minhas, M., Hasan, O., Saghar, K.: Ver2Smv: A tool for automatic Verilog to
SMV translation for verifying digital circuits. In: Proc. ICEET. pp. 1–5 (2018).
https://doi.org/10.1109/ICEET1.2018.8338617

54. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuxmv symbolic model checker. In:
Proc. CAV. pp. 334–342. LNCS 8559, Springer (2014). https://doi.org/10.1007/
978-3-319-08867-9_22

55. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Source-code repository of Btor2,
BtorMC, and Boolector 3.0. https://github.com/Boolector/btor2tools,
accessed: 2023-01-29

56. Brayton, R., Mishchenko, A.: ABC: An academic industrial-strength verification
tool. In: Proc. CAV. pp. 24–40. LNCS 6174, Springer (2010). https://doi.org/
10.1007/978-3-642-14295-6_5

57. The CIRCT project: Circuit IR compilers and tools. https://circt.llvm.org/,
accessed: 2024-05-14

58. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate
abstraction of C programs. In: Proc. PLDI. pp. 203–213. ACM (2001). https:
//doi.org/10.1145/378795.378846

59. Ball, T., Rajamani, S.K.: The Slam project: Debugging system software via
static analysis. In: Proc. POPL. pp. 1–3. ACM (2002). https://doi.org/10.1145/
503272.503274

60. Clarke, E.M., Kröning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Proc. TACAS. pp. 168–176. LNCS 2988, Springer (2004). https://doi.org/10.
1007/978-3-540-24730-2_15

61. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: Cil: Intermediate language
and tools for analysis and transformation of C programs. In: Proc. CC. pp. 213–228.
LNCS 2304, Springer (2002). https://doi.org/10.1007/3-540-45937-5_16

62. Falke, S., Merz, F., Sinz, C.: The bounded model checker Llbmc. In: Proc. ASE.
pp. 706–709. IEEE (2013). https://doi.org/10.1109/ASE.2013.6693138

63. Priya, S., Su, Y., Bao, Y., Zhou, X., Vizel, Y., Gurfinkel, A.: Bounded model
checking for Llvm. In: Proc. FMCAD. pp. 214–224. IEEE (2022). https://doi.
org/10.34727/2022/ISBN.978-3-85448-053-2_28

64. Cadar, C., Dunbar, D., Engler, D.R.: Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proc. OSDI. pp. 209–224.
USENIX Association (2008)

65. Slabý, J., Strejček, J., Trtík, M.: Checking properties described by state ma-
chines: On synergy of instrumentation, slicing, and symbolic execution. In: Proc.
FMICS. pp. 207–221. LNCS 7437, Springer (2012). https://doi.org/10.1007/
978-3-642-32469-7_14

66. Jonáš, M., Kumor, K., Novák, J., Sedláček, J., Trtík, M., Zaoral, L., Ayaziová, P.,
Strejček, J.: Symbiotic 10: Lazy memory initialization and compact symbolic exe-
cution (competition contribution). In: Proc. TACAS (3). pp. 406–411. LNCS 14572,
Springer (2024). https://doi.org/10.1007/978-3-031-57256-2_29

67. Rakamarić, Z., Emmi, M.: SMACK: Decoupling source language details from
verifier implementations. In: Proc. CAV. pp. 106–113. LNCS 8559, Springer (2014).
https://doi.org/10.1007/978-3-319-08867-9_7

68. DeLine, R., Leino, R.: BoogiePL: A typed procedural language for checking object-
oriented programs. Tech. Rep. MSR-TR-2005-70, Microsoft Research (2005)

69. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular automatic assertion
checking with separation logic. In: Proc. FMCO. pp. 115–137. LNCS 4111, Springer
(2005). https://doi.org/10.1007/11804192_6

https://doi.org/10.1109/ICEET1.2018.8338617
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://github.com/Boolector/btor2tools
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5
https://circt.llvm.org/
https://doi.org/10.1145/378795.378846
https://doi.org/10.1145/378795.378846
https://doi.org/10.1145/503272.503274
https://doi.org/10.1145/503272.503274
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/3-540-45937-5_16
https://doi.org/10.1109/ASE.2013.6693138
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_28
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_28
https://doi.org/10.1007/978-3-642-32469-7_14
https://doi.org/10.1007/978-3-642-32469-7_14
https://doi.org/10.1007/978-3-031-57256-2_29
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/11804192_6

The Transformation Game: Joining Forces for Verification 27

70. Bjørner, N.S., McMillan, K.L., Rybalchenko, A.: Program verification as satisfiabil-
ity modulo theories. In: Proc. SMT. EPiC Series in Computing, vol. 20, pp. 3–11.
EasyChair (2012). https://doi.org/10.29007/1l7f

71. Johnson, D.S., Trick, M.A. (eds.): Cliques, Coloring, and Satisfiability, DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, vol. 26. DI-
MACS/AMS (1996). https://doi.org/10.1090/DIMACS/026

72. Komuravelli, A., Gurfinkel, A., Chaki, S., Clarke, E.M.: Automatic abstraction
in SMT-based unbounded software model checking. In: Proc. CAV. pp. 846–862.
LNCS 8044, Springer (2013). https://doi.org/10.1007/978-3-642-39799-8_59

73. Fedyukovich, G., Prabhu, S., Madhukar, K., Gupta, A.: Solving constrained Horn
clauses using syntax and data. In: Proc. FMCAD. pp. 1–9. IEEE (2018). https:
//doi.org/10.23919/FMCAD.2018.8603011

74. Hojjat, H., Rümmer, P.: The ELDARICA Horn solver. In: Proc. FMCAD. pp. 1–7.
IEEE (2018). https://doi.org/10.23919/FMCAD.2018.8603013

75. Blicha, M., Britikov, K., Sharygina, N.: The Golem Horn solver. In: Proc.
CAV. pp. 209–223. LNCS 13965, Springer (2023). https://doi.org/10.1007/
978-3-031-37703-7_10

76. Kroening, D., Purandare, M.: EBMC. http://www.cprover.org/ebmc/, accessed:
2023-01-29

77. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: A verification infrastructure for
permission-based reasoning. In: Proc. VMCAI. pp. 41–62. LNCS 9583, Springer
(2016). https://doi.org/10.1007/978-3-662-49122-5_2

78. Dellacherie, S., Devulder, S., Lambert, J.L.: Software verification based on linear
programming. In: Proc. FM. pp. 1147–1165. LNCS 1709, Springer (1999). https:
//doi.org/10.1007/3-540-48118-4_11

79. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Proc. CAV. pp. 3–29. LNCS 10426, Springer (2017). https://doi.
org/10.1007/978-3-319-63387-9_1

80. Zhang, Y., Zhao, Z., Chen, G., Song, F., Zhang, M., Chen, T., Sun, J.: QVIP: An
ILP-based formal verification approach for quantized neural networks. In: Proc.
ASE. pp. 82:1–82:13. ACM (2022). https://doi.org/10.1145/3551349.3556916

81. Necula, G.C., McPeak, S., Weimer, W.: CCured: Type-safe retrofitting of legacy
code. In: Proc. POPL. pp. 128–139. ACM (2002). https://doi.org/10.1145/
503272.503286

82. Harman, M., Hu, L., Hierons, R.M., Wegener, J., Sthamer, H., Baresel, A., Roper,
M.: Testability transformation. IEEE Trans. Softw. Eng. 30(1), 3–16 (2004). https:
//doi.org/10.1109/TSE.2004.1265732

83. Apel, S., Beyer, D., Mordan, V.O., Mutilin, V.S., Stahlbauer, A.: On-the-fly
decomposition of specifications in software model checking. In: Proc. FSE. pp.
349–361. ACM (2016). https://doi.org/10.1145/2950290.2950349

84. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating
tests from counterexamples. In: Proc. ICSE. pp. 326–335. IEEE (2004). https:
//doi.org/10.1109/ICSE.2004.1317455

85. Weiser, M.: Program slicing. IEEE Trans. Softw. Eng. 10(4), 352–357 (1984).
https://doi.org/10.1109/tse.1984.5010248

86. Chalupa, M., Strejček, J.: Evaluation of program slicing in software verification.
In: Proc. IFM. pp. 101–119. LNCS 11918, Springer (2019). https://doi.org/10.
1007/978-3-030-34968-4_6

87. Westhofen, L., Berger, P., Katoen, J.P.: Benchmarking software model checkers
on automotive code. In: Proc. NFM. pp. 133–150. LNCS 12229, Springer (2020).
https://doi.org/10.1007/978-3-030-55754-6_8

https://doi.org/10.29007/1l7f
https://doi.org/10.1090/DIMACS/026
https://doi.org/10.1007/978-3-642-39799-8_59
https://doi.org/10.23919/FMCAD.2018.8603011
https://doi.org/10.23919/FMCAD.2018.8603011
https://doi.org/10.23919/FMCAD.2018.8603013
https://doi.org/10.1007/978-3-031-37703-7_10
https://doi.org/10.1007/978-3-031-37703-7_10
http://www.cprover.org/ebmc/
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/3-540-48118-4_11
https://doi.org/10.1007/3-540-48118-4_11
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1145/3551349.3556916
https://doi.org/10.1145/503272.503286
https://doi.org/10.1145/503272.503286
https://doi.org/10.1109/TSE.2004.1265732
https://doi.org/10.1109/TSE.2004.1265732
https://doi.org/10.1145/2950290.2950349
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1109/tse.1984.5010248
https://doi.org/10.1007/978-3-030-34968-4_6
https://doi.org/10.1007/978-3-030-34968-4_6
https://doi.org/10.1007/978-3-030-55754-6_8

28 Dirk Beyer and Nian-Ze Lee

88. Berger, P.: Applying Software Model Checking: Experiences and Advancements.
Ph.D. thesis, RWTH Aachen (2023)

89. Lifschitz, V., Turner, H.: Splitting a logic program. In: Proc. ICLP. pp. 23–37. MIT
Press (1994). https://doi.org/10.7551/mitpress/4316.003.0014

90. Siddiqui, J.H., Khurshid, S.: Scaling symbolic execution using ranged analysis.
In: Leavens, G.T., Dwyer, M.B. (eds.) Proc. SPLASH. pp. 523–536. ACM (2012).
https://doi.org/10.1145/2384616.2384654

91. Haltermann, J., Jakobs, M.C., Richter, C., Wehrheim, H.: Parallel program analysis
via range splitting. In: Proc. FASE. pp. 195–219 (2023). https://doi.org/10.
1007/978-3-031-30826-0_11

92. Sherman, E., Dwyer, M.B.: Structurally defined conditional data-flow static analysis.
In: Proc. TACAS (2). pp. 249–265. LNCS 10806, Springer (2018). https://doi.
org/10.1007/978-3-319-89963-3_15

93. Beyer, D., Friedberger, K.: Domain-independent multi-threaded software model
checking. In: Proc. ASE. pp. 634–644. ACM (2018). https://doi.org/10.1145/
3238147.3238195

94. Zhou, L.: Foundationally sound annotation verifier via control flow splitting.
In: Proc. SPLASH. pp. 69–71. ACM (2022). https://doi.org/10.1145/3563768.
3563956

95. Chalupa, M., Richter, C.: Bubaak-SpLit: Split what you cannot verify (compe-
tition contribution). In: Proc. TACAS (3). pp. 353–358. LNCS 14572, Springer
(2024). https://doi.org/10.1007/978-3-031-57256-2_20

96. Lerner, S., Grove, D., Chambers, C.: Composing data-flow analyses and transfor-
mations. In: Proc. POPL. pp. 270–282. ACM (2002). https://doi.org/10.1145/
503272.503298

97. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking: A technique to pass information between verifiers. In: Proc. FSE. ACM
(2012). https://doi.org/10.1145/2393596.2393664

98. Christakis, M., Müller, P., Wüstholz, V.: Collaborative verification and testing
with explicit assumptions. In: Proc. FM. pp. 132–146. LNCS 7436, Springer (2012).
https://doi.org/10.1007/978-3-642-32759-9_13

99. Christakis, M., Müller, P., Wüstholz, V.: Guiding dynamic symbolic execution
toward unverified program executions. In: Proc. ICSE. pp. 144–155. ACM (2016).
https://doi.org/10.1145/2884781.2884843

100. Shankar, N.: Combining model checking and deduction. In: Handbook of
Model Checking., pp. 651–684. Springer (2018). https://doi.org/10.1007/
978-3-319-10575-8_20

101. Boigelot, B.: Symbolic Methods for Exploring Infinite State Spaces. Ph.D. thesis,
Faculté des Sciences Appliquées de Université de Liège (1998)

102. Bardin, S., Finkel, A., Leroux, J., Schnoebelen, P.: Flat acceleration in symbolic
model checking. In: Proc. ATVA. pp. 474–488. LNCS 3707, Springer (2005). https:
//doi.org/10.1007/11562948_35

103. Kumar, S., Sanyal, A., Venkatesh, R., Shah, P.: Property checking array programs
using loop shrinking. In: Proc. TACAS (1). pp. 213–231. LNCS 10805, Springer
(2018). https://doi.org/10.1007/978-3-319-89960-2_12

104. Afzal, M., Asia, A., Chauhan, A., Chimdyalwar, B., Darke, P., Datar, A., Kumar, S.,
Venkatesh, R.: VeriAbs: Verification by abstraction and test generation. In: Proc.
ASE. pp. 1138–1141. IEEE (2019). https://doi.org/10.1109/ASE.2019.00121

105. Beyer, D., Lingsch-Rosenfeld, M., Spiessl, M.: A unifying approach for control-flow-
based loop abstraction. In: Proc. SEFM. pp. 3–19. LNCS 13550, Springer (2022).
https://doi.org/10.1007/978-3-031-17108-6_1

https://doi.org/10.7551/mitpress/4316.003.0014
https://doi.org/10.1145/2384616.2384654
https://doi.org/10.1007/978-3-031-30826-0_11
https://doi.org/10.1007/978-3-031-30826-0_11
https://doi.org/10.1007/978-3-319-89963-3_15
https://doi.org/10.1007/978-3-319-89963-3_15
https://doi.org/10.1145/3238147.3238195
https://doi.org/10.1145/3238147.3238195
https://doi.org/10.1145/3563768.3563956
https://doi.org/10.1145/3563768.3563956
https://doi.org/10.1007/978-3-031-57256-2_20
https://doi.org/10.1145/503272.503298
https://doi.org/10.1145/503272.503298
https://doi.org/10.1145/2393596.2393664
https://doi.org/10.1007/978-3-642-32759-9_13
https://doi.org/10.1145/2884781.2884843
https://doi.org/10.1007/978-3-319-10575-8_20
https://doi.org/10.1007/978-3-319-10575-8_20
https://doi.org/10.1007/11562948_35
https://doi.org/10.1007/11562948_35
https://doi.org/10.1007/978-3-319-89960-2_12
https://doi.org/10.1109/ASE.2019.00121
https://doi.org/10.1007/978-3-031-17108-6_1

The Transformation Game: Joining Forces for Verification 29

106. Beyer, D., Lingsch-Rosenfeld, M., Spiessl, M.: CEGAR-PT: A tool for abstraction
by program transformation. In: Proc. ASE. pp. 2078–2081. IEEE (2023). https:
//doi.org/10.1109/ASE56229.2023.00215

107. Chalupa, M., Strejček, J., Vitovská, M.: Joint forces for memory safety check-
ing. In: Proc. SPIN. pp. 115–132. Springer (2018). https://doi.org/10.1007/
978-3-319-94111-0_7

108. Beyer, D., Kanav, S., Richter, C.: Construction of verifier combinations based on
off-the-shelf verifiers. In: Proc. FASE. pp. 49–70. Springer (2022). https://doi.
org/10.1007/978-3-030-99429-7_3

109. Haltermann, J., Wehrheim, H.: Exchanging information in cooperative software
validation. Softw. Syst. Model. 23(3), 695–719 (2024). https://doi.org/10.1007/
S10270-024-01155-3

110. Mukherjee, R., Tautschnig, M., Kroening, D.: v2c: A Verilog to C translator. In:
Proc. TACAS. pp. 580–586. LNCS 9636, Springer (2016). https://doi.org/10.
1007/978-3-662-49674-9_38

111. Biere, A., van Dijk, T., Heljanko, K.: Hardware model-checking competition 2017.
In: Proc. FMCAD. p. 9. IEEE (2017). https://doi.org/10.23919/FMCAD.2017.
8102233

112. Biere, A., Froleyks, N., Preiner, M.: 11th hardware model-checking competition
(HWMCC 2020). http://fmv.jku.at/hwmcc20/, accessed: 2023-01-29

113. Beyer, D.: State of the art in software verification and witness validation: SV-
COMP 2024. In: Proc. TACAS (3). pp. 299–329. LNCS 14572, Springer (2024).
https://doi.org/10.1007/978-3-031-57256-2_15

114. Long, J.: Reasoning about High-Level Constructs in Hardware/Software Formal Ver-
ification. Ph.D. thesis, EECS Department, University of California, Berkeley (2017),
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-150.html

115. Griggio, A., Jonáš, M.: Kratos2: An SMT-based model checker for imperative
programs. In: Proc. CAV. pp. 423–436. Springer (2023). https://doi.org/10.
1007/978-3-031-37709-9_20

116. Cimatti, A., Griggio, A., Tonetta, S.: The VMT-LIB language and tools. In: Proc.
SMT. CEUR Workshop Proceedings, vol. 3185, pp. 80–89. CEUR-WS.org (2022)

117. Rozier, K.Y., Dureja, R., Irfan, A., Johannsen, C., Nukala, K., Shankar, N., Tinelli,
C., Vardi, M.Y.: MoXI: An intermediate language for symbolic model checking. In:
Proc. SPIN. LNCS , Springer (2024)

118. Beyer, D., Chien, P.C., Lee, N.Z.: MoXIchecker: An extensible model checker
for MoXI. arXiv/CoRR 2407(15551) (July 2024). https://doi.org/10.48550/
arXiv.2407.15551

119. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness validation
and stepwise testification across software verifiers. In: Proc. FSE. pp. 721–733.
ACM (2015). https://doi.org/10.1145/2786805.2786867

120. Baudin, P., Cuoq, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto,
V.: ACSL: ANSI/ISO C specification language version 1.17 (2021), available at
https://frama-c.com/download/acsl-1.17.pdf

121. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C. In: Proc. SEFM. pp. 233–247. Springer (2012). https://doi.org/10.
1007/978-3-642-33826-7_16

122. Beyer, D.: Conservation and accessibility of tools for formal methods. In: Proc.
Festschrift Podelski 65th Birthday. Springer (2024)

123. Beyer, D.: Tools for formal methods. https://fm-tools.sosy-lab.org/, accessed:
2024-08-21

https://doi.org/10.1109/ASE56229.2023.00215
https://doi.org/10.1109/ASE56229.2023.00215
https://doi.org/10.1007/978-3-319-94111-0_7
https://doi.org/10.1007/978-3-319-94111-0_7
https://doi.org/10.1007/978-3-030-99429-7_3
https://doi.org/10.1007/978-3-030-99429-7_3
https://doi.org/10.1007/S10270-024-01155-3
https://doi.org/10.1007/S10270-024-01155-3
https://doi.org/10.1007/978-3-662-49674-9_38
https://doi.org/10.1007/978-3-662-49674-9_38
https://doi.org/10.23919/FMCAD.2017.8102233
https://doi.org/10.23919/FMCAD.2017.8102233
http://fmv.jku.at/hwmcc20/
https://doi.org/10.1007/978-3-031-57256-2_15
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-150.html
https://doi.org/10.1007/978-3-031-37709-9_20
https://doi.org/10.1007/978-3-031-37709-9_20
https://doi.org/10.48550/arXiv.2407.15551
https://doi.org/10.48550/arXiv.2407.15551
https://doi.org/10.1145/2786805.2786867
https://frama-c.com/download/acsl-1.17.pdf
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://fm-tools.sosy-lab.org/

30 Dirk Beyer and Nian-Ze Lee

124. Beyer, D., Jakobs, M.C.: CoVeriTest: Cooperative verifier-based testing. In: Proc.
FASE. pp. 389–408. LNCS 11424, Springer (2019). https://doi.org/10.1007/
978-3-030-16722-6_23

125. Jakobs, M.C., Richter, C.: CoVeriTest with adaptive time scheduling (compe-
tition contribution). In: Proc. FASE. pp. 358–362. LNCS 12649, Springer (2021).
https://doi.org/10.1007/978-3-030-71500-7_18

126. Fischer, B., Inverso, O., Parlato, G.: CSeq: A concurrency pre-processor for
sequential C verification tools. In: Proc. ASE. pp. 710–713. IEEE (2013). https:
//doi.org/10.1109/ASE.2013.6693139

127. Czech, M., Jakobs, M., Wehrheim, H.: Just test what you cannot verify! In: Proc.
FASE. pp. 100–114. LNCS 9033, Springer (2015). https://doi.org/10.1007/
978-3-662-46675-9_7

128. Ball, T., Rajamani, S.K.: Boolean programs: A model and process
for software analysis. Tech. Rep. MSR Tech. Rep. 2000-14, Microsoft
Research (2000), https://www.microsoft.com/en-us/research/wp-content/
uploads/2016/02/tr-2000-14.pdf

129. Ball, T., Rajamani, S.K.: Bebop: A symbolic model checker for Boolean programs.
In: Proc. SPIN. pp. 113–130. LNCS 1885, Springer (2000). https://doi.org/10.
1007/10722468_7

130. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
Blast. Int. J. Softw. Tools Technol. Transfer 9(5-6), 505–525 (2007). https:
//doi.org/10.1007/s10009-007-0044-z

131. Cook, B., Podelski, A., Rybalchenko, A.: Terminator: Beyond safety. In: Proc.
CAV. pp. 415–418. LNCS 4144, Springer (2006). https://doi.org/10.1007/
11817963_37

132. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code.
In: Proc. PLDI. pp. 415–426. ACM (2006). https://doi.org/10.1145/1133981.
1134029

133. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear
ranking functions. In: Proc. VMCAI. pp. 239–251. LNCS 2937, Springer (2004).
https://doi.org/10.1007/978-3-540-24622-0_20

134. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003).
https://doi.org/10.1145/876638.876643

135. Lange, T., Neuhäußer, M.R., Noll, T., Katoen, J.P.: IC3 software model checking.
Int. J. Softw. Tools Technol. Transf. 22(2), 135–161 (2020). https://doi.org/10.
1007/S10009-019-00547-X

136. Beyer, D., Lee, N.Z., Wendler, P.: Interpolation and SAT-based model check-
ing revisited: Adoption to software verification. J. Autom. Reasoning (2024).
https://doi.org/10.1007/s10817-024-09702-9, preprint: https://doi.org/10.
48550/arXiv.2208.05046

137. Beyer, D., Chien, P.C., Jankola, M., Lee, N.Z.: A transferability study of
interpolation-based hardware model checking for software verification. Proc. ACM
Softw. Eng. 1(FSE) (2024). https://doi.org/10.1145/3660797

138. Beyer, D., Podelski, A.: Software model checking: 20 years and beyond. In: Principles
of Systems Design. pp. 554–582. LNCS 13660, Springer (2022). https://doi.org/
10.1007/978-3-031-22337-2_27

139. Ayaziová, P., Beyer, D., Lingsch-Rosenfeld, M., Spiessl, M., Strejček, J.: Software
verification witnesses 2.0. In: Proc. SPIN. Springer (2024)

140. Heule, M.J.H.: The DRAT format and drat-trim checker. CoRR 1610(06229)
(October 2016)

https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1007/978-3-030-71500-7_18
https://doi.org/10.1109/ASE.2013.6693139
https://doi.org/10.1109/ASE.2013.6693139
https://doi.org/10.1007/978-3-662-46675-9_7
https://doi.org/10.1007/978-3-662-46675-9_7
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2000-14.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2000-14.pdf
https://doi.org/10.1007/10722468_7
https://doi.org/10.1007/10722468_7
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1007/11817963_37
https://doi.org/10.1007/11817963_37
https://doi.org/10.1145/1133981.1134029
https://doi.org/10.1145/1133981.1134029
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1145/876638.876643
https://doi.org/10.1007/S10009-019-00547-X
https://doi.org/10.1007/S10009-019-00547-X
https://doi.org/10.1007/s10817-024-09702-9
https://doi.org/10.48550/arXiv.2208.05046
https://doi.org/10.48550/arXiv.2208.05046
https://doi.org/10.1145/3660797
https://doi.org/10.1007/978-3-031-22337-2_27
https://doi.org/10.1007/978-3-031-22337-2_27

The Transformation Game: Joining Forces for Verification 31

141. Beyer, D., Dangl, M.: Verification-aided debugging: An interactive web-service for
exploring error witnesses. In: Proc. CAV (2). pp. 502–509. LNCS 9780, Springer
(2016). https://doi.org/10.1007/978-3-319-41540-6_28

142. Haltermann, J., Wehrheim, H.: CoVEGI: Cooperative verification via externally
generated invariants. In: Proc. FASE. pp. 108–129. LNCS 12649 (2021). https:
//doi.org/10.1007/978-3-030-71500-7_6

Open Access. This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.
0/), which permits use, sharing, adaptation, distribution, and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-41540-6_28
https://doi.org/10.1007/978-3-030-71500-7_6
https://doi.org/10.1007/978-3-030-71500-7_6
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	The Transformation Game:Joining Forces for Verification

