
Find, Use, and Conserve
Tools for Formal Methods

Dirk Beyer

LMU Munich, Munich, Germany

Abstract. The research area of formal methods has made enormous
progress in the last 20 years, and many tools exist to apply formal methods
to practical problems. Unfortunately, many of these tools are difficult
to find and install, and often they are not executable due to missing
installation requirements. The findability and wide adoption of tools, and
the reproducibility of research results, could be improved if all major tools
for formal methods were conserved and documented in a central repository
of tools for formal methods (cf. FAIR principles).
This paper describes a solution to this problem: Collect and maintain
essential data about tools for formal methods in a central repository, called
FM-Tools, available at https://gitlab.com/sosy-lab/benchmarking/
fm-tools. The repository contains metadata, such as which tools are
available, which versions are advertized for each tool, and what command-
line arguments to use for default usage. The actual tool executables are
stored in tool archives at Zenodo, and for technically deep documentation,
references point to archived publications or project web sites. Two commu-
nities, which are concerned with software verification and testing, already
adopted the FM-Tools repository for their comparative evaluations.
Andreas Podelski and his research group, with their Ultimate family of
tools for software verification, are among the early adopters of this strategy,
and the Ultimate tools are included in the repository from its beginning.

Keywords: FAIR · Formal Methods · Long-Term Archiving · Reuse ·
Conservation · Reproducibility · Competitions · Software Tools · FM-Tools

1 Introduction

The research community of formal methods, especially formal verification of
medium and large software systems, has seen a lot of progress in the past 20 years.
As a result, there are many tool implementations available, and a recent survey [1],
co-authored by Andreas Podelski, gives an overview of the milestones in the
history of software model checking and the available tools for verification of C
and Java programs. Those tools are mature in their performance and quality,
as witnessed and regularly measured by comparative evaluations of the tools [2].
There are several competitions available in this research area of formal meth-
ods, for example, the competitions on satisfiability (SAT-COMP [3]), theorem
proving (TPTP [4]), SMT solving (SMT-COMP [5]), software verification (SV-
COMP [2], RERS [6] and VerifyThis [7]), software testing (Test-Comp [8]), and

https://doi.org/10.5281/zenodo.11193820
https://orcid.org/0000-0003-4832-7662
https://gitlab.com/sosy-lab/benchmarking/fm-tools
https://gitlab.com/sosy-lab/benchmarking/fm-tools

termination checking (termCOMP [9]). More competitions in the area of formal
methods are explained in the TOOLympics 2019 report [10].

Besides all this great progress, and many success stories with formal verification
of software in industry [11, 12, 13, 14, 15, 16, 17], users still have reasons to complain
that the tools are difficult to find and install, and often they are not executable
due to missing requirements [18, 19]. This hinders the wide application of these
tools; often it is not possible to reproduce results reported in research publications.
There is no standard way to find or conserve tools and components in this research
area. Such tools, and metadata for the tools, should follow the FAIR principles
(findable, accessible, interoperable, and reusable) [20, 21].

We propose a solution to this problem, by designing a data repository in which
metadata about tools for formal methods are collected and maintained. The goal
is to conserve a definition of how to execute each tool and what their requirements
are. This central repository of tools for formal methods is hosted on GitLab at
https://gitlab.com/sosy-lab/benchmarking/fm-tools and freely accessible,
since all information is licensed under the Creative Commons license CC-BY 4.0.

The repository is already actively used to store metadata about the tools,
their archive ids, their versions, and their documentation. Currently the two
competitions on software verification (SV-COMP) and testing (Test-Comp) use
the repository to track the participation in their comparative evaluations. For this
use case, the repository specifies which tool version to execute for the competition
and with which command-line options. Furthermore, the data contain information
about whom to contact and who from the development team of the tool represents
the team in the competition jury. The actual tool archives with the executables
are stored at Zenodo and identified by DOIs. The data repository also provides
pointers to documentation, archived in digital libraries or project web sites.

This topic fits well for this Festschrift, because Andreas Podelski, together with
his team, participates since 2013 in the competition on software verification. The
Ultimate family of tools for software verification and the development team par-
ticipate in the community service around the competition and achieve top results,
witnessed by the many medals that the team won. They are also concerned with
making their tools available to others via an easy-to-use web interface. Often, such
an excellent infrastructure can be offered only by large and strong development
teams. This paper proposes to make all tools available via a web service.

The goal of this paper is to describe the above-mentioned data repository,
outline how to make all tools available to users and machines via an easy-to-use
web interface as well as command-line interface, and how to achieve a central
store of (meta) information about tools for formal methods.

Contributions. This paper makes the following contributions:

• the repository FM-Tools as solution to the problem of collecting and main-
taining data about tools for formal methods,

• a description of the repository’s structure and its integration with the tools
CoVeriTeam, CoVeriTeam-Service, and FM-Weck, and

• an artifact to try out executing a conserved tool.

https://gitlab.com/sosy-lab/benchmarking/fm-tools

Related Work. The web site Yahoda [22, 23] was created in 2002 to provide
unified information about verification tools and to allow the developers of the
tools to maintain the data about their tools. The last available version is from
2011 and contains 67 tool entries. The dataset ProVerB [24, 25] is also concerned
with collecting information about tools for formal methods. The dataset contains
a classification of tools and describes roughly the input and output of the tools, as
well as some techniques that the tools support. The data set contains information
about 384 tools, based on a systematic search, starting with the proceedings of the
conferences CAV and TACAS. Maintaining the information is the main challenge
in both cases: The web server for Yahoda is not reachable anymore, but thanks
to the Internet Archive, the information is still available. The repository and web
site of ProVerB was not touched since more than a year, but the data are also
long-term archived at Zenodo. Our approach is to connect the maintenance of
the data in the FM-Tools collection to regular comparative evaluations of the
performance of tools (research competitions), and regularly publish FM-Tools
snapshots in long-term archives at Zenodo [26].

This is not the first attempt to see formal-methods tools as components
(cf. [27, 28, 29, 30]) or to provide them via a central web service [31, 32, 33, 34, 35].
Also, some tool projects provide specialized web services with their tools (e.g.,
Ultimate, CPAchecker). CoVeriTeam-Service [36] is more general: it provides a
web service for almost all tools in the FM-Tools repository. The FM-Tools format
(version 2) for describing tools can be seen as an extension of CoVeriTeam’s
format (version 1) for defining atomic actors [37, Listing 2]. With FM-Tools,
we now add a lot more important information about the tools, in particular, it
serves as the central location to announce the execution environment for a tool
in form of container images in OCI image format and Ubuntu packages.

So far, no existing approach addresses the issue of conserving the tools and
ensuring the tools’ execution in the future.

2 The FM-Tools Repository

The current version of the FM-Tools repository https://gitlab.com/sosy-lab/
benchmarking/fm-tools consists of the following directories (suffix ‘/’) and files:

presentations/ Contains presentations that describe the tools (see below).
data/ Contains the main data about tools (see below).

ci/ Contains scripts that ensure the consistency of the data.
The scripts are executed by the continuous-integration (CI)
pipelines of the GitLab repository.

scripts/ Contains the contents of another repository as submodule.
These scripts are used by the CI pipelines.

CODEOWNERS Contains a specification of which file in the repository may
be changed by which set of users. The file follows the GitLab
format and is derived from the metadata for the tools.

LICENSE.md Contains the license of all files in this repository.
README.md Contains a description of the repository.

https://www.ultimate-pa.org/
https://vcloud.sosy-lab.org/cpachecker/webclient/run/
https://gitlab.com/sosy-lab/benchmarking/fm-tools
https://gitlab.com/sosy-lab/benchmarking/fm-tools
https://gitlab.com/sosy-lab/benchmarking/fm-tools/-/blob/2.0/presentations/
https://gitlab.com/sosy-lab/benchmarking/fm-tools/-/blob/2.0/data/
https://gitlab.com/sosy-lab/benchmarking/fm-tools/-/blob/2.0/ci/
https://gitlab.com/sosy-lab/benchmarking/competition-scripts/-/tree/5a5c2633d064f016eb80bd6d579602d8045117d3
https://gitlab.com/sosy-lab/benchmarking/fm-tools/-/blob/2.0/CODEOWNERS
https://gitlab.com/sosy-lab/benchmarking/fm-tools/-/blob/2.0/LICENSE.md
https://gitlab.com/sosy-lab/benchmarking/fm-tools/-/blob/2.0/README.md

1 name: UAutomizer
2 input_languages:
3 - C
4 project_url: https :// ultimate -pa.org
5 repository_url: https :// github.com/ultimate -pa/ultimate
6 spdx_license_identifier: LGPL -3.0-or-later
7 benchexec_toolinfo_module: ultimateautomizer.py
8 fmtools_format_version: "2.0"
9 fmtools_entry_maintainers:

10 - danieldietsch

Fig. 1: Data file for Ultimate Automizer — tool data

The directory presentations/ contains presentations about tools described in
data/. An entry consists of two files: presentations/<tool-id>_<event-id>.pdf
and presentations/<tool-id>_<event-id>.pdf.license, where <tool-id> matches
one of the file names data/<tool-id>.yml and <event-id> identifies the event where
the presentation was given. The file with extension .pdf contains a presentation
in PDF/A format; the file with extension .license contains an SPDX identifier
of the license (for example, SPDX-License-Identifier: CC-BY-4.0).

In the following subsections, we focus on the directory data/. This directory
contains the special file schema.yml, which defines the format of all other files
in the directory: the tool descriptions. The names of the tool-description files
are of the form <tool-id>.yml, where tool-id is an identifier that consists of
lowercase letters, digits, and hyphens. In the following we define the contents of the
tool-description files. For illustration, we use the example file uautomizer.yml
for the tool Ultimate Automizer [38], one of Andreas Podelski’s tools.

2.1 Tool Description

Figure 1 shows an example of the tool-data section of the file. The tool description
starts with the key name, whose value is the (stylized) name of the tool. The
YAML key input_languages has a list of languages as value, specifying which
input formats the tool supports. The keys project_url and repository_url
specify the project’s web site and the source-code repository, respectively. The key
spdx_license_identifier specifies the license of the tool in the standard SPDX
format (https://spdx.org/licenses/). The key benchexec_toolinfo_module
specifies the BenchExec [39] tool-info module that is necessary to assemble the com-
mand line for the tool’s execution and to interpret the tool’s output. The YAML
key fmtools_format_version specifies the version of the tool-description format,
currently 2.0. The key fmtools_entry_maintainers specifies a list of maintain-
ers of this tool description. The list elements must be valid GitLab user names,
and those accounts will end up in the file CODEOWNERS in the top-level directory, in
order to manage who can make changes to the data and approve merge requests.

https://gitlab.com/sosy-lab/benchmarking/fm-tools/-/blob/2.0/presentations/
https://gitlab.com/sosy-lab/benchmarking/fm-tools/-/blob/2.0/data/
https://gitlab.com/sosy-lab/benchmarking/fm-tools/-/blob/2.0/data/
https://gitlab.com/sosy-lab/benchmarking/fm-tools/-/blob/2.0/data/schema.yml
https://gitlab.com/sosy-lab/benchmarking/fm-tools/-/blob/2.0/data/uautomizer.yml
https://spdx.org/licenses/

1 maintainers:
2 - orcid: 0000 -0003 -4252 -3558
3 name: Matthias Heizmann
4 institution: University of Freiburg
5 country: Germany
6 url: https ://swt.informatik.uni -freiburg.de/staff/heizmann
7 - orcid: 0000 -0003 -4885 -0728
8 name: Dominik Klumpp
9 institution: University of Freiburg

10 country: Germany
11 url: https ://swt.informatik.uni -freiburg.de/staff/klumpp
12 - orcid: 0000 -0002 -5656 -306X
13 name: "Frank Schüssele"
14 institution: University of Freiburg
15 country: Germany
16 url: https ://swt.informatik.uni -freiburg.de/staff/schuessele
17 - orcid: 0000 -0002 -8947 -5373
18 name: Daniel Dietsch
19 institution: University of Freiburg
20 country: Germany
21 url: https ://swt.informatik.uni -freiburg.de/staff/dietsch

Fig. 2: Data file for Ultimate Automizer — tool maintainers

2.2 Maintainers

Figure 2 shows an example of the tool maintainers. The key maintainers has
a list of dictionaries as value. Each dictionary specifies one maintainer, by the
keys orcid, name, institution, country, and homepage url.

2.3 Tool Versions

Figure 3 shows an example of the tool versions (we list only those from 2024
here). The key versions has a list of dictionaries as value. Each dictionary
specifies one tool version, by the following keys: The key version is an iden-
tifier for a specific version of the tool, to be referred to, for example, for the
definition which version participated in a competition. The key doi defines the
tool archive. The DOI points to a specific version of the tool archives on Zen-
odo. The key benchexec_toolinfo_options specifies the command-line options
that the developers define to be used to obtain optimal functionality. The key
required_ubuntu_packages defines a list of Ubuntu packages that are required
to be installed for the tool to work properly. The key base_container_images
identifies a list of a container images in OCI image format (as used by Docker
and Podman) in which the tool can be correctly executed after installing the
packages defined under required_ubuntu_packages. The key full_container_-
images identifies a list of a container images in OCI image format in which
the tool can be correctly executed without further installation of any packages.
For example, Ultimate Automizer can be executed with the container image
registry.gitlab.com/sosy-lab/benchmarking/competition-scripts/user:2024
from the given domain and path without installing any package.

1 versions:
2 - version: svcomp24 -correctness -post -deadline -yaml -wrapper -fix
3 doi: 10.5281/ zenodo .10223333
4 benchexec_toolinfo_options:
5 [--full -output , --witness -type , correctness_witness]
6 required_ubuntu_packages:
7 - openjdk -11-jre -headless
8 base_container_images:
9 - docker.io/ubuntu:22.04

10 full_container_images:
11 - registry.gitlab.com/sosy -lab/benchmarking /...- scripts/user:2024
12 - version: svcomp24
13 doi: 10.5281/ zenodo .10203545
14 benchexec_toolinfo_options: [--full -output]
15 required_ubuntu_packages:
16 - openjdk -11-jre -headless
17 base_container_images:
18 - docker.io/ubuntu:22.04
19 full_container_images:
20 - registry.gitlab.com/sosy -lab/benchmarking /...- scripts/user:2024
21 - version: svcomp24 -correctness
22 doi: 10.5281/ zenodo .10203545
23 benchexec_toolinfo_options:
24 [--full -output , --witness -type , correctness_witness]
25 required_ubuntu_packages:
26 - openjdk -11-jre -headless
27 base_container_images:
28 - docker.io/ubuntu:22.04
29 full_container_images:
30 - registry.gitlab.com/sosy -lab/benchmarking /...- scripts/user:2024
31 - version: svcomp24 -violation
32 doi: 10.5281/ zenodo .10203545
33 benchexec_toolinfo_options:
34 [--full -output , --witness -type , violation_witness]
35 required_ubuntu_packages:
36 - openjdk -11-jre -headless
37 base_container_images:
38 - docker.io/ubuntu:22.04
39 full_container_images:
40 - registry.gitlab.com/sosy -lab/benchmarking /...- scripts/user:2024

Fig. 3: Data file for Ultimate Automizer — tool versions (the identifier
registry.gitlab.com/sosy-lab/benchmarking/competition-scripts/user:2024 is
abbreviated using ...)

2.4 Competition Participation

Figure 4 shows an example of the tool’s participation declaration in the com-
petition on software verification SV-COMP 2024 [2]. The corresponding YAML
key competition_participations has a list of dictionaries as value. The key
competition and track have as value the name of the competition and the name
of the competition track for which this participation is meant, respectively. The
key tool_version refers to a version of the tool that is defined under the key
versions above. The key jury_member has a dictionary as value and defines the
team member who represents this tool in the competition jury. The dictionary
consists of entries with the keys orcid, name, institution, country, and url,
where the URL refers to the person’s home page. The declaration of the specific

1 competition_participations:
2 - competition: SV -COMP 2024
3 track: Verification
4 tool_version: svcomp24
5 jury_member:
6 orcid: 0000 -0003 -4252 -3558
7 name: Matthias Heizmann
8 institution: University of Freiburg
9 country: Germany

10 url: https ://swt.informatik.uni -freiburg.de/staff/heizmann
11 - competition: SV -COMP 2024
12 track: Validation of Correctness Witnesses 1.0
13 tool_version: svcomp24 -correctness
14 jury_member:
15 orcid: 0000 -0003 -4252 -3558
16 name: Matthias Heizmann
17 institution: University of Freiburg
18 country: Germany
19 url: https ://swt.informatik.uni -freiburg.de/staff/heizmann
20 - competition: SV -COMP 2024
21 track: Validation of Correctness Witnesses 2.0
22 tool_version: svcomp24 -correctness -post -deadline -yaml -wrapper -fix
23 jury_member:
24 orcid: 0000 -0003 -4252 -3558
25 name: Matthias Heizmann
26 institution: University of Freiburg
27 country: Germany
28 url: https ://swt.informatik.uni -freiburg.de/staff/heizmann
29 - competition: SV -COMP 2024
30 track: Validation of Violation Witnesses 1.0
31 tool_version: svcomp24 -violation
32 jury_member:
33 orcid: 0000 -0003 -4252 -3558
34 name: Matthias Heizmann
35 institution: University of Freiburg
36 country: Germany
37 url: https ://swt.informatik.uni -freiburg.de/staff/heizmann

Fig. 4: Data file for Ultimate Automizer — tool’s competition participation

version, in particular via the DOI, together with the command-line options and
the execution environment (container and packages) make it possible to execute
this tool at any time, and reproduce the results obtained in the competition.

2.5 Documentation

Figure 5 shows an example of the documentation of the tool. The key techniques
has a list of keywords as value, where each keyword refers to an established
technique in software model checking. The key literature has a list of dictionaries
as value. Each literature dictionary has the keys doi to identify the literature
document (documents without DOI can be mentioned on the project web site),
title to mention the title of the document, and year to mention the year of
publication (the last two values are implied by the DOI, but are mentioned here
to have the data human readable, consistency should be ensure via CI).

1 techniques:
2 - CEGAR
3 - Predicate Abstraction
4 - Bit -Precise Analysis
5 - Lazy Abstraction
6 - Interpolation
7 - Automata -Based Analysis
8 - Concurrency Support
9 - Ranking Functions

10 - Algorithm Selection
11 - Portfolio
12

13 literature:
14 - doi: 10.1007/978 -3 -642 -39799 -8_2
15 title: "Software Model Checking for People Who Love Automata"
16 year: 2013
17 - doi: 10.1007/978 -3 -031 -30820 -8 _39
18 title: "Ultimate Automizer 2023 (Competition Contribution)"
19 year: 2023

Fig. 5: Data file for Ultimate Automizer — tool documentation

2.6 FAIR Principles of the FM-Tools Repository

At the time of writing, FM-Tools describes and captures metadata of 91 tools from
the formal-methods research community. The repository is hosted at GitLab. FM-
Tools is an open-source data repository that follows the FAIR principles [20, 21]
(findable, accessible, interoperable, reusable).
F: The repository FM-Tools is searchable on the public internet, and mirrored
by the software archive Software Heritage. A human readable web site with the
most important information is continuously generated from the repository.
A: All files of FM-Tools are retrievable using the HTTP protocol via the GitLab
web service. Authentication is not necessary for reading the data (change requests
require a GitLab account). If GitLab should become unavailable, the snapshots
at Zenodo and the mirror at Software Heritage are still available.
I: The format of the tool entries in FM-Tools is defined using a YAML schema,
and continuous-integration pipelines check the syntax and context conditions.
The tool archives are identified using DOIs (pointing to the archives’ landing
page at Zenodo) and the researchers are identified using ORCIDs (pointing to
the researchers’ profiles at ORCID).
R: The license of the FM-Tools data is CC-BY 4.0. The data represented in FM-
Tools meet the community standards of the competitions SV-COMP (https://
sv-comp.sosy-lab.org) and Test-Comp (https://test-comp.sosy-lab.org).
It is under the researchers’ control how much they reveal about themselves on
ORCID, and under which license the tool is available on Zenodo.

https://fm-tools.sosy-lab.org/
https://sv-comp.sosy-lab.org
https://sv-comp.sosy-lab.org
https://test-comp.sosy-lab.org

3 Integration of the FM-Tools Repository
with CoVeriTeam and FM-Weck

The data in the FM-Tools repository can be used to conveniently execute tools
for formal methods, without the need to install them or to take measures such as
containers to ensure isolated execution without security risks on the user machine.

3.1 Tool Execution via CoVeriTeam Service

CoVeriTeam [37] is a tool that, among other things, automates the download,
installation, and execution of tools in safe and secure environments based on
BenchExec [39]. CoVeriTeam-Service [36] is a service that offers the features
of CoVeriTeam as a web service, that is, the input files are sent to a remote
server, the tool is executed on the remote server, and results are fetched from
the remote server and delivered back to the user. Since CoVeriTeam Service
executes formal-methods tools remotely without locally installing them, this way
of execution is ideal for continuous integration, because the actual automated-
reasoning work is offloaded to a remote compute server.

In the following we assume that the repository for CoVeriTeam is cloned using

git clone --recurse-submodules \
git@gitlab.com:sosy-lab/software/coveriteam.git

and that the current directory is the main directory of that checkout. A full
command line to execute Ultimate Automizer remotely, using the specific version
svcomp24 of the tool, the specification no-overflow, and the particular program
AdditionIntMax.i would look as follows:

bin/verify --remote -t uautomizer -v svcomp24 --spec no-overflow \
examples/test-data/c/AdditionIntMax.i

This command is executed on the remote server (by default, CoVeriTeam Service
uses the server coveriteam-service.sosy-lab.org), which downloads, installs,
and executes the tool Ultimate Automizer in version svcomp24, and returns
the result to the user. The verdict from Ultimate Automizer is reported as
false(no-overflow), that is, an overflow of a variable of type signed integer
happens. More detailed information can be found in the CoVeriTeam output
folder cvt-output/, in particular, the execution trace with measurements of
consumed resources (such as CPU time, wall time, and memory), the complete
log of the tool’s output to stdout, and possibly a verification witness.

3.2 Tool Execution via FM-Weck

FM-Weck [40] provides support for conveniently running tools from the FM-
Tools repository in their designated OCI containers: it downloads the tool
and its container, and executes the tool in its container (in isolation). The
tool has two modes: (i) FM-Weck takes a base container image specified as a

https://gitlab.com/sosy-lab/software/coveriteam/-/blob/1.2.3/examples/test-data/c/AdditionIntMax.i
https://coveriteam-service.sosy-lab.org

value in the list for key base_container_images of the version dictionary in
the versions section, installs the packages listed in the key required_ubuntu_-
packages, and executes the tool available in the archive specified by the value
for key doi. (ii) FM-Weck takes a full container image specified as a value in the
list for key full_container_images of the version dictionary in the versions
section, and executes the tool available in the archive specified by the value
for key doi, without installing any packages.

FM-Weck enables all users to take advantage of the conserved tools as defined
in the FM-Tools repository. This approach makes it possible to execute the formal-
methods tools hopefully after many years, when a machine with the required
operating system and packages cannot be found anymore. The container images
will still be available, and thus, the tools still be executable. Currently, it is an
open challenge for the formal-methods community to achieve reproducibility of any
experimental results obtained with tools and published articles. Full reproducibility
is not yet achieved up to now, partially because tools are not easy to execute,
which is the concern that FM-Weck tries to address.

We now explain how to execute UAutomizer via FM-Weck. We assume
in the following a GNU/Linux machine with a working Podman installation.
First, we install FM-Weck via pip:

pip install fm-weck

Assuming that AdditionIntMax.i and no-overflow.prp are in the current di-
rectory, the following command line downloads and executes UAutomizer in
version svcomp24 in a container specified under full_container_images in the
FM-Tools record for version svcomp24:

fm-weck run uautomizer:svcomp24 \
--property no-overflow.prp --data-model LP64 AdditionIntMax.i

The output of UAutomizer is the same as above. The command-line arguments
and input files to UAutomizer can be adjusted using the option -m for FM-Weck.

4 Overview Web Site Generated from the Data

The community suffers from the situation that there is no central point of in-
formation that brings together all information necessary to understand which
tools for what purpose are available. Thanks to the FM-Tools repository, we
are able to generate a web site that lists the tools, and for each tool an in-
formation section displaying all interesting data, such as contact developers,
documentation, supported techniques, where to find the tool archives, and which
competitions used the tool to provide comparative results on effectivity and
efficiency of the tool. The web site generated from the FM-Tools repository
is available at https://fm-tools.sosy-lab.org.

For example, if we are interested in learning which tools use the technique
CEGAR, then we can visit the above web site, select ‘Techniques’ from the
menu and ‘CEGAR’ from the table of contents, to receive an overview of this

https://fm-tools.sosy-lab.org
https://fm-tools.sosy-lab.org/techniques.html#technique-cegar

technique and the tools supporting it. The overview starts with a short de-
scription of the technique CEGAR,

“CounterExample-Guided Abstraction Refinement is a model-checking
technique that iteratively refines the abstract model of the transition
system by analyzing spurious counterexamples and learning a more precise
abstraction.”

followed by a list of literature references [41, 42, 43] and a list of tools using
the technique CEGAR: BRICK [44], CoVeriTeam-Verifier-AlgoSelection [37, 45],
CoVeriTeam-Verifier-ParallelPortfolio [37, 45], CoVeriTest [46, 47], CPA-BAM-
BnB [48, 49], CPAchecker [50, 51], CPALockator [52, 53], Gazer-Theta [54, 55],
Graves-CPA [56], HybridTiger [57, 58], JayHorn [59, 60], PeSCo-CPA [61, 62],
PIChecker [63], Theta [64, 65], UAutomizer [38, 66], UGemCutter [67, 68], UKo-
jak [69, 70], UTaipan [71, 72], UTestGen [73], VeriAbs [74, 75], and VeriAbsL [76].

5 Conclusion

This article defines a standard format for the collection and maintenance of
important information about tools for formal methods. The goal is to address
challenges with regards to findability, reusability, reproducibility, and conserva-
tion. (i) Findability is addressed by having a standard format that is used by a
significant amount of users. Currently the repository contains over 90 tools for
formal methods, mainly from the research communities in the area of software
verification and testing, around the competitions SV-COMP and Test-Comp.
(ii) Reusability is addressed by having contact information, data about various
versions, and documentation available. (iii) Reproducibility is addressed by hav-
ing authoritative archives with tool executables identified via DOIs, providing
developer-recommended command-line parameters to be used with the tool, and
the tool archives are long-term published at Zenodo. (iv) Conservation is ad-
dressed by capturing the execution environment, which consists of a defined list
of container images in OCI image format and a list of required packages.

We hope that the ideas in this paper help towards addressing the grand
challenge of reproducibility of experimental results that are obtained with formal-
methods tools and published in the formal-methods proceedings and journals.
We congratulate Andreas Podelski to his 65th birthday and especially to the
many tools that were developed under his guidance — we are happy that we can
contribute to conserving such excellent research products for future generations.

Data-Availability Statement. The FM-Tools repository is available open ac-
cess (CC-BY 4.0) at https://gitlab.com/sosy-lab/benchmarking/fm-tools.
Important versions of the FM-Tools repository are archived at Zenodo [26]
(current version is 2.0). The repository is also mirrored at Software Heritage. The
generated web site https://fm-tools.sosy-lab.org/ is also mirrored at the
Internet Archive. The artifact supporting this paper is available at Zenodo [77]
and contains a snapshot of the CoVeriTeam repository in version 1.2.3 (such

https://fm-tools.sosy-lab.org/techniques.html#technique-cegar
https://fm-tools.sosy-lab.org/techniques.html#technique-cegar
https://fm-tools.sosy-lab.org/techniques.html#technique-cegar
https://creativecommons.org/licenses/by/4.0/
https://gitlab.com/sosy-lab/benchmarking/fm-tools
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://gitlab.com/sosy-lab/benchmarking/fm-tools
https://fm-tools.sosy-lab.org/
https://web.archive.org/web/*/https://fm-tools.sosy-lab.org/

that CoVeriTeam Service can be executed) and a snapshot of the FM-Tools
repository in version 2.0 as submodule (such that all data can be inspected).

Funding Statement. FM-Weck was supported by Deutsche Forschungsgemein-
schaft (DFG) – 378803395 (ConVeY). CoVeriTeam and CoVeriTeam Service
were supported by Deutsche Forschungsgemeinschaft (DFG) – 418257054 (Coop)
and 378803395 (ConVeY).

Acknowledgements. We thank Sudeep Kanav and Henrik Wachowitz for the
joint work on CoVeriTeam [37], CoVeriTeam Service [36], and FM-Weck [40].

References

1. Beyer, D., Podelski, A.: Software model checking: 20 years and beyond. In:
Principles of Systems Design. pp. 554–582. LNCS 13660, Springer (2022).
https://doi.org/10.1007/978-3-031-22337-2_27

2. Beyer, D.: State of the art in software verification and witness validation: SV-
COMP 2024. In: Proc. TACAS (3). pp. 299–329. LNCS 14572, Springer (2024).
https://doi.org/10.1007/978-3-031-57256-2_15

3. Järvisalo, M., Berre, D.L., Roussel, O., Simon, L.: The international SAT solver
competitions. AI Magazine 33(1) (2012). https://doi.org/10.1609/aimag.v33i1.2395

4. Sutcliffe, G.: The CADE ATP system competition: CASC. AI Magazine 37(2),
99–101 (2016). https://doi.org/10.1609/aimag.v37i2.2620

5. Weber, T., Conchon, S., Déharbe, D., Heizmann, M., Niemetz, A., Reger, G.: The
SMT competition 2015-2018. J. Satisf. Boolean Model. Comput. 11(1), 221–259
(2019). https://doi.org/10.3233/SAT190123

6. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D., Păsăreanu, C.S.: Rigorous
examination of reactive systems. The RERS challenges 2012 and 2013. Int. J. Softw.
Tools Technol. Transfer 16(5), 457–464 (2014). https://doi.org/10.1007/s10009-014-
0337-y

7. Ernst, G., Huisman, M., Mostowski, W., Ulbrich, M.: VerifyThis: Verification
competition with a human factor. In: Proc. TACAS. pp. 176–195. LNCS 11429,
Springer (2019). https://doi.org/10.1007/978-3-030-17502-3_12

8. Beyer, D.: Software testing: 5th comparative evaluation: Test-Comp 2023. In: Proc.
FASE. pp. 309–323. LNCS 13991, Springer (2023). https://doi.org/10.1007/978-3-
031-30826-0_17

9. Giesl, J., Mesnard, F., Rubio, A., Thiemann, R., Waldmann, J.: Termination
competition (termCOMP 2015). In: Proc. CADE. pp. 105–108. LNCS 9195, Springer
(2015). https://doi.org/10.1007/978-3-319-21401-6_6

10. Bartocci, E., Beyer, D., Black, P.E., Fedyukovich, G., Garavel, H., Hartmanns, A.,
Huisman, M., Kordon, F., Nagele, J., Sighireanu, M., Steffen, B., Suda, M., Sutcliffe,
G., Weber, T., Yamada, A.: TOOLympics 2019: An overview of competitions in
formal methods. In: Proc. TACAS (3). pp. 3–24. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_1

11. Ball, T., Levin, V., Rajamani, S.K.: A decade of software model checking with Slam.
Commun. ACM 54(7), 68–76 (2011). https://doi.org/10.1145/1965724.1965743

12. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: Slam and Static Driver Verifier:
Technology transfer of formal methods inside Microsoft. In: Proc. IFM. pp. 1–20.
LNCS 2999, Springer (2004). https://doi.org/10.1007/978-3-540-24756-2_1

http://gepris.dfg.de/gepris/projekt/378803395
http://gepris.dfg.de/gepris/projekt/418257054
http://gepris.dfg.de/gepris/projekt/378803395
https://doi.org/10.1007/978-3-031-22337-2_27
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1609/aimag.v33i1.2395
https://doi.org/10.1609/aimag.v37i2.2620
https://doi.org/10.3233/SAT190123
https://doi.org/10.1007/s10009-014-0337-y
https://doi.org/10.1007/s10009-014-0337-y
https://doi.org/10.1007/978-3-030-17502-3_12
https://doi.org/10.1007/978-3-031-30826-0_17
https://doi.org/10.1007/978-3-031-30826-0_17
https://doi.org/10.1007/978-3-319-21401-6_6
https://doi.org/10.1007/978-3-030-17502-3_1
https://doi.org/10.1145/1965724.1965743
https://doi.org/10.1007/978-3-540-24756-2_1

13. Khoroshilov, A.V., Mutilin, V.S., Petrenko, A.K., Zakharov, V.: Establishing Linux
driver verification process. In: Proc. Ershov Memorial Conference. pp. 165–176.
LNCS 5947, Springer (2009). https://doi.org/10.1007/978-3-642-11486-1_14

14. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M.,
O’Hearn, P., Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving fast with
software verification. In: Proc. NFM. pp. 3–11. LNCS 9058, Springer (2015).
https://doi.org/10.1007/978-3-319-17524-9_1

15. Cook, B.: Formal reasoning about the security of Amazon web services. In: Proc.
CAV (2). pp. 38–47. LNCS 10981, Springer (2018). https://doi.org/10.1007/978-3-
319-96145-3_3

16. Chong, N., Cook, B., Kallas, K., Khazem, K., Monteiro, F.R., Schwartz-Narbonne,
D., Tasiran, S., Tautschnig, M., Tuttle, M.R.: Code-level model checking in the
software development workflow. In: Proc. ICSE. pp. 11–20. ICSE-SEIP ’20, ACM
(2020). https://doi.org/10.1145/3377813.3381347

17. Darke, P., Metta, R., Medicherla, R.K., Venkatesh, R.: Impactful research and
tooling for program correctness. Commun. ACM 65(11), 52–53 (October 2022).
https://doi.org/10.1145/3551665

18. Alglave, J., Donaldson, A.F., Kröning, D., Tautschnig, M.: Making software verifi-
cation tools really work. In: Proc. ATVA. pp. 28–42. LNCS 6996, Springer (2011).
https://doi.org/10.1007/978-3-642-24372-1_3

19. Garavel, H., ter Beek, M.H., van de Pol, J.: The 2020 expert survey on
formal methods. In: Proc. FMICS. pp. 3–69. LNCS 12327, Springer (2020).
https://doi.org/10.1007/978-3-030-58298-2_1

20. Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M., Baak,
A., Blomberg, N., Boiten, J.W., d. Silva Santos, L.B., Bourne, P.E., Bouwman, J.,
Brookes, A.J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo,
C.T., Finkers, R., Gonzalez-Beltran, A., Gray, A.J.G., Groth, P., Goble, C., Grethe,
J.S., Heringa, J., ’t Hoen, P.A.C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher,
S.J., Martone, M.E., Mons, A., Packer, A.L., Persson, B., Rocca-Serra, P., Roos,
M., v. Schaik, R., Sansone, S.A., Schultes, E., Sengstag, T., Slater, T., Strawn, G.,
Swertz, M.A., Thompson, M., v. d. Lei, J., v. Mulligen, E., Velterop, J., Waag-
meester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., Mons, B.: The FAIR guiding
principles for scientific data management and stewardship. Sci. Data 3 (2016).
https://doi.org/10.1038/sdata.2016.18

21. Jacobsen, A., d. Miranda Azevedo, R., Juty, N.S., Batista, D., Coles, S.J., Cornet,
R., Courtot, M., Crosas, M., Dumontier, M., Evelo, C.T.A., Goble, C.A., Guizzardi,
G., Hansen, K.K., Hasnain, A., Hettne, K.M., Heringa, J., Hooft, R.W.W., Imming,
M., Jeffery, K.G., Kaliyaperumal, R., Kersloot, M.G., Kirkpatrick, C.R., Kuhn, T.,
Labastida, I., Magagna, B., McQuilton, P., Meyers, N., Montesanti, A., v. Reisen,
M., Rocca-Serra, P., Pergl, R., Sansone, S.A., d. Silva Santos, L.O.B., Schneider,
J., Strawn, G.O., Thompson, M., Waagmeester, A., Weigel, T., Wilkinson, M.D.,
Willighagen, E.L., Wittenburg, P., Roos, M., Mons, B., Schultes, E.: FAIR principles:
Interpretations and implementation considerations. Data Intell. 2(1-2), 10–29 (2020).
https://doi.org/10.1162/DINT_R_00024

22. Crhová, J., Krčál, P., Strejček, J., Šafránek, D., Šimeček, P.: Yahoda: Verification
tools database. In: Proc. Tools Day. pp. 99–103. FI MU Report Series FIMU-RS-
2002-05, Masaryk University (2002)

23. Crhová, J., Krcál, P., Strejček, J., Šafránek, D., Simecek, P.: Yahoda: Verification
tools database. http://www.fi.muni.cz/yahoda/ (2002), [Available in the Inter-

https://doi.org/10.1007/978-3-642-11486-1_14
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1145/3377813.3381347
https://doi.org/10.1145/3551665
https://doi.org/10.1007/978-3-642-24372-1_3
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1162/DINT_R_00024
http://www.fi.muni.cz/yahoda/

net Archive at https://web.archive.org/web/20111119200847/http://anna.fi.
muni.cz/yahoda]

24. Lathouwers, S., Zaytsev, V.: Modelling program-verification tools for
software engineers. In: Proc. MODELS. pp. 98–108. ACM (2022).
https://doi.org/10.1145/3550355.3552426

25. Lathouwers, S., Zaytsev, V.: Proverb: Dataset of tools and formats for program
verification. Zenodo (2024). https://doi.org/10.5281/zenodo.10806218

26. Beyer, D.: FM-Tools releases. Zenodo. https://doi.org/10.5281/zenodo.10669734
27. Spector, A.Z.: Invited talk: Modular architectures for distributed

and databases systems. In: Proc. PODS. pp. 217–224. ACM (1989).
https://doi.org/10.1145/73721.73743

28. Giunchiglia, E., Narizzano, M., Tacchella, A., Vardi, M.Y.: Towards an efficient
library for SAT: A manifesto. Electronic Notes in Discrete Mathematics 9, 290–310
(2001). https://doi.org/10.1016/S1571-0653(04)00329-4

29. Shankar, N.: Little engines of proof. In: Proc. FME. pp. 1–20. LNCS 2391, Springer
(2002). https://doi.org/10.1007/3-540-45614-7_1

30. Lampson, B.: Software components: Only the giants survive. In: Computer
Systems. Monographs in Computer Science. pp. 137–145. Springer (2004).
https://doi.org/10.1007/0-387-21821-1_21

31. Steffen, B., Margaria, T., Braun, V.: The Electronic Tool Integration platform: Con-
cepts and design. STTT 1(1-2), 9–30 (1997). https://doi.org/10.1007/s100090050003

32. Margaria, T., Nagel, R., Steffen, B.: jETI: A tool for remote tool integration. In: Proc.
TACAS. pp. 557–562. LNCS 3440, Springer (2005). https://doi.org/10.1007/978-3-
540-31980-1_38

33. Margaria, T., Nagel, R., Steffen, B.: Remote integration and coordina-
tion of verification tools in jETI. In: Proc. ECBS. pp. 431–436 (2005).
https://doi.org/10.1109/ECBS.2005.59

34. Margaria, T.: Web services-based tool-integration in the ETI platform. Software and
Systems Modeling 4(2), 141–156 (2005). https://doi.org/10.1007/s10270-004-0072-z

35. Steffen, B.: The physics of software tools: SWOT analysis and vision. Int. J. Softw.
Tools Technol. Transf. 19(1), 1–7 (2017). https://doi.org/10.1007/s10009-016-0446-x

36. Beyer, D., Kanav, S., Wachowitz, H.: CoVeriTeam Service: Verifica-
tion as a service. In: Proc. ICSE, companion. pp. 21–25. IEEE (2023).
https://doi.org/10.1109/ICSE-Companion58688.2023.00017

37. Beyer, D., Kanav, S.: CoVeriTeam: On-demand composition of cooperative ver-
ification systems. In: Proc. TACAS. pp. 561–579. LNCS 13243, Springer (2022).
https://doi.org/10.1007/978-3-030-99524-9_31

38. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people
who love automata. In: Proc. CAV. pp. 36–52. LNCS 8044, Springer (2013).
https://doi.org/10.1007/978-3-642-39799-8_2

39. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements
and solutions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019).
https://doi.org/10.1007/s10009-017-0469-y

40. Beyer, D., Wachowitz, H.: FM-Weck: Containerized execution of formal-methods
tools. In: Proc. FM. LNCS, Springer (2024)

41. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Proc. CAV. pp. 154–169. LNCS 1855, Springer (2000).
https://doi.org/10.1007/10722167_15

42. Ball, T., Rajamani, S.K.: Boolean programs: A model and process for software anal-
ysis. Tech. Rep. MSR Tech. Rep. 2000-14, Microsoft Research (2000), https://www.
microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2000-14.pdf

https://web.archive.org/web/20111119200847/http://anna.fi.muni.cz/yahoda
https://web.archive.org/web/20111119200847/http://anna.fi.muni.cz/yahoda
https://doi.org/10.1145/3550355.3552426
https://doi.org/10.5281/zenodo.10806218
https://doi.org/10.5281/zenodo.10669734
https://doi.org/10.1145/73721.73743
https://doi.org/10.1016/S1571-0653(04)00329-4
https://doi.org/10.1007/3-540-45614-7_1
https://doi.org/10.1007/0-387-21821-1_21
https://doi.org/10.1007/s100090050003
https://doi.org/10.1007/978-3-540-31980-1_38
https://doi.org/10.1007/978-3-540-31980-1_38
https://doi.org/10.1109/ECBS.2005.59
https://doi.org/10.1007/s10270-004-0072-z
https://doi.org/10.1007/s10009-016-0446-x
https://doi.org/10.1109/ICSE-Companion58688.2023.00017
https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/10722167_15
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2000-14.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2000-14.pdf

43. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003).
https://doi.org/10.1145/876638.876643

44. Bu, L., Xie, Z., Lyu, L., Li, Y., Guo, X., Zhao, J., Li, X.: Brick: Path
enumeration-based bounded reachability checking of C programs (competition
contribution). In: Proc. TACAS (2). pp. 408–412. LNCS 13244, Springer (2022).
https://doi.org/10.1007/978-3-030-99527-0_22

45. Beyer, D., Kanav, S., Richter, C.: Construction of verifier combinations
based on off-the-shelf verifiers. In: Proc. FASE. pp. 49–70. Springer (2022).
https://doi.org/10.1007/978-3-030-99429-7_3

46. Jakobs, M.C., Richter, C.: CoVeriTest with adaptive time scheduling (compe-
tition contribution). In: Proc. FASE. pp. 358–362. LNCS 12649, Springer (2021).
https://doi.org/10.1007/978-3-030-71500-7_18

47. Beyer, D., Jakobs, M.C.: CoVeriTest: Cooperative verifier-based testing. In: Proc.
FASE. pp. 389–408. LNCS 11424, Springer (2019). https://doi.org/10.1007/978-3-
030-16722-6_23

48. Andrianov, P., Friedberger, K., Mandrykin, M.U., Mutilin, V.S., Volkov, A.: CPA-
BAM-BnB: Block-abstraction memoization and region-based memory models for
predicate abstractions (competition contribution). In: Proc. TACAS. pp. 355–359.
LNCS 10206, Springer (2017). https://doi.org/10.1007/978-3-662-54580-5_22

49. Volkov, A.R., Mandrykin, M.U.: Predicate abstractions memory modeling method
with separation into disjoint regions. Proceedings of the Institute for System Pro-
gramming (ISPRAS) 29, 203–216 (2017). https://doi.org/10.15514/ISPRAS-2017-
29(4)-13

50. Baier, D., Beyer, D., Chien, P.C., Jankola, M., Kettl, M., Lee, N.Z., Lemberger, T.,
Lingsch-Rosenfeld, M., Spiessl, M., Wachowitz, H., Wendler, P.: CPAchecker 2.3
with strategy selection (competition contribution). In: Proc. TACAS (3). pp. 359–364.
LNCS 14572, Springer (2024). https://doi.org/10.1007/978-3-031-57256-2_21

51. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable soft-
ware verification. In: Proc. CAV. pp. 184–190. LNCS 6806, Springer (2011).
https://doi.org/10.1007/978-3-642-22110-1_16

52. Andrianov, P., Mutilin, V., Khoroshilov, A.: CPALockator: Thread-modular
approach with projections (competition contribution). In: Proc. TACAS (2). pp.
423–427. LNCS 12652, Springer (2021). https://doi.org/10.1007/978-3-030-72013-
1_25

53. Andrianov, P.S.: Analysis of correct synchronization of operating
system components. Program. Comput. Softw. 46, 712–730 (2020).
https://doi.org/10.1134/S0361768820080022

54. Ádám, Zs., Sallai, Gy., Hajdu, Á.: Gazer-Theta: LLVM-based verifier portfolio
with BMC/CEGAR (competition contribution). In: Proc. TACAS (2). pp. 433–437.
LNCS 12652, Springer (2021). https://doi.org/10.1007/978-3-030-72013-1_27

55. Hajdu, Á., Micskei, Z.: Efficient strategies for CEGAR-based model checking. J.
Autom. Reasoning 64(6), 1051–1091 (2020). https://doi.org/10.1007/s10817-019-
09535-x

56. Leeson, W., Dwyer, M.: Graves-CPA: A graph-attention verifier selector (com-
petition contribution). In: Proc. TACAS (2). pp. 440–445. LNCS 13244, Springer
(2022). https://doi.org/10.1007/978-3-030-99527-0_28

57. Ruland, S., Lochau, M., Jakobs, M.C.: HybridTiger: Hybrid model checking
and domination-based partitioning for efficient multi-goal test-suite generation
(competition contribution). In: Proc. FASE. pp. 520–524. LNCS 12076, Springer
(2020). https://doi.org/10.1007/978-3-030-45234-6_26

https://doi.org/10.1145/876638.876643
https://doi.org/10.1007/978-3-030-99527-0_22
https://doi.org/10.1007/978-3-030-99429-7_3
https://doi.org/10.1007/978-3-030-71500-7_18
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1007/978-3-662-54580-5_22
https://doi.org/10.15514/ISPRAS-2017-29(4)-13
https://doi.org/10.15514/ISPRAS-2017-29(4)-13
https://doi.org/10.1007/978-3-031-57256-2_21
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-030-72013-1_25
https://doi.org/10.1007/978-3-030-72013-1_25
https://doi.org/10.1134/S0361768820080022
https://doi.org/10.1007/978-3-030-72013-1_27
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/978-3-030-99527-0_28
https://doi.org/10.1007/978-3-030-45234-6_26

58. Bürdek, J., Lochau, M., Bauregger, S., Holzer, A., von Rhein, A., Apel, S., Beyer, D.:
Facilitating reuse in multi-goal test-suite generation for software product lines. In:
Proc. FASE. pp. 84–99. LNCS 9033, Springer (2015). https://doi.org/10.1007/978-
3-662-46675-9_6

59. Shamakhi, A., Hojjat, H., Rümmer, P.: Towards string support in JayHorn (com-
petition contribution). In: Proc. TACAS (2). pp. 443–447. LNCS 12652, Springer
(2021). https://doi.org/10.1007/978-3-030-72013-1_29

60. Kahsai, T., Rümmer, P., Sanchez, H., Schäf, M.: JayHorn: A framework for
verifying Java programs. In: Proc. CAV. pp. 352–358. LNCS 9779, Springer (2016).
https://doi.org/10.1007/978-3-319-41528-4_19

61. Richter, C., Wehrheim, H.: PeSCo: Predicting sequential combinations of verifiers
(competition contribution). In: Proc. TACAS (3). pp. 229–233. LNCS 11429, Springer
(2019). https://doi.org/10.1007/978-3-030-17502-3_19

62. Richter, C., Hüllermeier, E., Jakobs, M.C., Wehrheim, H.: Algorithm selection for
software validation based on graph kernels. Autom. Softw. Eng. 27(1), 153–186
(2020). https://doi.org/10.1007/s10515-020-00270-x

63. Su, J., Yang, Z., Xing, H., Yang, J., Tian, C., Duan, Z.: PIChecker: A
POR and interpolation-based verifier for concurrent programs (competition con-
tribution). In: Proc. TACAS (2). pp. 571–576. LNCS 13994, Springer (2023).
https://doi.org/10.1007/978-3-031-30820-8_38

64. Bajczi, L., Telbisz, C., Somorjai, M., Ádám, Z., Dobos-Kovács, M., Szekeres, D.,
Mondok, M., Molnár, V.: Theta: Abstraction based techniques for verifying concur-
rency (competition contribution). In: Proc. TACAS (3). pp. 412–417. LNCS 14572,
Springer (2024). https://doi.org/10.1007/978-3-031-57256-2_30

65. Tóth, T., Hajdu, A., Vörös, A., Micskei, Z., Majzik, I.: Theta: A framework for
abstraction refinement-based model checking. In: Proc. FMCAD. pp. 176–179 (2017).
https://doi.org/10.23919/FMCAD.2017.8102257

66. Heizmann, M., Bentele, M., Dietsch, D., Jiang, X., Klumpp, D., Schüssele, F., Podel-
ski, A.: Ultimate automizer and the abstraction of bitwise operations (competition
contribution). In: Proc. TACAS (3). pp. 418–423. LNCS 14572, Springer (2024).
https://doi.org/10.1007/978-3-031-57256-2_31

67. Klumpp, D., Dietsch, D., Heizmann, M., Schüssele, F., Ebbinghaus, M., Farzan, A.,
Podelski, A.: Ultimate GemCutter and the axes of generalization (competition
contribution). In: Proc. TACAS (2). pp. 479–483. LNCS 13244, Springer (2022).
https://doi.org/10.1007/978-3-030-99527-0_35

68. Farzan, A., Klumpp, D., Podelski, A.: Sound sequentialization for con-
current program verification. In: Proc. PLDI. pp. 506–521. ACM (2022).
https://doi.org/10.1145/3519939.3523727

69. Nutz, A., Dietsch, D., Mohamed, M.M., Podelski, A.: Ultimate Kojak with
memory safety checks (competition contribution). In: Proc. TACAS. pp. 458–460.
LNCS 9035, Springer (2015). https://doi.org/10.1007/978-3-662-46681-0_44

70. Ermis, E., Hoenicke, J., Podelski, A.: Splitting via interpolants. In: Proc. VMCAI.
pp. 186–201. LNCS 7148, Springer (2012). https://doi.org/10.1007/978-3-642-27940-
9_13

71. Dietsch, D., Heizmann, M., Klumpp, D., Schüssele, F., Podelski, A.: Ultimate
Taipan 2023 (competition contribution). In: Proc. TACAS (2). pp. 582–587.
LNCS 13994, Springer (2023). https://doi.org/10.1007/978-3-031-30820-8_40

72. Greitschus, M., Dietsch, D., Podelski, A.: Loop invariants from counterexamples. In:
Proc. SAS. pp. 128–147. LNCS 10422, Springer (2017). https://doi.org/10.1007/978-
3-319-66706-5_7

https://doi.org/10.1007/978-3-662-46675-9_6
https://doi.org/10.1007/978-3-662-46675-9_6
https://doi.org/10.1007/978-3-030-72013-1_29
https://doi.org/10.1007/978-3-319-41528-4_19
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1007/s10515-020-00270-x
https://doi.org/10.1007/978-3-031-30820-8_38
https://doi.org/10.1007/978-3-031-57256-2_30
https://doi.org/10.23919/FMCAD.2017.8102257
https://doi.org/10.1007/978-3-031-57256-2_31
https://doi.org/10.1007/978-3-030-99527-0_35
https://doi.org/10.1145/3519939.3523727
https://doi.org/10.1007/978-3-662-46681-0_44
https://doi.org/10.1007/978-3-642-27940-9_13
https://doi.org/10.1007/978-3-642-27940-9_13
https://doi.org/10.1007/978-3-031-30820-8_40
https://doi.org/10.1007/978-3-319-66706-5_7
https://doi.org/10.1007/978-3-319-66706-5_7

73. Barth, M., Dietsch, D., Heizmann, M., Jakobs, M.C.: Ultimate TestGen:
Test case generation with automata-based software model checking (competi-
tion contribution). In: Proc. FASE. pp. 326–330. LNCS 14573, Springer (2024).
https://doi.org/10.1007/978-3-031-57259-3_20

74. Darke, P., Agrawal, S., Venkatesh, R.: VeriAbs: A tool for scalable verification
by abstraction (competition contribution). In: Proc. TACAS (2). pp. 458–462.
LNCS 12652, Springer (2021). https://doi.org/10.1007/978-3-030-72013-1_32

75. Afzal, M., Asia, A., Chauhan, A., Chimdyalwar, B., Darke, P., Datar, A., Kumar,
S., Venkatesh, R.: VeriAbs: Verification by abstraction and test generation. In:
Proc. ASE. pp. 1138–1141. IEEE (2019). https://doi.org/10.1109/ASE.2019.00121

76. Darke, P., Chimdyalwar, B., Agrawal, S., Venkatesh, R., Chakraborty, S., Kumar, S.:
VeriAbsL: Scalable verification by abstraction and strategy prediction (competition
contribution). In: Proc. TACAS (2). pp. 588–593. LNCS 13994, Springer (2023).
https://doi.org/10.1007/978-3-031-30820-8_41

77. Beyer, D., Wachowitz, H.: CoVeriTeam release 1.2.3 (with FM-Tools 2.0). Zenodo
(2024). https://doi.org/10.5281/zenodo.11193820

Open Access. This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which
permits use, sharing, adaptation, distribution, and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-031-57259-3_20
https://doi.org/10.1007/978-3-030-72013-1_32
https://doi.org/10.1109/ASE.2019.00121
https://doi.org/10.1007/978-3-031-30820-8_41
https://doi.org/10.5281/zenodo.11193820
http://creativecommons.org/licenses/by/4.0/

	Find, Use, and Conserve Tools for Formal Methods

