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Abstract. When verifiers report an alarm, they export a violation wit-
ness (exchangeable counterexample) that helps validate the reachability of
that alarm. Conventional wisdom says that this violation witness should
be very precise: the ideal witness describes a single error path for the
validator to check. But we claim that verifiers overshoot and produce
large witnesses with information that makes validation unnecessarily
difficult. To check our hypothesis, we reduce violation witnesses to that
information that automated fault-localization approaches deem relevant
for triggering the reported alarm in the program. We perform a large
experimental evaluation on the witnesses produced in the International
Competition on Software Verification (SV-COMP 2023). It shows that our
reduction shrinks the witnesses considerably and enables the confirmation
of verification results that were not confirmable before.

1 Introduction

Nowadays, a large body of automated formal-verification tools is available [4]. But
when these tools present a verification alarm to the user without any additional
information, it requires expensive reasoning about the program. So when a modern
verifier reports an alarm, it also produces a violation witness [7] that describes a
set of paths through the program of which at least one provokes the reported
alarm. This allows to validate the claimed alarm with a separate, independent
validator.1 Developers may also use witnesses to debug. The description of paths
through the program can convey more information than a single test input. For
example, a violation witness may describe a full range of input values that trigger
an alarm, or describe that the found program paths that trigger the alarm all
pass through a specific code location.

A trivial violation witness that describes all program paths is valid, but it
is not helpful. Conventional wisdom in the community assumes that a precise
witness that only describes a single program path is the most helpful and the
easiest to check for a validator. We observe that this makes some verifiers produce

A poster version of this paper is published at ICSE 2024 [15]
1 All participants of the International Competition on Software Verification (SV-

COMP) [4] produce violation witnesses. SV-COMP validates them and expects that
this is significantly faster than the original verification: participating verifiers get
900 s of CPU time to analyze a program, but the verifier only receives points if a
validator can confirm the produced violation witness within 90 s.
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large witnesses that describe details about a program path that are not relevant
with regards to the reported alarm. For example, an overly-detailed witness may
describe a concise sequence of loop iterations in the program, even though the
program reaches the alarm independent of that loop. Such details may slow down
the validator when reasoning about the violation.

As a countermeasure, we propose to reduce witnesses to a selection of relevant
information with fault localization. Given an error path, fault localization reports
the statements that it suspects responsible for the reachability of that path. This
makes witnesses more comprehensive for both machines and humans. We use
three different fault-localization techniques based on SMT formulas: MaxSat [28],
its derivative MinUnsat, and the baseline Unsat where we ask for an arbitrary
set of statements that are relevant for the reachability of an error path.

We perform large-scale experiments on the data of SV-COMP 2023. These
show that our reduction does not influence the quality of the witnesses, but
reduces their size by 25%. In addition, most validators confirm more alarms after
our reduction.

Contributions. We make the following contributions:

– We design the first formal approach to apply fault localization to software
verification witnesses (violation witnesses) [8].

– Our implementation is available open source. Fault localization is implemented
as part of the verification framework CPAchecker [10], and witness reduction
is implemented in the new tool Flow [14].

– We perform a large experimental evaluation that shows that the approach
can effectively reduce the size of the witnesses (by 25%) and that the
confirmation rate of validators is improved through this (by up to 36%).
We use 21 356 original witnesses that were produced by 14 verifiers on
3 225 verification tasks during SV-COMP 2023.

– Our code and all experimental data are available in an evaluated reproduc-
tion artifact [11].

Example. Figure 1 shows an example program that computes the prime factors
for a number num that is provided through function nondet(). If a factor i is
found for the number (num % i == 0) (line 9), it is checked whether i is a prime
number (lines 12 to 18). If it is (isPrime = 1), the number num is divided by i

and the process is repeated until num is 1 (lines 19 to 22). This way, all prime
factors for num could be found. But the program has a fault in the computation
of the division (line 20): Instead of computing num = num / i, there is an off-by-
one error: num = num / (i + 1). Therefore, the program calls reach_error()
for input num = 2: The first iteration of the for-loop in line 8 assigns num = 0

instead of the correct num = 1.
Assume we do not know that this error exists and we want to know whether

a call to reach_error() is reachable. When we run the formal verifier UAu-
tomizer [23, 24] on the program with property “reach_error is never called”,
it reports an alarm. It also provides a violation witness that represents at least
one claimed counterexample to the property. This violation witness is presented



1 int nondet ();
2 void reach_error ();
3
4 void main() {
5 int num = nondet ();
6 if (num < 1) return;
7
8 for (int i=2; i <= num; i++) {
9 if (!(num % i == 0)) {

10 continue;
11 }
12 int isPrime = 1;
13 for (int j=2; j <= i/2; j++) {
14 if (i % j == 0) {
15 isPrime = 0;
16 break;
17 }
18 }
19 if (isPrime) {
20 num = num / (i + 1);
21 i--;
22 }
23 }
24
25 if (num != 1) {
26 reach_error ();
27 }
28 }
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Fig. 1: Program that computes
factorization, with an off-by-
one error in line 20 (under-
lined)

Fig. 2: Detailed violation
witness that describes the
program path to the vio-
lation in line 26

Fig. 3: Less detailed
violation witness,
reduced with our
approach

as automaton in Fig. 2. The witness describes a detailed sequence of source-
code lines and variable values that it claims an execution must pass to reach a
specification violation. Transition labels are denoted as pairs of a syntax guard
and state-space guard, divided by a semicolon. Syntax guards name a line number
and, optionally, after a comma, a branching condition true or false. State-space
guards describe the required program state space at the specific transition.

All states (q0, . . . , q12) have an implicit self-transition that is matched only if
no other outgoing transition is valid for an execution step. To transition from
q2 to q3, for example, the values of num and i have to be equal to 2. Otherwise,
execution stays in q2. The witness in Fig. 2 is very detailed and describes more
information than necessary. This may limit a witness validator that tries to
reason about the property violation, because the witness steers the validator to a
precise path.

The strong contrast to this is a violation witness that enters an accepting state
on every transition. It does not contain any information and does not restrict
the program executions; it just says that there is a property violation somewhere
in the program. It fits any violation that a validator finds.

We aim for the middle of these two extremes: We reduce the witness to only
include information about the program that do not unnecessarily restrict the
state-space, but restrict it to (a subset of) executions that actually reach the



error. To do this, we run a fault-localization approach on the counterexample
described by the witness and produce a new, reduced witness (Fig. 3). This
reduced witness only contains those transitions of the original witness that the
fault localization deems relevant for the feasibility of the counterexample. In our
example, this is the following lines: line 5, which initializes num, line 6, which
restricts the value of num, line 9, which instructs analysis to continue with line 12,
line 19, which instructs analysis to continue with line 20, line 20, which is the
erroneous statement, and line 25, which guards the call to reach_error(). The
reduced witness is significantly smaller and still contains relevant information for
reasoning about the witness.

Related Work. Execution-based witness validation [9] eases the use of a viola-
tion witness by turning it into an executable test. A developer can then debug
this test in the used manner to reason about the reported violation. Other ap-
proaches also exist for the execution of counterexamples [6, 21], but these do not
use a common exchange format. Other approaches [20, 31, 34] provide simulators
for counterexamples that allow to directly “execute” a counterexample step-by-
step, similar to prominent debuggers for program execution. Test execution and
execution-simulation are orthogonal to our approach: with an executable test,
the developer has the full program path to debug, and is not hinted towards
statements of potentially high interest. Additionally, error paths that are not
described by the test case are lost.

Multiple fault-localization approaches exist, based on code-coverage statis-
tics [1, 26, 36], slicing-based approaches [25], and logic reasoning [19, 22, 27, 28].

There exists a preliminary study [3] on the structure of verification witnesses,
but it focuses on witnesses for correctness proofs and does not examine the
indication of violation-witness detail on their confirmation rate. We close this
gap with our new approach.

Performing fault localization on witnesses has been studied before [29] in the
context of timed automata. Given a counterexample, the approach computes the
maximum satisfiable core of the trace and tries to fix the automaton.

2 Background

Program Representation. For the sake of presentation, we consider an im-
perative, sequential programming language with two types of operations: assign
operation (x = x + 1) and assume operation ([x <= 0]). We use assign opera-
tion x = nondet() to signal introduction of a new non-deterministic value, and
special statement reach_error() to signal an error.2 All program variables are
of type integer.3 Set X is the set of all program variables in a program and
set Ops is the set of all possible program operations over X.

2 All safety properties on programs can be reduced to this property.
3 Our implementation supports the GNU C programming language.



We represent programs as control-flow automata (CFAs). A CFA P = (L, l0, G)
consists of the set of program locations L, the initial program location l0 ∈ L,
and a set of control-flow edges G ⊆ L×Ops × L.

We use formulas in first-order logic. Given a symbol s, we define s⟨i⟩ as the
instantiation of s with i primes. For example, s⟨0⟩ = s and s⟨2⟩ = s′′.

The set C contains all possible concrete program states. A concrete program
state c : X 7→ Z consists of one value assignment for each program variable.
A program path pp = l0

op0−−→ . . .
opn−−→ ln+1 is a run through the CFA so

that (li, opi, li+1) ∈ G. A program execution ex(pp, c0) = (l0, c0)
op0−−→ . . .

opn−−→
(ln+1, cn+1) for program path pp and initial state c0 ∈ C is feasible iff each ci+1

is a valid product of evaluating opi on ci. Trace formula TF(pp) is a sequence of
formulas that exactly describes the valid program states in all possible program
executions for pp. For example, pp = l5

num = nondet()−−−−−−−−−→ l6
[!(num < 1)]−−−−−−−−→ l80

i = 2−−−→
l81

[i <= num]−−−−−−−→ . . .
i = i + 1−−−−−−→ l81

[!(i <= num)]−−−−−−−−−→ l25
[num != 1]−−−−−−−→ l26 is represented by

TF(pp) = ⟨num⟨0⟩ = nondet⟨0⟩,¬(num⟨0⟩ < 1), i ⟨0⟩ = 2, i ⟨0⟩ ≤ num⟨0⟩, . . . ,
i ⟨2⟩ = i ⟨1⟩ + 1,¬(i ⟨2⟩ ≤ num⟨1⟩),num⟨1⟩ ̸= 1⟩. We define TF(pp){i} as the i-th
formula in TF(pp), starting with index 0. We expect that, for each operation opi
in pp, there is exactly one corresponding formula TF(pp){i}. We define subset
TF(pp){: j} =

{
TF(pp){0}, . . . ,TF(pp){j}

}
as the prefix of TF(pp) up to index j.

A counterexample is a finite program path l0
op0−−→ . . .

opn−1−−−−→ ln
reach_error()−−−−−−−−−→

ln+1 that ends with an operation reach_error(). We say that a counterexam-
ple cex is feasible if there exists a c0 ∈ C so that ex(cex, c0) is feasible. For the
sake of our presentation, we assume that a reach_error() is always directly
preceded by a single assume operation opn−1.4

We represent program properties as observer automata: A program property φ
for a program P = (L, l0, G) is a finite-state automaton φ = (Ω,Σφ, δ, ω0, F )
with states Ω, alphabet Σφ = 2G, transitions δ ⊆ Ω×Σφ×Ω, initial state ω0 ∈ Ω
and accepting states F ⊆ Ω, where ω0 ̸∈ F . The accepting states F represent a
violation to the property. The observer automaton gets as input a program path.

Fault Localization. A suspect is a subset f ⊆ G of CFA edges whose operations
may be responsible for a feasible counterexample.

Given a feasible counterexample cex, fault localization has the goal to deter-
mine a set F = {f0, f1, . . .} of suspects.

Because cex is feasible, we know that the conjunction
∧

TF(cex) of the
trace formula’s elements is satisfiable. We define the precondition ψ, the faulty
trace π, and the post condition ϕ. The precondition ψ = (nondet⟨0⟩ = v0 ∧ . . . ∧
nondet⟨k⟩ = vk) describes one satisfying variable assignment of

∧
TF(cex) for

all non-deterministic values (variables nondet⟨i⟩) that occur in
∧

TF(cex). It
can be generated by extracting the relevant variable assignments from a model
of

∧
TF(cex). For example, one precondition for the counterexample described

by Fig. 2 is ψ = (nondet⟨0⟩ = 2). It initializes num = 2.

4 In our implementation, we find the last assume operation before the error location
and of these we use all assume operations that originate from the same code line.



Algorithm 1 MaxSat(ψ, π, ϕ)

Input: Precondition ψ, faulty trace π, postcondition ϕ
Output: Set F of candidate faults
1: F = {}
2: susp = 2π

3: for size in 1 . . . |π| do
4: F = F ∪ {f ∈ susp

∣∣ size = |f | and ψ ∧
∧
(π \ f) ∧ ϕ sat}

5: susp = {t ∈ susp
∣∣ ∀f ∈ F . f ̸⊆ t}

6: return F

Algorithm 2 MinUnsat(ψ, π, ϕ)

Input: Precondition ψ, faulty trace π, postcondition ϕ
Output: Set F of candidate faults
1: susp = 2π

2: F = {}
3: for size in 1 . . . |π| do
4: F = F ∪ {f ∈ susp

∣∣ size = |f | and ψ ∧
∧
f ∧ ϕ unsat}

5: susp = {t ∈ susp
∣∣ ∀f ∈ F . f ̸⊆ t}

6: return F

The faulty trace π = TF(cex){:n− 2} is the prefix of TF(cex) that includes all
possible program faults. It excludes the formula of the last assume operation opn−1.
The post condition ϕ = ¬TF(cex){n− 1} represents the final assume operation
that guards the reach_error(). The reach_error() is reachable when ¬ϕ =
TF(cex){n− 1} is fulfilled. For example, the postcondition for the counterexample
that is described by Fig. 2 is ϕ = ¬(num ̸= 1). If ¬ϕ = num ̸= 1 is fulfilled,
the error location is reached. When formula ψ ∧

∧
π ∧ ¬ϕ represents a feasible

counterexample, we can assume that it is satisfiable. Because ψ defines a definite
initial assignment for all variables in ψ and π, we can then also assume that the
formula ψ ∧

∧
π ∧ ϕ with a fulfilled postcondition ϕ is unsatisfiable.

MaxSAT. MaxSat [28] (Alg. 1) computes a set of candidate faults for a
counterexample by finding all minimal combinations of program operations that
together contribute to the feasibility of the counterexample.

MaxSat initializes the set susp with all subsets of π. This are all suspects
for a program fault. Then, MaxSat starts with the smallest possible candidate
subsets that only consist of a single clause (size = 1) and increasingly considers
candidate subsets of larger size. For each size, MaxSat selects all suspects f ⊆ π
that consist of size clauses and for which ψ ∧

∧
(π \ f) ∧ ϕ is satisfiable. The

set susp of possible candidate subsets is then updated to only include subsets
of π that are not supersets of any previously selected subset. After all relevant
combinations of program operations have been considered, the set F of selected
subsets is returned as the set of possible suspects.

MinUnsat. Analogous to MaxSat, algorithm MinUnsat (Alg. 2) computes
a set of candidate faults for a counterexample by computing all subsets f ⊆ π



that suffice so that ψ ∧
∧
f ∧ ϕ is unsatisfiable, and for which no smaller subset

f ′ ⊂ f fulfills the same criterion.

Unsat. Last, we use algorithm Unsat as a baseline for fault localization: Unsat
asks an SMT solver for an arbitrary subset f ⊆ π that makes ψ ∧

∧
f ∧ ϕ

unsatisfiable. This may even be π itself.

Example. To illustrate MaxSat and MinUnsat, assume the precondition ψ =
(nondet⟨0⟩ = 2), the trace π with

π = {num⟨0⟩ = nondet⟨0⟩, ¬(num⟨0⟩ < 1), i ⟨0⟩ = 2, i ⟨0⟩ ≤ num⟨0⟩,

num⟨0⟩%i ⟨0⟩ = 0, isPrime⟨0⟩ = 1, j ⟨0⟩ = 2, ¬(j ⟨0⟩ ≤ num⟨0⟩/2),

isPrime⟨0⟩ ̸= 0, num⟨1⟩ = num⟨0⟩/(i ⟨0⟩ + 1), i ⟨1⟩ = i ⟨0⟩ − 1,

i ⟨2⟩ = i ⟨1⟩ + 1, ¬(i ⟨2⟩ ≤ num⟨1⟩)}

and the postcondition ϕ = (num⟨1⟩ = 1). Given these three, MaxSat produces
the set F = {{num⟨1⟩ = num⟨0⟩/(i ⟨0⟩+1)}, {num⟨0⟩ = nondet⟨0⟩}, {i ⟨0⟩ = 2}} of
three suspects, because it is enough to remove any of the three assignments f from
the trace to make the formula ψ ∧

∧
(π \ f) ∧ ϕ satisfiable. MinUnsat produces

the set F = {{num⟨1⟩ = num⟨0⟩/(i ⟨0⟩ + 1),num⟨0⟩ = nondet⟨0⟩, i ⟨0⟩ = 2}} of
a single suspect f , because all three assignments are necessary to make the
formula ψ ∧

∧
f ∧ ϕ unsatisfiable.

To make fault localization terminate faster, we introduce an option to imme-
diately return the first found suspect, instead of collecting all.

Violation Witness. Given a CFA (L, l0, G), a source-code guard S ⊆ G is a
set of control-flow edges. A state-space guard p is a Boolean assumption over
program variables X. The type of state-space guards is Φ. A violation-witness
automaton [8] is a non-deterministic finite-state automaton W = (Q,ΣW , δ, q0, F )
with the following components: States Q, alphabet ΣW = 2G×Φ, transitions δ ⊆
Q× 2G × Φ×Q, initial state q0 ∈ Q, and accepting states F ⊆ Q. The violation-
witness automaton gets as input a program execution. For program-execution
step (l, c)

opi−−→ (l′, c′), a transition (qi, (S, p), qj) is possible if (l, opi, l′) ∈ S and if
c′ is a satisfying assignment for p; i.e., formula p ∧

∧
x∈X x = c′(x) is satisfiable.

Each state also includes an implicit ‘otherwise’ self-transition, which only activates
if there is no other matching transition from the current state. A violation-witness
automaton describes a set of counterexamples by restricting the set of all possible
program executions through source-code guards and state-space guards: Source-
code guards restrict the control flow, and state-space guards restrict the potential
program states. In SV-COMP, a violation witness5 is described in the GraphML
format [16], which is based on XML.

Witness Validation. Given a program P , a specification φ, and a violation
witness W , a witness validator [7] checks whether W accepts any program
execution on P that violates φ. If it does, W is confirmed. Otherwise it is rejected.
5 https://gitlab.com/sosy-lab/benchmarking/sv-witnesses/-/blob/0ca5dbf/
doc/README-GraphML.md

https://gitlab.com/sosy-lab/benchmarking/sv-witnesses/-/blob/0ca5dbf/doc/README-GraphML.md
https://gitlab.com/sosy-lab/benchmarking/sv-witnesses/-/blob/0ca5dbf/doc/README-GraphML.md
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Fig. 4: Workflow of fault localization on violation witnesses. By creating the
product automaton of program P , witness W , and specification φ, we obtain
counterexample cexW and apply fault localization to find suspects fG. With
these, witness W is reduced to W ′.

3 Fault Localization on Violation Witnesses

Figure 4 illustrates our approach. Given a CFA P = (L, l0, G), a violation-
witness automaton W = (Q,ΣW , δW , q0, FW ), and a program property φ =
(Ω,Σφ, δφ, ω0, Fφ), we (1) reconstruct a counterexample cexW from W , (2) com-
pute suspects fG through fault localization on cexW , and (3) produce a new
violation-witness automaton W ′ that only contains those states and transitions
of W that match the program operations contained in fG.

Reconstruct Counterexample. To reconstruct a counterexample from the
witness, we first build the product automaton P×W×φ = (Q×, Σ×, δ×, q×0, F×),
with statesQ× = L×Q×Ω, alphabetΣ× = Ops×ΣW×Σφ, transition relation δ×,
and initial state q×0 = (l0, q0, ω0). The transition relation δ× contains transition(
q×, (op, (SW , p), Sφ), q

′
×
)

with q× = (l, q, ω) and q′× = (l′, q′, ω′) if the following
three conditions hold: (l, op, l′) ∈ G, (q, (SW , p), q′) ∈ δW , (ω, Sφ, ω

′) ∈ δφ. The
product automaton accepts all states for which the violation-witness automatonW
and observer automaton φ agree on a violation. Formally, the set of accepting
states is F× = {(l, q, ω) | q ∈ FW , ω ∈ Fφ}.

The product automaton gets as input a program execution. For the program-
execution step (l, c)

opi−−→ (l′, c′), a transition
(
q×, (op, (SW , p), Sφ), q

′
×
)
∈ δ× from

state q× = (l, q, ω) to state q′× = (l′, q′, ω′) is possible if all of the following
conditions hold: opi = op, l = l, l′ = l′, (l, opi, l′) ∈ SW ∩ Sφ, and c′ fulfills p.

The product automaton’s accepting runs describe all counterexamples that
are described by the violation-witness automaton, that exist in the program under
analysis, and that violate the specification. From these, we select one arbitrary
run and use the program-path information of that run as counterexample cexW .

Fault Localization. We apply fault localization to counterexample cexW . This
returns the set F of suspects. From that set, we consider the suspect f =
{TF(cexW ){i}, . . . ,TF(cexW ){k}} with the smallest size and map it to the set
fG = {(li, opi, l′i), . . . , (lk, opk, l′k)} of corresponding, suspected CFA edges. If



Algorithm 3 reducec(W, fG)
Input: Violation-witness automaton W = (Q,Σ, δ, q0, F ),

relevant CFA edges fG = {(li, opi, l
′
i), . . . , (lk, opk, l

′
k)}

Output: Reduced violation-witness automaton W ′

1: δS = {(q, (S, p), q′) ∈ δ | S ∩ fG ̸= ∅}
2: if c = full then
3: δnop = {(q, (G, true), q′)

∣∣ (q, (S, p), q′) ∈ δ \ δS}
4: if c = Φ then
5: δnop = {(q, (S, true), q′)

∣∣ (q, (S, p), q′) ∈ δ \ δS}
6: δ|fG = δS ∪ δnop

7: W ′ = (Q,Σ, δ|fG , q0, F )
8: return W ′

Algorithm 4 collapse(W )

Input: Violation-witness automaton W = (Q,Σ, δ, q0, F )
Output: Collapsed violation-witness automaton Wc

1: Qc = Q
2: δc = δ
3: Fc = F
4: waitlist = {q′ ∈ Q

∣∣ (q0, (·, ·), q′) ∈ δ}
5: while waitlist ̸= ∅ do
6: choose q′ ∈ waitlist
7: waitlist = waitlist \ {q′}
8: if {(q, (S, p), q′) ∈ δ

∣∣ S ̸= G ∨ p ̸= true} ̸= ∅ then
9: continue

10: δq′|nop = {(q, (G, true), q′) ∈ δnop}
11: if |δq′|nop| > 1 ∨ q′ = q0 then
12: continue
13: Qc = Qc \ {q′}
14: δdel = {(q′, (S, p), q′′) ∈ δc}
15: δadj = {(q, (S, p), q′′)

∣∣ (q′, (S, p), q′′) ∈ δdel}
16: δc = δc ∪ δadj \ (δq′|nop ∪ δdel)
17: if q′ ∈ F then
18: Fc = Fc ∪ {q} \ {q′}
19: waitlist = waitlist ∪ {q′′

∣∣ (q, (·, ·), q′′) ∈ δc}
20: Wc = (Qc, Σ, δc, q0, Fc)
21: return Wc

multiple suspects of the same size exist, an arbitrary suspect is selected. The
suspected CFA edges fG are used to reduce the violation witness.

Witness Reduction. We define three variants of witness reduction. Reduction
rstate(W, fG) = reduceΦ(W, fG) deletes all state-space guards that are deemed
irrelevant by fault localization, but keeps all source-code guards. Reduction
rmatch(W, fG) = reducefull(W, fG) deletes all state-space guards and source-
code guards that are deemed irrelevant by fault localization. Finally, reduction



rall(W, fG) = collapse(reducefull(W, fG)) reduces the witness like rmatch, but also
collapses the resulting witness to produce a smaller violation witness.

Algorithm 3 describes methods reduceΦ and reducefull: The algorithm first
selects those transitions δS ⊆ δ for which at least one edge in fG matches the
transition’s source-code guard S. It then selects all remaining transitions δ \ δS .
Reduction reducefull then replaces the source-code guards with G (we forget the
source-code guard and match everything) and state-space guards with true (line 3).
Reduction reduceΦ (line 5) only replaces the state-space guards with true, but
keeps the source-code guards to steer the witness validation. In both cases, we
call the resulting set δnop.

After the initial reduction, reduction rall collapses the witness (Alg. 4). The
intuition behind this is that transitions with the trivial guards (G, true) still
restrict the set of program paths because they define a minimum number of
program operations that must occur between two transitions with non-trivial
guards. We remove this implicit restriction on a best-effort basis. We do not
perform a precise elimination of δnop because this may greatly alter the structure
of the automaton. Instead, we only collapse sequential sequences of transitions:
Algorithm 4 first initializes the states Qc after collapse, the transitions δc after
collapse, and the accepting states Fc after collapse, with the original values
of W . It then starts traversal of the violation-witness automaton W at all direct
successors of q0. For each visited automaton state q′ (lines 6-7), Alg. 4 checks
whether q′ has any ingoing transition with a non-trivial guard (line 9), has
more than one ingoing transition, or is the entry state (line 11). In both cases,
Alg. 4 continues with the next state. Otherwise, q′ only has a single ingoing edge
with only trivial guards, and it can be collapsed into its successors q′′. First, q′
is removed from Qc (line 13). Next, Alg. 4 deletes the ingoing and outgoing
transitions (δq′|nop and δdel) of q′ from δc, and instead adds new transitions
that directly go from q to q′′ (lines 14–16). If q′ is removed from Qc and it is
an accepting state (line 17), then its predecessor q becomes an accepting state
instead (line 18). Algorithm 4 then continues with all successor states (line 19).
When no more states can be removed, Alg. 4 exhausts the waitlist by running
into line 9 or line 12 for all states. Finally, the violation-witness automaton Wc

is defined and returned.
To ensure that the reduced violation witness describes the same set of pro-

gram paths as the original witness, we do not remove source-code guards that
restrict the control flow. In particular, we always keep source-code guards in the
GraphML witness that contain one of the following keys: control, enterLoopHead,
enterFunction, or returnFromFunction. Our replication package [11] provides
experimental results for a witness reduction that removes all source-code guards.
The data shows that this reduction is not beneficial since the produced witnesses
have a low confirmation rate.

Soundness. Algorithm 3 produces a sound overapproximation W ′ of W . Both
the removal of source-code guards and state-space guards can only increase the
set of program paths that are described by a violation-witness automaton, due
to the implicit otherwise-self loops at each automaton state. In consequence,



Table 1: Data on the reduction with rall and the fault-localization techniques
Number of witnesses where

fault localization was successful Average number of edges with

Producer Total MaxSat MinUnsat Unsat Union MaxSat MinUnsat Unsat

2LS 490 134 112 93 138 409 256 728
Bubaak 1 464 1 048 870 267 1 124 17 16 102
CBMC 2 256 605 505 105 630 438 220 466
CPAchecker 1 932 1 276 1 201 340 1 386 762 697 3 269
ESBMC-kind 2 164 587 565 243 716 36 26 4 810
Graves 2 065 1 266 1 097 360 1 405 974 612 4 365
PeSCo 2 147 855 683 269 944 809 670 2 837
Symbiotic 1 418 1 076 897 190 1 088 15 15 25
UAutomizer 1 060 380 343 205 390 272 167 641
UKojak 379 184 179 96 184 85 72 47
UTaipan 869 331 302 177 336 293 189 619
VeriAbs 1 588 404 363 128 438 701 595 2 321
VeriAbsL 1 777 447 410 134 485 686 625 2 300
VeriFuzz 1 747 801 673 144 863 18 24 42

Overall 21 356 9 394 8 200 2 801 10 127 4 379 3 232 18 513
Mean 1 525 671 586 200 723 394 299 1 612
Median 1 668 596 535 184 673 351 205 685

the reduced witness W ′ is an overapproximation: it describes a superset of the
program paths that are described by the original witness W . If the original
witness describes a feasible counterexample, then the reduced witness describes
the same counterexample (and maybe more). Analogous, Alg. 4 produces a sound
overapproximation because the removal of violation-witness-automaton edges can
only increase the set of program paths that are described by the violation-witness
automaton.

4 Evaluation

We answer the following research questions:

RQ 1 Witness Reduction. Can fault localization reduce the number of transi-
tions in violation-witness automata?

RQ 2 Confirmation Rate. Does the level of detail influence the confirmation
rate of violation witnesses?

RQ 3 Reduction Variants. How do the different reduction variants rmatch,
rstate, and rall influence the confirmation rate?

4.1 Experiment Setup

We run all experiments on machines with an Intel Xeon E3-1230 v5 @ 3.40GHz
8-core processor and 33GB RAM. We limit the machines to only use 2 cores and



7GB of RAM. We execute all our experiments with BenchExec v3.116, a reliable
tool for benchmarking [12]. The above setup is equal to the setup of SV-COMP
2023 [4] to ensure comparability between the validation results. The timeout for
witness validation is set to 90 s (SV-COMP standard).

We use all 3 225 non-recursive, unsafe verification tasks violating the unreach-
call property (reach_error is reachable) in the sv-benchmarks7 version of SV-
COMP’23. We use 14 non-hors concours participants in the Reach-Safety category.
We exclude the verifiers Mopsa [30] and Goblint [35] since they did not produce
any violation witnesses. We also exclude the verifier Theta [37] because Theta
produces violation-witness automata with invalid source-code guards. We use all
21 356 violation witnesses [5] that the considered participants produce on the
verification tasks.

We use the three fault-localization approaches MaxSat, MinUnsat, and
Unsat. All three are implemented in CPAchecker and run with a time limit
of 900 s. We use CPAchecker in revision 441918. In CPAchecker, we use the
SMT solver MathSAT5 [17]. CPAchecker exports a JSON format that describes
all located suspects. We match these entries against the source-code guards of the
witnesses. We implement the witness reduction algorithms in our tool Flow9. All
tools, scripts, and evaluation data are available in our replication package [11]. To
validate our witnesses, we use the SV-COMP 2023 versions of CPAchecker [10],
UAutomizer [24], MetaVal [13], and Symbiotic-Witch [2].

The following evaluation only considers those witnesses for which at least
one fault-localization approach works. The left half of Table 1 shows the success
rate of the three fault-localization approaches (columns) on each producer’s
witnesses (rows). Looking at the mean and median values on the bottom of the
table, we find that Unsat only reduces approximately 15% (2 801 of 21 356)
of the witnesses. Asking MathSAT5 for an arbitrary UNSAT core fails more
often than repeatedly checking for satisfiability of smaller subsets. However, we
will later see that for large programs Unsat works better as checking many
subsets becomes expensive. MaxSat and MinUnsat, on average, successfully
reduce a third of the witnesses. Fault localization is not guaranteed to succeed
in some cases, e.g., if we have to deal with pointers, or if the SMT solver times
out when querying for (un)satisfiability. Column ‘union’ displays the number of
witnesses where at least one fault localization technique was successful. In total,
we successfully apply fault localization to 10 127 different witnesses and consider
3 · (9 394 + 8 200 + 2 801) = 61 185 witnesses that were produced across the three
reduction approaches.

6 https://github.com/sosy-lab/benchexec/tree/637de81c0d
7 https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/svcomp22
8 https://svn.sosy-lab.org/software/cpachecker/trunk/?p=44191
9 https://gitlab.com/sosy-lab/software/fault-localization-on-witnesses

https://github.com/sosy-lab/benchexec/tree/637de81c0d
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/svcomp22
https://svn.sosy-lab.org/software/cpachecker/trunk/?p=44191
https://gitlab.com/sosy-lab/software/fault-localization-on-witnesses
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Fig. 5: Number of source-code guards in violation witnesses after applying re-
duction rall with the respective fault-localization approach; the plot shows the
producers of the original witnesses on the x-axis; the lower the bars, the greater
the reduction

4.2 Experiment Results

RQ 1: Witness Reduction. Our approach significantly reduces the number
of transitions of the original violation-witness automata. To show this, we use
reduction variant rall. We also observe a similar picture for variant rmatch.

Figure 5 shows the averaged reduction of transitions per verifier on successfully
reduced tasks per producer. The x-axis names the tools from which we take the
original witnesses. For every of the 14 producers we plot 3 bars corresponding
to the three fault-localization approaches MaxSat, MinUnsat, and Unsat. A
value of 25% means that the original witnesses are 4 times as big as the reduced
witnesses. The bars for one producer do not necessarily talk about the same
witnesses because one technique may fail for a task where the others succeed.
The lower the bar, the higher the reduction. The last column All indicates
that Unsat has the highest reduction rate, followed by MinUnsat, and finally
MaxSat. All shows the ratio of the sum of remaining edges after the reduction
and the sum of edges in the original witnesses over all producers. Despite Unsat
often keeping more edges for individual producers (e.g., 2ls and Bubaak), it
significantly reduces larger witnesses (e.g., CPAchecker and PeSCo) causing
less edges to survive on average. For the comparison, we exclusively consider
witnesses where fault localization succeeded. Overall, fault localization has a
significant impact on the reduction of violation witnesses. On average, MinUnsat
and MaxSat remove approximately 30% of the transitions for the vast majority
of witnesses. Unsat reduces the witnesses even to one third of the original size.
The right half of Table 1 shows the average number of edges per fault-localization
approach (columns) for each verifier (rows). Columns MaxSat, MinUnsat,
and Unsat show the average number of transitions in witnesses where the
respective fault localization approach worked. We also see why Unsat has, in
general, less remaining edges in the witnesses: the average number of transitions



1 int x = 0;
2 while (x < 20) {
3 x = x + 1;
4 }
5 if (x == 20) {
6 assert(x % 5 != 0);
7 }

Fig. 6: Fault localization creates two minimal unsat cores: (1) the assignment
x = x + 1 and (2) the condition x == 20 of the then-branch in line 5

of witnesses where the approach works is higher. One reason is that it does not
need to enumerate all possible subsets and can just return an arbitrary unsat
core. Depending on which operations are marked relevant by fault localization
reduced witnesses have different sizes although the unsat core marks equally many
operations as relevant. Consider the program in Figure 6. We initialize variable x
with 0 and enter a while loop where we increment x 20 times. Eventually, we exit
the loop with x = 20 causing the program to reach an error location since 20 is
divisible by 5. A detailed witness describes the complete path with 20 guards
at line 3, the assumptions x >= 20 and x < 20 at line 2, and the assumption
x == 20 at line 5. Fault localization gives us 2 unsat cores: (1) x = x + 1 at
line 3, and (2) x == 20 at line 5. Although all unsat cores are of same size, the
reduction of the detailed witness varies. Unsat core (1) leaves 20 transitions while
unsat core (2) removes all but one transition on line 5. This property of our
reduction techniques causes the varying reduction percentage across different
fault-localization approaches since a smaller set of suspects does not automatically
lead to a higher reduction.

Yes, fault localization can significantly reduce the size of violation witnesses.

RQ 2: Confirmation Rate. Our approaches to witness reduction can have
both positive and negative effects on the success of witness validation. To ex-
amine the effect, we consider, for each fault-localization approach, all original
violation witnesses from 14 participants of SV-COMP 2023 for which the respec-
tive fault localization was successful. We use reduction variant rall. From our
data, we showcase the validators UAutomizer and MetaVal because they show
the strongest positive and negative effect, respectively: MetaVal benefits the
most from the reduction while UAutomizer performs significantly worse after
reduction10.

Figure 7a and Fig. 7b show the relative change of the confirmation rate after
witness reduction with rall for the validators MetaVal and UAutomizer. Bars that
reach positive values indicate a relative increase in the confirmation rate compared
to the confirmation rate on the original witnesses. A value of 20% means that
after reduction, 20% more of the considered witnesses can be confirmed by the
10 The analysis of the other validators and all reduction approaches is available in our

replication artifact [11].
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(b) UAutomizer with rall
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(c) MetaVal with rmatch
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(d) UAutomizer with rstate

Fig. 7: Relative change of the confirmation rate of MetaVal and UAutomizer
per fault-localization approach with different reduction variants

respective validator. A value of −20% means that after reduction, −20% less of
the considered witnesses can be confirmed by the respective validator.

Except for the witnesses of PeSCo, the confirmation rate of MetaVal in-
creases consistently across all witnesses, up to 36% (Fig. 7a). MetaVal uses
verification engines as backend and annotates information in witnesses directly
in the program. Therefore, giving the verifiers more freedom in analysis through
more abstract violation witnesses benefits the MetaVal approach. In contrast,
UAutomizer performs significantly worse for many fault-localization approaches
when reduction variant rall is used. The confirmation rate decreases up to −42%
after reduction. This decreases the strongest for fault-localization with MaxSat.

The confirmation rate of validators can also decrease, for two reasons: First,
the reduction might remove all information and transform the new witness to
the trivial witness. With trivial witnesses, validators have no other choice than
performing a complete re-verification of the original program. This is, in general,
more time consuming than validation. Second, fault localization has no knowledge
about the structure of the program and might therefore remove information that
would exclude certain branches from being explored. This becomes especially
visible when looking at the different reduction techniques. Technique rall increases
the confirmation rate across all validators and producers. However, these cases
are an exception to the rule as we can find a reduction technique for every
producer-validator pair such that the confirmation rate increases.

Yes. Depending on the reduction strategy, the confirmation rate of witness
validators increases significantly on reduced witnesses.



RQ 3: Reduction Variants. In RQ 1 and RQ 2 we mainly focused on reduction
variant rall. In the following, we pick two examples to illustrate the effect that
the reduction variant can have on the confirmation rate of reduced witnesses.

Figure 7c shows the confirmation rate of MetaVal with rmatch across the
three considered fault-localization approaches and across all witness producers. It
shows that MetaVal performs worse with rmatch compared to rall (Fig. 7a). The
highest increase in confirmation rate is only 15%, compared to 36% with rall.

Figure 7d shows the confirmation rate of UAutomizer with rstate across the
three considered fault-localization approaches and across all witness producers.
It shows that UAutomizer performs better on witnesses that are reduced with
rstate than with rall: With rstate, UAutomizer improves its confirmation rate
compared to the original witnesses for all producers but PeSCo [32, 33]. For
PeSCo, it only experiences a decrease of −6% compared to the decrease of −42%
with rall (Fig. 7b), The best confirmation-rate increase also rises from 8% for
CPAchecker, to 15% for UTaipan [18].

The consumed CPU time per fault-localization approach hardly changes across
the validators and reduction variants. We exemplary show this for UAutomizer
with rstate. Although we remove, on average, 104 assumptions from the witnesses,
the validation time of UAutomizer is not influenced and assimilates to the
validation time of original witnesses.

Our three reduction strategies have different advantages: rall shrinks violation
witnesses significantly, while rstate is perfectly suited for automated tools
that confirm more witnesses after applying it. Strategy rmatch combines the
(dis-)advantages of the other two strategies.

4.3 Threats to Validity

Internal Validity. CPAchecker exports fault candidates in a JSON format
and describes their location by providing the line number and a character offset
in the input program. Verifiers export witnesses in a GraphML format and also
describe file locations of source-code guards with four values, namely startline,
endline, startoffset, and endoffset. These values should help to uniquely
identify statements in the program. However, most witnesses only contain the
key startline in their guards Therefore, matching the suspects to source-code
guards can cause problems as it might be ambiguous.

To prevent the introduction of a bias to the existing witnesses, we apply the
reduction directly to the original witnesses with our tool Flow instead of using
the witness export of CPAchecker. Additionally, we evaluate our approach on
14 verifiers and 4 validators of SV-COMP 23 since all tools in SV-COMP support
witnesses. A high number of verifiers and validators minimizes potential biases
in our approach towards specific tools.

We re-implement MaxSat, an established fault localization technique in
CPAchecker. The soundness of MaxSat was evaluated in the original publica-
tion [28]. We are confident that our implementation is sound as well. MinUnsat



and Unsat are heavily inspired by MaxSat as seen in the similarities of the
algorithms sketched in Algs. 1 and 2.

External Validity. We use the SV-COMP benchmark set for evaluating our
approach. It is the largest available benchmarks set for verification tasks in the
programming language C. Naturally, every benchmark set has a bias and we
cannot be sure if the approach performs as well on other benchmark sets. However,
this set is community maintained and everyone can contribute. It consists of a
diverse task set.

To run our experiments, we use BenchExec, a tool for reliable benchmarking.
Nonetheless, there is always the risk of imprecise measurements. Tasks near our
timelimit of 90 s may be flaky. We implement the fault localization and reduction
techniques strictly deterministic.

5 Conclusion

We presented three reduction strategies to reduce violation witnesses based on
three different fault-localization approaches. An extensive evaluation on 21 356
original violation witnesses of the Reach-Safety category of SV-COMP 2023 showed
that our reductions can significantly reduce the size of witnesses and increase
their confirmation rate. This makes it easier to store and read them, as well as
easier to handle them automatically.

Data-Availability Statement. The experiment setup and all experimental
data are archived and available at Zenodo [11]. Our supplementary webpage at
https://www.sosy-lab.org/research/fl-witnesses provides easy access to
the data and additional information.

Funding Statement. This project was funded in part by the Deutsche Forschungs-
gemeinschaft (DFG) – 378803395 (ConVeY), 418257054 (Coop), and 496588242
(IdeFix).
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