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Abstract

In the last decade, powerful techniques were developed
that either automatically generate tests for software,
or automatically verify software with formal methods.
In both areas it is common to combine different tech-
niques to leverage their strengths and mitigate their
weaknesses. This happens through costly, proprietary
reimplementations within a single tool. This the-
sis [15] contrasts this and provide concepts that enable
an inexpensive and fast off-the-shelf cooperation of
standalone tools through standardized exchange for-
mats.

1 Introduction

There are two major methods for software verification:
testing and formal verification. To increase our confi-
dence in software on a large scale, we require tools that
apply these methods automatically and reliably. Test-
ing is a widespread engineering technique, and many
tools for automatic test generation exist. But test-
ing can never provide full confidence in software—
it can show the presence of bugs, but not their ab-
sence. In contrast, formal verification can. Unfortu-
nately, even successful formal-verification techniques
either scale poorly or rely on heuristics that fail if the
used heuristic does not suit the verification task. As
workaround, combinations of multiple techniques try
to combine their strengths and mitigate their weak-
nesses. But these combinations are often designed as
cohesive, monolithic units. This makes them inflexible
and it is costly to replace components.

We propose an alternative approach: If tools sup-
port the same input and output formats, we can use
these formats and combine existing tools without any
adjustments (off-the-shelf).

For formal verification, the International Competi-
tion on Software Verification (SV-COMP) [2] has es-
tablished conventions for both input tasks and result
formats. These conventions are supported by more
than 40 tools to date. But for test generation, no
such conventions exist in the C ecosystem1.

In the scope of our work, we first work towards in-
put and output conventions for test generation. We
then go beyond the conventions of tool competitions
and propose a technique to encode partial verification
results directly into the program code. Based on this,
we introduce new concepts for the off-the-shelf coop-
eration between test generators and formal verifiers
and show their flexibility through different examples.

1We focus on verifiers and test generators for the C program-
ming language
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Figure 1: Examples of cooperative verification: Se-
quential and cyclic combination

2 Standardizing Test Generation

SV-COMP [2] is an off-site tool competition that
compares formal verifiers on a predefined benchmark
set and in a controlled environment. SV-COMP de-
fines how non-deterministic values are introduced into
programs, how program errors are signaled, and in
which formats formal verifiers have to report alarms
and proofs. These rules are partially based on sv-
benchmarks, the largest available benchmark set for
verification of C programs.

To establish common standards in test generation,
we transferred our experience with SV-COMP. An ini-
tial comparative study [9] worked towards the estab-
lishment of the First International Competition on
Software Testing (Test-Comp) [1]. Test-Comp uses
the sv-benchmarks as input programs and defines a
new, common exchange format for test suites. All par-
ticipants of Test-Comp must understand input pro-
grams according to the sv-benchmarks conventions,
and produce test suites in the expected exchange for-
mat. These standards open all competition partici-
pants to cooperation on the tool level.

We contribute two tools to Test-Comp: the plain
random tester PRTest [16] and the test-suite ex-
ecutor TestCov [10]. PRTest samples test inputs
from a uniform random distribution. This purely ran-
dom approach serves as a baseline for tool compar-
isons. TestCov provides robust test-suite execution
and coverage measurement for different coverage cri-
teria. It is used for the coverage-measurement and
score computation in Test-Comp.

3 Concepts for Cooperative Software
Verification

The wide tool support of the SV-COMP and Test-
Comp standards enable the off-the-shelf combination
of verification tools. But formal verifiers do not have
to produce partial results. Because of this, possible
combinations are limited to techniques that only con-
sider verification runs that successfully finish (with an
alarm or an proof). If a formal verifier’s run does not
finish successfully, the performed work is simply dis-



carded.
Conditional Model Checking [7] is a technique that

makes verifiers exchange partial verification results
through conditions. This could lead to more coop-
eration possibilities and information reuse, but there
is little tool support. To mitigate this limitation, we
propose a reducer-based construction of conditional
model checkers [6]: partial verification results are en-
coded directly into the program code, so that any ex-
isting formal verifier can consume them. We apply the
same concept to test generators through the concept
of conditional testing [8].

This construction enables a strong information ex-
change between verifiers. Figure 1 shows two example
compositions: A sequential composition of verifiers,
and a cyclic composition of a verifier. Verifiers start
with some initial knowledge Ψ0 about the verifica-
tion task (by default: nothing), compute new knowl-
edge Ψ1, and, if the verification task is not solved yet,
communicate their computed knowledge to the next
verifier. Note that any such composition is a verifier
itself, and compositions can be arbitrarily nested.

To make formal verifiers also usable for test gener-
ation, we introduce the concept of Witness2Test [4]
that transforms alarms reported in the SV-COMP
conventions into executable tests.

The proposed concepts can not only improve the
effectiveness of verification [6, 8], but can also be
used for incremental verification [5]. On the example
of counterexample-guided abstraction refinement [11],
we show [3] how existing, strongly coupled techniques
in software verification can be decomposed into stand-
alone components that cooperate through standard-
ized exchange formats.

4 Results

All our work is backed by rigorous implementation
of the proposed concepts and thorough experimen-
tal evaluations that demonstrate the benefits of our
work. We were able to show that cooperative verifica-
tion improves the effectiveness of verification beyond
the prior state of the art [6, 8]. TestCov successfully
drives the coverage measurements of Test-Comp since
2019. And the test generator FuSeBMC [14] builds
on our concept of conditional testing to achieve a
cooperation between the bounded model checker ES-
BMC [12] and two fuzz testers [13]. This combination
won Test-Comp 2022, 2023, and 2024.

The introduced standards and tools also improve
the comparability of automated verifiers, enable co-
operation between a large array of existing verifica-
tion tools, and create new opportunities for research
in cooperative verification.
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