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Abstract
We build the first machine-learning-based algorithm selection
tool for hardware verification described in the BTOR2 format.
In addition to hardware verifiers, our tool also selects from
a set of software verifiers to solve a given BTOR2 instance,
enabled by a BTOR2-to-C translator. We propose two embed-
dings for a BTOR2 instance, Bag of Keywords and Bit-Width
Aggregation. Pairwise classifiers are applied for algorithm
selection. Upon evaluation, our tool BTOR2-SELECT solves
30.0% more instances and reduces PAR-2 by 50.2%, com-
pared to the PDR implementation in the HWMCC’20 win-
ner model checker AVR. Measured by the Shapley values, the
software verifiers collectively contributed 27.2% to BTOR2-
SELECT’s performance.

Introduction
It has long been observed that for computationally hard
problems, no single algorithm performs well on all in-
stances, and different algorithms perform well on distinct
classes of instances. This observation is consistent with the
widely-believed conjecture that P ̸= NP . To leverage such
complementary strengths, machine learning (ML)-based al-
gorithm selection techniques are gaining popularity (Xu
et al. 2012). Algorithm selection aims to, for each given in-
stance, select the optimal algorithm from a set of candidates.
Algorithm selectors are usually ML models, trained using
historical performance data, to predict algorithms’ perfor-
mance given some cheaply computable features of each in-
put instance.

Our research focuses on algorithm selection for the
hardware model-checking problem in the BTOR2 for-
mat (Niemetz et al. 2018). Model checking plays a crucial
role in ensuring the correctness and reliability of critical
hardware systems, as even minor errors in hardware designs
can lead to catastrophic failures (Clarke 1997). Tradition-
ally, hardware model checkers such as ABC (Brayton and
Mishchenko 2010) have been developed to verify the cor-
rectness of hardware designs against given specifications.
What makes this problem more interesting is the recent de-
velopment of BTOR2C (Beyer, Chien, and Lee 2023), a
BTOR2-to-C translator, which allows software verifiers to
be applied to hardware verification tasks as well.

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We propose, to the best of our knowledge, the first ML-
based algorithm selection tool for hardware verification.
Our tool, called BTOR2-SELECT, leverages the strength of
both hardware and software verifiers. Trained and evalu-
ated on a comprehensive set of 1 441 BTOR2 benchmarks,
our tool effectively closed up to 66.0% of the performance
gap between the single best solver (SBS) and the virtual
best solver (VBS). The software verifiers collectively con-
tributed 27.2% to this performance, measured by the Shap-
ley values (Shapley 1953). Our code and data are available
at: https://gitlab.com/sosy-lab/software/btor2-select.

Background
The BTOR2 Language: BTOR2 is a word-level model-
checking format for sequential circuits. The modeling-
checking problem decides whether a safety property holds
on all executions of a circuit.
Cost-sensitive Pairwise Classifier (PWC): A PWC (Xu
et al. 2012) is an ML classifier that given a pair of algo-
rithms, predicts which one would perform better on a partic-
ular instance. For algorithm selection, a PWC is trained for
every pair of candidate algorithms, using their performance
data over a training instance set. Each training sample is la-
beled to indicate which solver in the pair performs better on
a specific training instance, with sample weights reflecting
the performance difference. At inference time, for a given
instance, all PWCs are evaluated, and the algorithm receiv-
ing the highest votes is selected to solve this instance.
Portfolio Contribution: Fréchette et al. (2016) proposed
to evaluate an algorithm’s contribution to a portfolio using
Shapley values. The Shapley value, originating from coop-
erative game theory, is widely regarded as a fair measure of
individual components’ contribution to a coalition’s perfor-
mance.

Algorithm Selection for BTOR2
Instance Representation We propose two types of
BTOR2 instance representation: Bag of Keywords (BoKW)
and Bit-Width Aggregation (BWA). For each instance,
BoKW counts the occurrence of each keyword from a prede-
fined set of 69 BTOR2 keywords, such as state, not, and
add, as the instance representation. Most keywords return a
variable of a certain bit-width. BWA, instead of counting the



Figure 1: BTOR2-SELECT architecture

occurrence, sums the bit-widths of all returned variables for
each relevant keyword.
Algorithm Selection: We use PWC for algorithm selection,
with XGBoost models (Chen and Guestrin 2016) as the un-
derlying classifiers due to their inference efficiency and rela-
tive robustness to high-dimensional, correlated features. The
training samples are weighted by the difference in PAR-2.
PAR-2 is a scoring measure that counts the actual used time
for successful instances, while penalizing double the timeout
for failed instances.
Architecture: Given a BTOR2 instance, BTOR2-SELECT
selects and applies the expected best verifier from a prede-
fined set. We include four model checkers, each with multi-
ple configurations in the verifier set. Two hardware model
checkers AVR and ABC are the winners of the Hardware
Model Checking Competition (HWMCC) 2020; 1 software
verifiers CBMC and ESBMC showed strong performance
on BTOR2 instances in our previous BTOR2C study. The
BTOR2-SELECT architecture is shown in Figure 1.

Experimental Results
We have built a comprehensive BTOR2 benchmark set.2 At
this stage, we only focus on the benchmarks without arrays.
All 1 441 such benchmarks were randomly divided into a
training set and a testing set with an 80-20 split, where our
tool BTOR2-SELECT was trained and tested accordingly.
The PWC models were trained on a MacBook Air with an
M2 chip and 8 GB memory. All verifier-instance pairs were
executed on Ubuntu 22.04 machines, each with a 3.4 GHz
CPU (Intel Xeon E3-1230 v5) with 8 processing units and
33 GB of RAM. Each task was assigned 2 CPU cores, 15
GB RAM, and 15 min of CPU time limit.

Table 1 shows the evaluation results over the 288-instance
testing set. BTOR2-SELECT effectively closed around 65%
of the VBS-SBS gap. The PWC selector with the BoKW
embedding solved 12.9% more instances and reduced PAR-
2 by 27.7% compared to ABC.PDR, the SBS. We also eval-
uated each component verifier’s contribution by the Shapley
value, as results shown in Figure 2. The performance was
measured by the solved instance numbers. Collectively, the
software components contributed 27.2% to the PWC-BoKW
performance.

1https://hwmcc.github.io/2020/
2https://gitlab.com/sosy-lab/research/data/word-level-hwmc-

benchmarks/

Verifier #Solved PAR-2 (sec)
PWC-BoKW 227 120 484.8
PWC-BWA 226 122 008.9
SBS (ABC-PDR) 201 166 683.4
VBS 239 96 629.8

Table 1: Evaluation results of BTOR2-SELECT

Figure 2: Shapley Value Contribution of Each Component
Verifier to PW-BoKW, Expressed as a Percentage (%)
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