
Advances in Automatic Software Testing:
Test-Comp 2025

Dirk Beyer B

LMU Munich, Munich, Germany

Abstract. The 7th edition of the Competition on Software Testing (Test-
Comp 2025) provides an overview and comparative evaluation of auto-
matic test-suite generators for C programs. The experimental evaluation
was performed on a benchmark set of 11 226 test-generation tasks for
C programs. Each test-generation task consisted of a program and a
test specification. The test specifications included error coverage (gen-
erate a test suite that exhibits a bug) and branch coverage (generate a
test suite that executes as many program branches as possible). Test-
Comp 2025 evaluated 20 software systems for test generation that are
all freely available. This included 13 test-suite generators that partici-
pated with active support from teams led by 12 different representatives
from 8 countries (actively maintained software systems, participation in
competition jury). Test-Comp 2025 had 1 new participant (Sikraken new)
and 2 re-entries (ESBMC-incr, ESBMC-kind). The evaluation included also
7 test-generation tools from previous years.

Keywords: Software Testing · Test-Case Generation · Competition ·
Program Analysis · Software Validation · Software Bugs · Test Validation
· Test-Comp · Benchmarking · Test Coverage · Bug Finding · Test Suites ·
SV-Benchmarks · BenchExec · TestCov · CoVeriTeam

1 Introduction

In its 7th edition, the International Competition on Software Testing (Test-Comp,
https://test-comp.sosy-lab.org, [10, 11, 12, 13, 14, 16, 17]) again compares automatic
test-suite generators for C programs, in order to showcase the state of the art in the
area of automatic software testing. This competition report is an update of the pre-
vious reports, referring to the rules and definitions, presents the competition results,
and give some interesting data about the execution of the competition experiments.
We use BenchExec [31] to execute the benchmark runs, BenchCloud [24] to
distribute the execution to a large and elastic set of computers, FM-Weck [33] to

This report extends previous reports on Test-Comp [10, 11, 12, 13, 14, 16, 17] by providing new
results, while the procedures and setup of the competition stay mainly unchanged.
Reproduction packages are available on Zenodo (see Table 3).
B dirk.beyer@sosy.ifi.lmu.de

https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0003-4832-7662
https://www.sosy-lab.org/people/beyer/
https://fm-tools.sosy-lab.org/#tool-sikraken
https://fm-tools.sosy-lab.org/#tool-esbmc-incr
https://fm-tools.sosy-lab.org/#tool-esbmc-kind
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://github.com/sosy-lab/benchexec
https://gitlab.com/sosy-lab/software/test-suite-validator/
https://gitlab.com/sosy-lab/software/coveriteam
https://test-comp.sosy-lab.org
https://github.com/sosy-lab/benchexec
https://gitlab.com/sosy-lab/software/benchcloud
https://gitlab.com/sosy-lab/software/fm-weck
https://www.sosy-lab.org/people/beyer/

2 Dirk Beyer

execute tools from previous years using the container with all their requirements
fulfilled, and the FM-Tools [18] collection to look up all the information we
need about the tools for test-case generation, including their versions, parameters,
and jury representatives. The results are presented in tables and graphs, also
on the competition web site (https://test-comp.sosy-lab.org/2025/results), and are
available in the accompanying archives (see Table 3).

Competition Goals. In summary, the goals of Test-Comp are the following [11]:

• Establish standards for software test generation. This means, most prominently,
to develop a standard for marking input values in programs, define an exchange
format for test suites, agree on a specification language for test-coverage
criteria, and define how to validate the resulting test suites.

• Establish a set of benchmarks for software testing in the community. This
means to create and maintain a set of programs together with coverage criteria,
and to make those publicly available for researchers to be used in performance
comparisons when evaluating a new technique.

• Provide an overview of available tools for test-case generation and a snapshot
of the state-of-the-art in software testing to the community. This means to
compare, independently from particular paper projects and specific techniques,
different test generators in terms of effectiveness and performance.

• Increase the visibility and credits that tool developers receive. This means
to provide a forum for presentation of tools and discussion of the latest
technologies, and to give the participants the opportunity to publish about
the development work that they have done.

• Educate PhD students and other participants on how to set up performance
experiments, package tools in a way that supports reproduction, and how to
perform robust and accurate research experiments.

• Provide resources to development teams that do not have sufficient computing
resources and give them the opportunity to obtain results from experiments
on large benchmark sets.

Related Competitions. In the field of formal methods, competitions are re-
spected as an important evaluation method and there are many competitions [8, 26].
We refer to the report from Test-Comp 2020 [11] for a more detailed discussion
and give here only the references to the most related competitions: Competition
on Software Verification (SV-COMP) [19], Competition on Search-Based Soft-
ware Testing (SBST) [54], and the DARPA Cyber Grand Challenge [56]. For the
techniques used for automatic software testing, we refer to the literature [5, 41].

2 Definitions, Formats, and Rules

Organizational aspects such as the classification (automatic, off-site, reproducible,
jury, training) and the competition schedule is given in the initial competi-
tion definition [10]. In the following, we repeat some important definitions that
are necessary to understand the results.

https://fm-tools.sosy-lab.org/
https://test-comp.sosy-lab.org/2025/results

Advances in Automatic Software Testing: Test-Comp 2025 3

Test
Generator

Program
under Test

Test
Specification

Test Suite
(Test Cases)

Test
Validator

Bug
Report

Coverage
Statistics

Fig. 1: Flow of the Test-Comp execution for one test generator (taken from [11])

Test-Generation Task. A test-generation task is a pair of an input program (pro-
gram under test) and a test specification. A test-generation run is a non-interactive
execution of a test generator on a single test-generation task, in order to generate a
test suite according to the test specification. A test suite is a sequence of test cases,
given as a directory of files according to the format for exchangeable test-suites.1

Execution of a Test Generator. Figure 1 illustrates the process of executing
one test-suite generator on the benchmark suite. One test run for a test-suite
generator gets as input (i) a program from the benchmark suite and (ii) a test
specification (cover bug, or cover branches), and returns as output a test suite
(i.e., a set of test cases). The test generator is contributed by a competition
participant as a software archive in ZIP format on Zenodo, via a DOI entry
of a version in the FM-Tools record of the test generator. All test runs are
executed centrally by the competition organizer.

Execution of the Test Validator. The test-suite validator takes as input the
test suite from the test generator and validates it by executing the program on
all test cases: for bug finding it checks if the bug is exposed and for coverage it
reports the coverage. We use the tool TestCov [30] 2 as test-suite validator.

In Test-Comp 2025, we used TestCov in four configurations: (a) We use
separate validations based on the compiler, with GCC and with Clang. The
motivation for this is that the two different compilers use different choices for
unspecified behavior, where the C standard leaves certain choices up to the
compiler (for example, the unspecified order of evaluation of function arguments).
(b) We use separate validations based on the formatting after instrumentation, with
and without formatting. The motivation for this is that due to incompatibilities of
the tools for formatting and coverage measurement, we would like to make sure to
obtain the best possible coverage measurement by using those variants. For each
test-validation run, the best of the four results is used to determine the score.

1 https://gitlab.com/sosy-lab/test-comp/test-format
2 https://gitlab.com/sosy-lab/software/test-suite-validator

https://fm-tools.sosy-lab.org/
https://gitlab.com/sosy-lab/software/test-suite-validator/
https://gitlab.com/sosy-lab/software/test-suite-validator/
https://gitlab.com/sosy-lab/test-comp/test-format
https://gitlab.com/sosy-lab/software/test-suite-validator

4 Dirk Beyer

Table 1: Coverage specifications used in Test-Comp 2025 (similar to 2019–2024)

Formula Interpretation

COVER EDGES(@CALL(reach_error)) The test suite contains at least one test
that executes function reach_error.

COVER EDGES(@DECISIONEDGE) The test suite contains tests such that
all branches of the program are executed.

Test Specification. The specification for testing a program is given to the
test generator as input file (either properties/coverage-error-call.prp or
properties/coverage-branches.prp for Test-Comp 2025).

The definition init(main()) is used to define the initial states of the program
under test by a call of function main (with no parameters). The definition FQL(f)
specifies that coverage definition f should be achieved. The FQL (FShell query
language [45]) coverage definition COVER EDGES(@DECISIONEDGE) means that all
branches should be covered (typically used to obtain a standard test suite for qual-
ity assurance) and COVER EDGES(@CALL(foo)) means that a call (at least one) to
function foo should be covered (typically used for bug finding). A complete specifi-
cation looks like: COVER(init(main()), FQL(COVER EDGES(@DECISIONEDGE))).

Table 1 lists the two FQL formulas that are used in test specifications of
Test-Comp 2025; there was no change from 2020 (except that special function
__VERIFIER_error does not exist anymore).

Task-Definition Format 2.0. Test-Comp 2025 used again the task-definition for-
mat in version 2.0.

License and Qualification. The license of each participating test generator
must allow its free use for reproduction of the competition results. The license
for each tool is available in the FM-Tools entry for the tool, as well as in
Table 4. Details on qualification criteria can be found in the competition re-
port of Test-Comp 2019 [12].

3 Categories and Scoring Schema

Benchmark Programs. The input programs were taken from the largest and
most diverse open-source repository of software-verification and test-generation
tasks 3, which is also used by SV-COMP [19]. As in 2020 and 2021, we se-
lected all programs for which the following properties were satisfied (see issue
on GitLab 4 and report [12]):

3 https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
4 https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/merge_requests/774

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/testcomp25/c/properties/coverage-error-call.prp
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/testcomp25/c/properties/coverage-branches.prp
https://gitlab.com/sosy-lab/benchmarking/task-definition-format/-/tree/2.0
https://gitlab.com/sosy-lab/benchmarking/task-definition-format/-/tree/2.0
https://fm-tools.sosy-lab.org/
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/merge_requests/774

Advances in Automatic Software Testing: Test-Comp 2025 5

1. compiles with gcc, if a harness for the special methods 5 is provided,
2. should contain at least one call to a nondeterministic function,
3. does not rely on nondeterministic pointers,
4. does not have expected result ‘false’ for property ‘termination’, and
5. has expected result ‘false’ for property ‘unreach-call’ (only for category Cover-

Error).

This selection yielded a total of 11 226 test-generation tasks, namely 1 215 tasks
for category Cover-Error and 10 011 tasks for category Cover-Branches. The
test-generation tasks are partitioned into categories, which are listed in Ta-
bles 6 and 7 and described in detail on the competition web site.6 Figure 2
illustrates the category composition.

Category Cover-Error. The first category is to show the abilities to discover
bugs. The benchmark set consists of programs that contain a bug. We produce for
every tool and every test-generation task one of the following scores: 1 point, if the
validator succeeds in executing the program under test on a generated test case that
explores the bug (i.e., the specified function was called), and 0 points, otherwise.

Category Cover-Branches. The second category is to cover as many branches
of the program as possible. The coverage criterion was chosen because many test
generators support this standard criterion by default. Other coverage criteria
can be reduced to branch coverage by transformation [44]. We produce for every
tool and every test-generation task the coverage of branches of the program (as
reported by TestCov [30]; a value between 0 and 1) that are executed for the
generated test cases. The score is the returned coverage.

Max Over All Validators. As mentioned before, TestCov is executed four
times on each test suite, using four different configurations. The score of a test
suite is the maximum of the four computed scores.

Ranking. The ranking was decided based on the sum of points (normalized for
meta categories). In case of a tie, the ranking was decided based on the run time,
which is the total CPU time over all test-generation tasks. Opt-out from categories
was possible and scores for categories were normalized based on the number of
tasks per category (see competition report of SV-COMP 2013 [9], page 597).

4 Reproducibility

We followed the same competition workflow that was described in detail in
the previous competition report (see Sect. 4, [13]). All major components that
were used for the competition were made available in public version-control
repositories. An overview of the components that contribute to the reproducible
setup of Test-Comp is provided in Fig. 3, and the details are given in Table 2.
We refer to the report of Test-Comp 2019 [12] for a thorough description of all

5 https://test-comp.sosy-lab.org/2025/rules.php
6 https://test-comp.sosy-lab.org/2025/benchmarks.php

https://gitlab.com/sosy-lab/software/test-suite-validator/
https://gitlab.com/sosy-lab/software/test-suite-validator/
https://test-comp.sosy-lab.org/2025/rules.php
https://test-comp.sosy-lab.org/2025/benchmarks.php

6 Dirk Beyer

Arrays

BitVectors

ControlFlow

ECA

Floats

Fuzzle

Heap

Loops

ProductLines

Recursive

Sequentialized

XCSP

Hardware

BusyBox-MemSafety

SoftwareSystems-
OpenBSD-MemSafety

DeviceDriversLinux64-ReachSafety

Cover-Error

Arrays

BitVectors

ControlFlow

ECA

Floats

Fuzzle

Hardness

Hardware

Heap

Loops

ProductLines

Recursive

Sequentialized

XCSP

Combinations

SoftwareSystems-AWS-
C-Common-ReachSafety

BusyBox-MemSafety

SoftwareSystems-coreutils

SoftwareSystems-
OpenBSD-MemSafety

DeviceDriversLinux64-ReachSafety

SoftwareSystems-uthash

SQLite-MemSafety

Termination-BitVectors

Termination-MainControlFlow

Termination-MainHeap

Cover-Branches

Overall

Fig. 2: Category structure for Test-Comp 2025

Advances in Automatic Software Testing: Test-Comp 2025 7

(a) Test-Generation Tasks

(e) Test-Generation Run

(b) Benchmark Definitions (c) Tool-Info Modules (d) Tester Archives

(f) Test Suite

Fig. 3: Benchmarking components of Test-Comp and competition’s execution flow
(same as for Test-Comp 2020)

Table 2: Publicly available components for reproducing Test-Comp 2025

Component Fig. 3 Repository at Version
http://gitlab.com/sosy-lab/...

Test-Generation Tasks (a) benchmarking/sv-benchmarks testcomp25
Benchmark Definitions (b) test-comp/bench-defs testcomp25
Tool-Info Modules (c) software/benchexec 3.29
Test-Generators (d) benchmarking/fm-tools testcomp25
BenchExec (Benchmarking) (e) software/benchexec 3.29
BenchCloud (Distribution) (e) software/benchcloud 1.3.0
FM-Weck (Containers) (e) software/fm-weck 1.4.5
Test-Suite Format (f) test-comp/test-format testcomp25
CoVeriTeam for CI software/coveriteam 1.2.1
Processing Scripts benchmarking/competition-scripts testcomp25

Table 3: Artifacts published for Test-Comp 2025

Content DOI Reference

Test-Generation Tasks 10.5281/zenodo.15034421 [22]
Competition Results 10.5281/zenodo.15034433 [21]
Test-Suite Generators 10.5281/zenodo.15055359 [20]
Test Suites (Witnesses) 10.5281/zenodo.15034431 [23]
BenchExec 10.5281/zenodo.15007216 [61]
CoVeriTeam 10.5281/zenodo.11193690 [32]

components of the Test-Comp organization and how we ensure that all parts
are publicly available for maximal reproducibility.

In order to guarantee long-term availability and immutability of the test-
generation tasks, the produced competition results, and the produced test suites,
we also packaged the material and published it at Zenodo (see Table 3).

The competition used CoVeriTeam [28] 7 again to provide participants access
to execution machines that are similar to actual competition machines. The
competition report of SV-COMP 2022 provides a description on reproducing

7 https://gitlab.com/sosy-lab/software/coveriteam

http://gitlab.com/sosy-lab/
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/tree/testcomp25/c
https://gitlab.com/sosy-lab/test-comp/bench-defs/-/tree/testcomp25/benchmark-defs
https://gitlab.com/sosy-lab/software/benchexec/tree/3.29/benchexec/tools
https://gitlab.com/sosy-lab/benchmarking/fm-tools/tree/test25
https://github.com/sosy-lab/benchexec
https://gitlab.com/sosy-lab/software/benchexec/tree/3.29
https://gitlab.com/sosy-lab/software/benchcloud
https://gitlab.com/sosy-lab/software/benchcloud/-/tags/1.3.0
https://gitlab.com/sosy-lab/software/fm-weck
https://gitlab.com/sosy-lab/software/fm-weck/-/tags/1.4.5
https://gitlab.com/sosy-lab/test-comp/test-format/-/tree/testcomp25
https://gitlab.com/sosy-lab/software/coveriteam
https://gitlab.com/sosy-lab/software/coveriteam/tree/1.2.1
https://gitlab.com/sosy-lab/benchmarking/competition-scripts/tree/testcomp25
https://doi.org/10.5281/zenodo.15034421
https://doi.org/10.5281/zenodo.15034433
https://doi.org/10.5281/zenodo.15055359
https://doi.org/10.5281/zenodo.15034431
https://github.com/sosy-lab/benchexec
https://doi.org/10.5281/zenodo.15007216
https://gitlab.com/sosy-lab/software/coveriteam
https://doi.org/10.5281/zenodo.11193690
https://gitlab.com/sosy-lab/software/coveriteam
https://gitlab.com/sosy-lab/software/coveriteam

8 Dirk Beyer

Table 4: Competition candidates with tool references and representing jury members;
new indicates first-time participants, ∅ indicates inactive (hors concours) participation;
licenses are abbreviated, see the hyperlink or tool page at FM-Tools for the specific
version of the license; TestCov is the validator that computes the score for each test-suite

Tester Ref. License Jury member Affiliation

Cetfuzz∅ Apache – –
CoVeriTest [27, 47] Apache M.-C. Jakobs LMU Munich, Germany
ESBMC-incr [60] Apache C. Wei U. of Manchester, UK
ESBMC-kind [42, 60] Apache C. Wei U. of Manchester, UK
FDSE [62] Apache Z. Chen National U. Defense Techn., China
Fizzer [48, 49] Zlib M. Trtík Masaryk U., Brno, Czechia
FuSeBMC [3, 4] MIT K. Alshmrany U. of Manchester, UK and

Inst. Public Admin., Saudi Arabia
FuSeBMC-AI∅ [1, 2] MIT – –
HybridTiger∅ [34, 55] Apache – –
KLEEF [53] NCSA A. Misonizhnik Independent Researcher, Neutral
KLEE∅ [35, 36] NCSA – –
Owi∅ AGPL – –
PRTest [29, 51] Apache T. Lemberger LMU Munich, Germany
Rizzer∅ Zlib – –
Sikraken new LGPL C. Meudec South East Technological U., Ireland
Symbiotic [37, 38] MIT M. Jonáš Masaryk U., Brno, Czechia
TracerX [40, 46] Apache J. Jaffar National U. of Singapore, Singapore
TracerX-WP [40, 46] Apache J. Jaffar National U. of Singapore, Singapore
UTestGen [6, 7] LGPL M. Barth LMU Munich, Germany
WASP-C∅ [52] Apache – –
TestCov [30] Apache M. Kettl LMU Munich, Germany

individual results and on trouble-shooting (see Sect. 3, [15]). A new component
in Test-Comp 2025 was the use of the container solution FM-Weck [33], which
makes it possible to include also older archives in the comparative evaluation,
even if the tools were made for an older distribution of Ubuntu or use packages
that are not available anymore. The tools can specify in their FM-Tools [18]
entry a container in which they can run.

5 Results and Discussion

This section represents the results of the competition experiments. The report shall
help to understand the state of the art and the advances in fully automatic test gen-
eration for whole C programs, in terms of effectiveness (test coverage, as accumu-
lated in the score) and efficiency (resource consumption in terms of CPU time). All
results mentioned in this article were inspected and approved by the participants.

Participating Test-Suite Generators. Table 4 provides an overview of the
participating test generators and references to publications, as well as the team
representatives of the jury of Test-Comp 2025. (The competition jury consists

https://gitlab.com/sosy-lab/software/test-suite-validator/
https://fm-tools.sosy-lab.org/#tool-cetfuzz
https://spdx.org/licenses/Apache-2.0
https://fm-tools.sosy-lab.org/#tool-coveritest
https://spdx.org/licenses/Apache-2.0
https://fm-tools.sosy-lab.org/#tool-esbmc-incr
https://spdx.org/licenses/Apache-2.0
https://fm-tools.sosy-lab.org/#tool-esbmc-kind
https://spdx.org/licenses/Apache-2.0
https://fm-tools.sosy-lab.org/#tool-fdse
https://spdx.org/licenses/Apache-2.0
https://fm-tools.sosy-lab.org/#tool-fizzer
https://spdx.org/licenses/Zlib
https://fm-tools.sosy-lab.org/#tool-fusebmc
https://spdx.org/licenses/MIT
https://fm-tools.sosy-lab.org/#tool-fusebmc-ia
https://spdx.org/licenses/MIT
https://fm-tools.sosy-lab.org/#tool-hybridtiger
https://spdx.org/licenses/Apache-2.0
https://fm-tools.sosy-lab.org/#tool-kleef
https://spdx.org/licenses/NCSA
https://fm-tools.sosy-lab.org/#tool-klee
https://spdx.org/licenses/NCSA
https://fm-tools.sosy-lab.org/#tool-owic
https://spdx.org/licenses/AGPL-3.0-only
https://fm-tools.sosy-lab.org/#tool-prtest
https://spdx.org/licenses/Apache-2.0
https://fm-tools.sosy-lab.org/#tool-rizzer
https://spdx.org/licenses/Zlib
https://fm-tools.sosy-lab.org/#tool-sikraken
https://spdx.org/licenses/LGPL-3.0-only
https://fm-tools.sosy-lab.org/#tool-symbiotic
https://spdx.org/licenses/MIT
https://fm-tools.sosy-lab.org/#tool-tracerx
https://spdx.org/licenses/Apache-2.0
https://fm-tools.sosy-lab.org/#tool-tracerx-wp
https://spdx.org/licenses/Apache-2.0
https://fm-tools.sosy-lab.org/#tool-utestgen
https://spdx.org/licenses/LGPL-3.0-or-later
https://fm-tools.sosy-lab.org/#tool-wasp-c
https://spdx.org/licenses/Apache-2.0
https://fm-tools.sosy-lab.org/#tool-testcov
https://spdx.org/licenses/Apache-2.0
https://gitlab.com/sosy-lab/software/fm-weck
https://fm-tools.sosy-lab.org/

Advances in Automatic Software Testing: Test-Comp 2025 9

Table 5: Technologies and features that the test generators used

Tester A
lg

or
it

h
m

S
el

ec
ti

on

B
it

-P
re

ci
se

A
n
al

ys
is

B
ou

n
d
ed

M
od

el
C

h
ec

ki
n
g

C
E
G

A
R

C
on

cu
rr

en
cy

S
u
p
p
or

t

E
vo

lu
ti

on
ar

y
A

lg
or

it
h
m

s

E
xp

li
ci

t-
V

al
u
e

A
n
al

ys
is

F
lo

at
in

g-
P
oi

nt
A

ri
th

m
et

ic
s

G
u
id

an
ce

by
C

ov
er

ag
e

M
ea

su
re

s

P
or

tf
ol

io

P
re

d
ic

at
e

A
b
st

ra
ct

io
n

R
an

d
om

E
xe

cu
ti

on

S
ym

b
ol

ic
E
xe

cu
ti

on

T
ar

ge
te

d
In

p
u
t

G
en

er
at

io
n

Cetfuzz∅ ✓ ✓

CoVeriTest ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ESBMC-incr ✓ ✓ ✓

ESBMC-kind ✓ ✓ ✓ ✓ ✓

FDSE ✓ ✓ ✓ ✓

Fizzer ✓

FuSeBMC ✓ ✓ ✓ ✓ ✓

FuSeBMC-AI∅ ✓ ✓ ✓ ✓ ✓

HybridTiger∅ ✓ ✓ ✓ ✓

KLEEF ✓ ✓ ✓ ✓ ✓

KLEE∅ ✓ ✓ ✓

Owi∅ ✓ ✓ ✓ ✓ ✓

PRTest ✓ ✓

Rizzer∅ ✓ ✓

Sikraken new ✓

Symbiotic ✓ ✓ ✓ ✓ ✓ ✓ ✓

TracerX ✓ ✓ ✓ ✓

TracerX-WP
UTestGen ✓ ✓

WASP-C∅ ✓ ✓ ✓

of the chair and one member of each participating team.) An online table with
information about all participating systems is provided on the competition web
site.8 Table 5 lists the features and technologies that are used in the test generators.

There are test generators that did not actively participate (tester archives
taken from last year) and that are not included in rankings. Those are called
inactive participation and the tools are labeled with a symbol (∅). In the past,
we named those inactive tools ‘hors concours’, but since there could be other

8 https://test-comp.sosy-lab.org/2025/systems.php

https://fm-tools.sosy-lab.org/#tool-cetfuzz
https://fm-tools.sosy-lab.org/#tool-coveritest
https://fm-tools.sosy-lab.org/#tool-esbmc-incr
https://fm-tools.sosy-lab.org/#tool-esbmc-kind
https://fm-tools.sosy-lab.org/#tool-fdse
https://fm-tools.sosy-lab.org/#tool-fizzer
https://fm-tools.sosy-lab.org/#tool-fusebmc
https://fm-tools.sosy-lab.org/#tool-fusebmc-ia
https://fm-tools.sosy-lab.org/#tool-hybridtiger
https://fm-tools.sosy-lab.org/#tool-kleef
https://fm-tools.sosy-lab.org/#tool-klee
https://fm-tools.sosy-lab.org/#tool-owic
https://fm-tools.sosy-lab.org/#tool-prtest
https://fm-tools.sosy-lab.org/#tool-rizzer
https://fm-tools.sosy-lab.org/#tool-sikraken
https://fm-tools.sosy-lab.org/#tool-symbiotic
https://fm-tools.sosy-lab.org/#tool-tracerx
https://fm-tools.sosy-lab.org/#tool-tracerx-wp
https://fm-tools.sosy-lab.org/#tool-utestgen
https://fm-tools.sosy-lab.org/#tool-wasp-c
https://test-comp.sosy-lab.org/2025/systems.php

10 Dirk Beyer

reasons for hors-concours participation (for example meta tools that consist of
other participating tools), we now use the more specific term ‘inactive’.

Computing Resources. The computing environment and the resource limits
were the same as for Test-Comp 2024 [17], except for the upgraded operating
system: Each test run was limited to 4 processing units (cores), 15 GB of memory,
and 15 min of CPU time. The test-suite validation was limited to 2 processing units,
7 GB of memory, and 5 min of CPU time. The machines for running the experiments
are part of a compute cluster that consists of 168 machines. Each machine had
one Intel Xeon E3-1230 v5 CPU, with 8 processing units each, a frequency of
3.4GHz, 33GB of RAM, and a GNU/Linux operating system (x86_64-linux,
Ubuntu 24.04 with Linux kernel 6.8). We used BenchExec [31] to measure and
control computing resources (CPU time, memory, CPU energy), BenchCloud [24]
to distribute, install, run, and clean-up test-case generation runs, and to collect
the results, and FM-Weck [33] to prepare the correct container according to the
tools’ FM-Tools [18] entry. The values for CPU time are accumulated over all
cores of the CPU. Further technical parameters of the competition machines are
available in the repository which also contains the benchmark definitions. 9

One complete test-generation execution of the competition consisted of
235 746 single test-generation run executions. The total CPU time was 3.7 years
for one complete competition run for test generation (without validation). Test-
suite validation consisted of 987 888 single test-suite validation runs. The total
consumed CPU time was 0.95 years. Each tool was executed several times, in order
to make sure no installation issues occur during the execution. Including preruns,
the infrastructure managed a total of 968 364 test-generation runs (consuming
4.9 years of CPU time). The prerun test-suite validation consisted of 4 212 084
single test-suite validation runs (consuming 3.8 years of CPU time).

Quantitative Results. The quantitative results are presented in the same
way as last year: Table 6 presents the quantitative overview of all tools and all
categories. The head row mentions the category and the number of test-generation
tasks in that category. The tools are listed in alphabetical order; every table
row lists the scores of one test generator. We indicate the top three candidates
by formatting their scores in bold face and in larger font size. An empty table
cell means that the test generator opted-out from the respective main category
(perhaps participating in subcategories only, restricting the evaluation to a specific
topic). More information (including interactive tables, quantile plots for every
category, and also the raw data in XML format) is available on the competition
web site 10 and in the results artifact (see Table 3). Table 7 reports the top three
test generators for each category. The consumed run time (column ‘CPU Time’)
is given in hours and the consumed energy (column ‘Energy’) is given in kWh.

Score-Based Quantile Functions for Quality Assessment. We use score-
based quantile functions [31] because these visualizations make it easier to under-
stand the results of the comparative evaluation. The web site 10 and the results

9 https://gitlab.com/sosy-lab/test-comp/bench-defs/tree/testcomp25
10 https://test-comp.sosy-lab.org/2025/results

https://github.com/sosy-lab/benchexec
https://gitlab.com/sosy-lab/software/benchcloud
https://gitlab.com/sosy-lab/software/fm-weck
https://fm-tools.sosy-lab.org/
https://gitlab.com/sosy-lab/test-comp/bench-defs/tree/testcomp25
https://test-comp.sosy-lab.org/2025/results

Advances in Automatic Software Testing: Test-Comp 2025 11

Table 6: Quantitative overview over all results; empty cells mark opt-outs; new indicates
first-time participants, ∅ indicates hors-concours participation

Participant

C
ov

er
-E

rr
or

12
15

ta
sk

s

C
ov

er
-B

ra
n
ch

es
10

01
1

ta
sk

s

O
ve

ra
ll

11
22

6
ta

sk
s

Cetfuzz∅ 323 2524 2906
CoVeriTest 552 4959 5333
ESBMC-incr 679 4380 5591
ESBMC-kind 680 4323 5565
FDSE 729 5468 6435
Fizzer 736 5429 6446
FuSeBMC 994 5656 7763
FuSeBMC-AI∅ 853 4077 6228
HybridTiger∅ 438 3866 4193
KLEE∅ 804 3065 5434
KLEEF 969 5734 7692
Owi∅ 281 2462 2677
PRTest 211 3191 2764
Rizzer∅ 608
Sikraken new 2469
Symbiotic 743 4207 5793
TracerX 390 3327 3667
TracerX-WP 349 3275 3447
UTestGen 439 4393 4492
WASP-C∅ 554 2740 4094

artifact (Table 3) include such a plot for each category; as example, we show
the plot for category Overall (all test-generation tasks) in Fig. 4. We had 18 test
generators participating in category Overall, for which the quantile plot shows
the overall performance over all categories (scores for meta categories are nor-
malized [9]). A more detailed discussion of score-based quantile plots for testing
is provided in the Test-Comp 2019 competition report [12].

https://fm-tools.sosy-lab.org/#tool-cetfuzz
https://fm-tools.sosy-lab.org/#tool-coveritest
https://fm-tools.sosy-lab.org/#tool-esbmc-incr
https://fm-tools.sosy-lab.org/#tool-esbmc-kind
https://fm-tools.sosy-lab.org/#tool-fdse
https://fm-tools.sosy-lab.org/#tool-fizzer
https://fm-tools.sosy-lab.org/#tool-fusebmc
https://fm-tools.sosy-lab.org/#tool-fusebmc-ia
https://fm-tools.sosy-lab.org/#tool-hybridtiger
https://fm-tools.sosy-lab.org/#tool-klee
https://fm-tools.sosy-lab.org/#tool-kleef
https://fm-tools.sosy-lab.org/#tool-owic
https://fm-tools.sosy-lab.org/#tool-prtest
https://fm-tools.sosy-lab.org/#tool-rizzer
https://fm-tools.sosy-lab.org/#tool-sikraken
https://fm-tools.sosy-lab.org/#tool-symbiotic
https://fm-tools.sosy-lab.org/#tool-tracerx
https://fm-tools.sosy-lab.org/#tool-tracerx-wp
https://fm-tools.sosy-lab.org/#tool-utestgen
https://fm-tools.sosy-lab.org/#tool-wasp-c

12 Dirk Beyer

Table 7: Overview of the top-three test generators for each category (measurement
values for CPU time rounded to two significant digits, in hours)

Rank Tester Score CPU
Time

Cover-Error
1 FuSeBMC 994 75
2 KLEEF 969 9.5
3 Symbiotic 743 5.5

Cover-Branches
1 KLEEF 5734 1 500
2 FuSeBMC 5656 2 500
3 FDSE 5468 2 200

Overall
1 FuSeBMC 7763 2 600
2 KLEEF 7692 1 500
3 Fizzer 6446 2 100

 0

 2000

 4000

 6000

 8000

 10000

 0 1000 2000 3000 4000 5000 6000 7000

cetfuzz
CoVeriTest

ESBMC-incr
ESBMC-kind

FDSE
Fizzer

FuSeBMC
FuSeBMC-AI
HybridTiger

KLEE
KLEEF

Owi
PRTest

Symbiotic
TracerX

TracerX-WP
UTestGen

WASP-C

M
in

. n
um

be
r o

f t
es

t t
as

ks

Cumulative score

Fig. 4: Quantile functions for category Overall. Each quantile function illustrates
the quantile (x-coordinate) of the scores obtained by test-generation runs below a
certain number of test-generation tasks (y-coordinate). More details were given
previously [12]. The graphs are decorated with symbols to make them better
distinguishable without color.

https://fm-tools.sosy-lab.org/#tool-fusebmc
https://fm-tools.sosy-lab.org/#tool-kleef
https://fm-tools.sosy-lab.org/#tool-symbiotic
https://fm-tools.sosy-lab.org/#tool-kleef
https://fm-tools.sosy-lab.org/#tool-fusebmc
https://fm-tools.sosy-lab.org/#tool-fdse
https://fm-tools.sosy-lab.org/#tool-fusebmc
https://fm-tools.sosy-lab.org/#tool-kleef
https://fm-tools.sosy-lab.org/#tool-fizzer

Advances in Automatic Software Testing: Test-Comp 2025 13

2019 2020 2021 2022 2023 2024 2025
0

5

10

15

20

25

3
3

6 7

9

4

2
1 3

8

1

6
9 8 7 6

12

Year

E
va

lu
at

ed
te

st
ge

ne
ra

to
rs

active tools (not new)
new tools
inactive/hors concours

Fig. 5: Number of evaluated test generators for each year (blue/bottom: active
participants from previous years, green/middle: number of first-time participants,
gray/top: inactive participants from previous years)

6 Conclusion

The 7th Competition on Software Testing continues to provide an overview of fully-
automatic test-generation tools for C programs. A total of 20 test-suite generators
was compared (see Fig. 5 for the participation numbers and Table 4 for the
details). This off-site competition uses a benchmark infrastructure that makes the
execution of the experiments fully-automatic and reproducible. Transparency is
ensured by making all components available in public repositories and have a jury
(consisting of members from each team) that oversees the process. All test suites
were validated by the test-suite validator TestCov [30] to measure the coverage.
For the first time, the competition used several different validation runs for each
test suite, in order to obtain the best possible coverage result, using different
compiler backends and different formatting choices after instrumentation for
coverage measurement. The results of the competition were presented at the 28th
International Conference on Fundamental Approaches to Software Engineering
(FASE) at ETAPS 2025 in Hamilton, Canada.

Data-Availability Statement. The test-generation tasks and results of the com-
petition are published at Zenodo, as described in Table 3. All components and data
that are necessary for reproducing the competition are available in public version
repositories, as specified in Table 2. For easy access, the results are presented also
online on the competition web site https://test-comp.sosy-lab.org/2025/results.

Funding Statement. This project was funded in part by the Deutsche Forschungs-
gemeinschaft (DFG) — 418257054 (Coop).

https://gitlab.com/sosy-lab/software/test-suite-validator/
https://test-comp.sosy-lab.org/2025/results
http://gepris.dfg.de/gepris/projekt/418257054

14 Dirk Beyer

References

1. Aldughaim, M., Alshmrany, K.M., Gadelha, M.R., de Freitas, R., Cordeiro, L.C.:
FuSeBMC_IA: Interval analysis and methods for test-case generation (compe-
tition contribution). In: Proc. FASE. pp. 324–329. LNCS 13991, Springer (2023).
https://doi.org/10.1007/978-3-031-30826-0_18

2. Aldughaim, M., Alshmrany, K.M., Mustafa, M., Cordeiro, L.C., Stancu, A.: Bounded
model checking of software using interval methods via contractors. arXiv/CoRR
2012(11245) (December 2020). https://doi.org/10.48550/arXiv.2012.11245

3. Alshmrany, K., Aldughaim, M., Cordeiro, L., Bhayat, A.: FuSeBMC v.4: Smart seed
generation for hybrid fuzzing (competition contribution). In: Proc. FASE. pp. 336–
340. LNCS 13241, Springer (2022). https://doi.org/10.1007/978-3-030-99429-7_19

4. Alshmrany, K.M., Aldughaim, M., Bhayat, A., Cordeiro, L.C.: FuSeBMC:
An energy-efficient test generator for finding security vulnerabili-
ties in C programs. In: Proc. TAP. pp. 85–105. Springer (2021).
https://doi.org/10.1007/978-3-030-79379-1_6

5. Anand, S., Burke, E.K., Chen, T.Y., Clark, J.A., Cohen, M.B., Grieskamp, W.,
Harman, M., Harrold, M.J., McMinn, P.: An orchestrated survey of methodologies
for automated software test case generation. Journal of Systems and Software 86(8),
1978–2001 (2013). https://doi.org/10.1016/j.jss.2013.02.061

6. Barth, M., Dietsch, D., Heizmann, M., Jakobs, M.C.: Ultimate TestGen:
Test case generation with automata-based software model checking (competi-
tion contribution). In: Proc. FASE. pp. 326–330. LNCS 14573, Springer (2024).
https://doi.org/10.1007/978-3-031-57259-3_20

7. Barth, M., Jakobs, M.C.: Test-case generation with automata-
based software model checking. In: Proc. SPIN. Springer (2024).
https://doi.org/10.1007/978-3-031-66149-5_14

8. Bartocci, E., Beyer, D., Black, P.E., Fedyukovich, G., Garavel, H., Hartmanns, A.,
Huisman, M., Kordon, F., Nagele, J., Sighireanu, M., Steffen, B., Suda, M., Sutcliffe,
G., Weber, T., Yamada, A.: TOOLympics 2019: An overview of competitions in
formal methods. In: Proc. TACAS (3). pp. 3–24. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_1

9. Beyer, D.: Second competition on software verification (Summary of SV-
COMP 2013). In: Proc. TACAS. pp. 594–609. LNCS 7795, Springer (2013).
https://doi.org/10.1007/978-3-642-36742-7_43

10. Beyer, D.: Competition on software testing (Test-Comp). In:
Proc. TACAS (3). pp. 167–175. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_11

11. Beyer, D.: Second competition on software testing: Test-Comp
2020. In: Proc. FASE. pp. 505–519. LNCS 12076, Springer (2020).
https://doi.org/10.1007/978-3-030-45234-6_25

12. Beyer, D.: First international competition on software testing (Test-Comp
2019). Int. J. Softw. Tools Technol. Transf. 23(6), 833–846 (December 2021).
https://doi.org/10.1007/s10009-021-00613-3

13. Beyer, D.: Status report on software testing: Test-Comp 2021.
In: Proc. FASE. pp. 341–357. LNCS 12649, Springer (2021).
https://doi.org/10.1007/978-3-030-71500-7_17

14. Beyer, D.: Advances in automatic software testing: Test-Comp
2022. In: Proc. FASE. pp. 321–335. LNCS 13241, Springer (2022).
https://doi.org/10.1007/978-3-030-99429-7_18

https://doi.org/10.1007/978-3-031-30826-0_18
https://doi.org/10.48550/arXiv.2012.11245
https://doi.org/10.1007/978-3-030-99429-7_19
https://doi.org/10.1007/978-3-030-79379-1_6
https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.1007/978-3-031-57259-3_20
https://doi.org/10.1007/978-3-031-66149-5_14
https://doi.org/10.1007/978-3-030-17502-3_1
https://doi.org/10.1007/978-3-642-36742-7_43
https://doi.org/10.1007/978-3-030-17502-3_11
https://doi.org/10.1007/978-3-030-45234-6_25
https://doi.org/10.1007/s10009-021-00613-3
https://doi.org/10.1007/978-3-030-71500-7_17
https://doi.org/10.1007/978-3-030-99429-7_18

Advances in Automatic Software Testing: Test-Comp 2025 15

15. Beyer, D.: Progress on software verification: SV-COMP 2022. In:
Proc. TACAS (2). pp. 375–402. LNCS 13244, Springer (2022).
https://doi.org/10.1007/978-3-030-99527-0_20

16. Beyer, D.: Software testing: 5th comparative evaluation: Test-Comp
2023. In: Proc. FASE. pp. 309–323. LNCS 13991, Springer (2023).
https://doi.org/10.1007/978-3-031-30826-0_17

17. Beyer, D.: Automatic testing of C programs: Test-Comp 2024. Springer (2024)
18. Beyer, D.: Find, use, and conserve tools for formal methods. In: Proc.

Festschrift Podelski 65th Birthday. Springer (2024), available online:
https://www.sosy-lab.org/research/pub/2024-Podelski65.Find_Use_and_Conserve_-
Tools_for_Formal_Methods.pdf

19. Beyer, D.: State of the art in software verification and witness validation: SV-
COMP 2024. In: Proc. TACAS (3). pp. 299–329. LNCS 14572, Springer (2024).
https://doi.org/10.1007/978-3-031-57256-2_15

20. Beyer, D.: FM-Tools Release 2.2: Data set of metadata about tools
for formal methods (SV-COMP 2025, Test-Comp 2025). Zenodo (2025).
https://doi.org/10.5281/zenodo.15055359

21. Beyer, D.: Results of the 7th Intl. Competition on Software Testing (Test-Comp 2025).
Zenodo (2025). https://doi.org/10.5281/zenodo.15034433

22. Beyer, D.: SV-Benchmarks: Benchmark set for software testing (Test-Comp 2025).
Zenodo (2025). https://doi.org/10.5281/zenodo.15034421

23. Beyer, D.: Test suites from test-generation tools (Test-Comp 2025). Zenodo (2025).
https://doi.org/10.5281/zenodo.15034431

24. Beyer, D., Chien, P.C., Jankola, M.: BenchCloud: A platform for scal-
able performance benchmarking. In: Proc. ASE. pp. 2386–2389. ACM (2024).
https://doi.org/10.1145/3691620.3695358

25. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Gener-
ating tests from counterexamples. In: Proc. ICSE. pp. 326–335. IEEE (2004).
https://doi.org/10.1109/ICSE.2004.1317455

26. Beyer, D., Hartmanns, A., Kordon, F.: TOOLympics Challenge 2023: Updates,
Results, Successes of the Formal-Methods Competitions. LNCS 14550, Springer
(2024). https://doi.org/10.1007/978-3-031-67695-6

27. Beyer, D., Jakobs, M.C.: CoVeriTest: Cooperative verifier-based
testing. In: Proc. FASE. pp. 389–408. LNCS 11424, Springer (2019).
https://doi.org/10.1007/978-3-030-16722-6_23

28. Beyer, D., Kanav, S.: CoVeriTeam: On-demand composition of cooperative ver-
ification systems. In: Proc. TACAS. pp. 561–579. LNCS 13243, Springer (2022).
https://doi.org/10.1007/978-3-030-99524-9_31

29. Beyer, D., Lemberger, T.: Software verification: Testing vs. model
checking. In: Proc. HVC. pp. 99–114. LNCS 10629, Springer (2017).
https://doi.org/10.1007/978-3-319-70389-3_7

30. Beyer, D., Lemberger, T.: TestCov: Robust test-suite execution and
coverage measurement. In: Proc. ASE. pp. 1074–1077. IEEE (2019).
https://doi.org/10.1109/ASE.2019.00105

31. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements
and solutions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019).
https://doi.org/10.1007/s10009-017-0469-y

32. Beyer, D., Wachowitz, H.: Coveriteam Release 1.2.1. Zenodo (2024).
https://doi.org/10.5281/zenodo.11193690

https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-031-30826-0_17
https://www.sosy-lab.org/research/pub/2024-Podelski65.Find_Use_and_Conserve_Tools_for_Formal_Methods.pdf
https://www.sosy-lab.org/research/pub/2024-Podelski65.Find_Use_and_Conserve_Tools_for_Formal_Methods.pdf
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.5281/zenodo.15055359
https://doi.org/10.5281/zenodo.15034433
https://doi.org/10.5281/zenodo.15034421
https://doi.org/10.5281/zenodo.15034431
https://doi.org/10.1145/3691620.3695358
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1007/978-3-031-67695-6
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1109/ASE.2019.00105
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.5281/zenodo.11193690

16 Dirk Beyer

33. Beyer, D., Wachowitz, H.: FM-Weck: Containerized execution of formal-
methods tools. In: Proc. FM. pp. 39–47. LNCS 14934, Springer (2024).
https://doi.org/10.1007/978-3-031-71177-0_3

34. Bürdek, J., Lochau, M., Bauregger, S., Holzer, A., von Rhein, A., Apel,
S., Beyer, D.: Facilitating reuse in multi-goal test-suite generation for soft-
ware product lines. In: Proc. FASE. pp. 84–99. LNCS 9033, Springer (2015).
https://doi.org/10.1007/978-3-662-46675-9_6

35. Cadar, C., Dunbar, D., Engler, D.R.: Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proc. OSDI. pp. 209–224.
USENIX Association (2008)

36. Cadar, C., Nowack, M.: Klee symbolic execution engine in 2019 (competition
contribution). Int. J. Softw. Tools Technol. Transf. 23(6), 867 – 870 (December
2021). https://doi.org/10.1007/s10009-020-00570-3

37. Chalupa, M., Novák, J., Strejček, J.: Symbiotic 8: Parallel and targeted test
generation (competition contribution). In: Proc. FASE. pp. 368–372. LNCS 12649,
Springer (2021). https://doi.org/10.1007/978-3-030-71500-7_20

38. Chalupa, M., Strejček, J., Vitovská, M.: Joint forces for mem-
ory safety checking. In: Proc. SPIN. pp. 115–132. Springer (2018).
https://doi.org/10.1007/978-3-319-94111-0_7

39. Cok, D.R., Déharbe, D., Weber, T.: The 2014 SMT competition. JSAT 9, 207–242
(2016)

40. Dutta, A., Maghareh, R., Jaffar, J., Godboley, S., Yu, X.L.: TracerX: Pruning
dynamic symbolic execution with deletion and weakest precondition interpolation
(competition contribution). In: Proc. FASE. pp. 320–325. LNCS 14573, Springer
(2024). https://doi.org/10.1007/978-3-031-57259-3_19

41. Fraser, G., Wotawa, F., Ammann, P.: Testing with model checkers: A survey. STVR
19(3), 215–261 (2009). https://doi.org/10.1002/stvr.402

42. Gadelha, M.Y., Ismail, H.I., Cordeiro, L.C.: Handling loops in bounded model
checking of C programs via k -induction. Int. J. Softw. Tools Technol. Transf. 19(1),
97–114 (February 2017). https://doi.org/10.1007/s10009-015-0407-9

43. Godefroid, P., Sen, K.: Combining model checking and testing.
In: Handbook of Model Checking, pp. 613–649. Springer (2018).
https://doi.org/10.1007/978-3-319-10575-8_19

44. Harman, M., Hu, L., Hierons, R.M., Wegener, J., Sthamer, H., Baresel, A., Roper,
M.: Testability transformation. IEEE Trans. Softw. Eng. 30(1), 3–16 (2004).
https://doi.org/10.1109/TSE.2004.1265732

45. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: How did you
specify your test suite. In: Proc. ASE. pp. 407–416. ACM (2010).
https://doi.org/10.1145/1858996.1859084

46. Jaffar, J., Murali, V., Navas, J.A., Santosa, A.E.: Tracer: A symbolic execution
tool for verification. In: Proc. CAV. pp. 758–766. LNCS 7358, Springer (2012).
https://doi.org/10.1007/978-3-642-31424-7_61

47. Jakobs, M.C., Richter, C.: CoVeriTest with adaptive time scheduling (compe-
tition contribution). In: Proc. FASE. pp. 358–362. LNCS 12649, Springer (2021).
https://doi.org/10.1007/978-3-030-71500-7_18

48. Jonáš, M., Strejček, J., Trtík, M.: Fizzer with local space fuzzing (competition
contribution). In: Proc. FASE. LNCS , Springer (2025)

49. Jonáš, M., Strejček, J., Trtík, M., Urban, L.: Fizzer: New gray-box fuzzer (compe-
tition contribution). In: Proc. FASE. pp. 309–313. LNCS 14573, Springer (2024).
https://doi.org/10.1007/978-3-031-57259-3_17

https://doi.org/10.1007/978-3-031-71177-0_3
https://doi.org/10.1007/978-3-662-46675-9_6
https://doi.org/10.1007/s10009-020-00570-3
https://doi.org/10.1007/978-3-030-71500-7_20
https://doi.org/10.1007/978-3-319-94111-0_7
https://doi.org/10.1007/978-3-031-57259-3_19
https://doi.org/10.1002/stvr.402
https://doi.org/10.1007/s10009-015-0407-9
https://doi.org/10.1007/978-3-319-10575-8_19
https://doi.org/10.1109/TSE.2004.1265732
https://doi.org/10.1145/1858996.1859084
https://doi.org/10.1007/978-3-642-31424-7_61
https://doi.org/10.1007/978-3-030-71500-7_18
https://doi.org/10.1007/978-3-031-57259-3_17

Advances in Automatic Software Testing: Test-Comp 2025 17

50. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394
(1976). https://doi.org/10.1145/360248.360252

51. Lemberger, T.: Plain random test generation with PRTest (competition contri-
bution). Int. J. Softw. Tools Technol. Transf. 23(6), 871–873 (December 2021).
https://doi.org/10.1007/s10009-020-00568-x

52. Marques, F., Santos, J.F., Santos, N., Adão, P.: Concolic execution for
webassembly (artifact). Dagstuhl Artifacts Series 8(2), 20:1–20:3 (2022).
https://doi.org/10.4230/DARTS.8.2.20

53. Misonizhnik, A., Morozov, S., Kostyukov, Y., Kalugin, V., Babushkin, A.,
Mordvinov, D., Ivanov, D.: KLEEF: Symbolic execution engine (competition
contribution). In: Proc. FASE. pp. 314–319. LNCS 14573, Springer (2024).
https://doi.org/10.1007/978-3-031-57259-3_18

54. Panichella, S., Gambi, A., Zampetti, F., Riccio, V.: SBST tool competition 2021. In:
Proc. SBST. pp. 20–27. IEEE (2021). https://doi.org/10.1109/SBST52555.2021.00011

55. Ruland, S., Lochau, M., Jakobs, M.C.: HybridTiger: Hybrid model checking
and domination-based partitioning for efficient multi-goal test-suite generation
(competition contribution). In: Proc. FASE. pp. 520–524. LNCS 12076, Springer
(2020). https://doi.org/10.1007/978-3-030-45234-6_26

56. Song, J., Alves-Foss, J.: The DARPA cyber grand challenge: A competi-
tor’s perspective, part 2. IEEE Security and Privacy 14(1), 76–81 (2016).
https://doi.org/10.1109/MSP.2016.14

57. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: A cross-community infrastructure
for logic solving. In: Proc. IJCAR, pp. 367–373. LNCS 8562, Springer (2014).
https://doi.org/10.1007/978-3-319-08587-6_28

58. Sutcliffe, G.: The CADE ATP system competition: CASC. AI Magazine 37(2),
99–101 (2016). https://doi.org/10.1609/aimag.v37i2.2620

59. Visser, W., Păsăreanu, C.S., Khurshid, S.: Test-input generation
with Java PathFinder. In: Proc. ISSTA. pp. 97–107. ACM (2004).
https://doi.org/10.1145/1007512.1007526

60. Wei, C., Wu, T., Menezes, R.S., Shmarov, F., Aljaafari, F., Godboley, S., Alshmrany,
K., de Freitas, R., Cordeiro, L.: Esbmc v7.7: Automating branch-coverage analysis
using CFG-based instrumentation and smt solving (competition contribution). In:
Proc. FASE. LNCS , Springer (2025)

61. Wendler, P., Beyer, D.: sosy-lab/benchexec: Release 3.29. Zenodo (2025).
https://doi.org/10.5281/zenodo.15007216

62. Zhang, G., Shuai, Z., Ma, K., Liu, K., Chen, Z., Wang, J.: FDSE: En-
hance symbolic execution by fuzzing-based pre-analysis (competition con-
tribution). In: Proc. FASE. pp. 304–308. LNCS 14573, Springer (2024).
https://doi.org/10.1007/978-3-031-57259-3_16

https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/s10009-020-00568-x
https://doi.org/10.4230/DARTS.8.2.20
https://doi.org/10.1007/978-3-031-57259-3_18
https://doi.org/10.1109/SBST52555.2021.00011
https://doi.org/10.1007/978-3-030-45234-6_26
https://doi.org/10.1109/MSP.2016.14
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1609/aimag.v37i2.2620
https://doi.org/10.1145/1007512.1007526
https://doi.org/10.5281/zenodo.15007216
https://doi.org/10.1007/978-3-031-57259-3_16

18 Dirk Beyer

Open Access. This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution, and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Advances in Automatic Software Testing: Test-Comp 2025

