Nacpa: Native Checking with
Parallel-Portfolio Analyses

(Competition Contribution)

Thomas Lemberger™ and Henrik Wachowitz

LMU Munich, Munich, Germany

Abstract. We present Nacpa, a meta-verifier based on parallel portfolio
and native compilation of backend verifiers. Nacpa does not implement
any software analyses itself, but uses the Java-based CPAcuecker as
off-the-shelf verification backend in different configurations; each called
as a separate, external process. To avoid the overhead of starting the
Java Virtual Machine multiple times and to improve the run time on
fast-to-solve tasks, we created a natively compiled version of CPAcHEckER
for Nacpa. Nacpa is a conceptually simple framework, yet proved to be
competitive in SV-COMP 2025.

1 Verification Approach

Nacpa is a meta-verifier for C that implements an efficient parallel portfolio
on the basis of an external verifier—currently CPACHECKER [1, 2] —with two
goals: (1) create a technologically simple parallel portfolio of different verifier
configurations, and (2) achieve faster startup times than CPACHECKER can achieve
in its default distribution that is based on the Java Virtual Machine (JVM).
Nacpa does not implement any new program analysis but delegates all analysis
tasks to the external verifier.

Parallel Portfolio. SV-COMP [3] gives verifiers a time limit of 900s CPU time
per task. This provides verifiers with a strong incentive not to run analyses
concurrently, but sequentially, so that CPU time is only used when beneficial.
But verifiers employing a sequential portfolio of analyses—like CPACHECKER
before version 4.0—have a practical problem: The analyses are executed in a
fixed sequence and the analysis that can successfully solve a verification task
may be scheduled late in that sequence. This means that it can take a significant
amount of time to solve an otherwise fast-to-solve verification task. While this
approach is valid for SV-COMP, where it—in essence—only matters that a result
is produced within the CPU time limit, it is not a good day-to-day experience
for users and makes debugging difficult.

Nacpa addresses this issue by executing all analyses in parallel. Figure 1 shows
the workflow of Nacpa. After receiving a program P and a specification ¢, Nacpa
first extracts features from the program under verification by calling CPACHECKER


https://orcid.org/0000-0003-0291-815X
https://orcid.org/0000-0002-4768-4054

CPAchecker
7| Process 1
First
Feature Portfolio . verdict
Extraction Selection : takes
it all
CPAchecker
Process n

Fig. 1: Workflow of Nacpa

with a configuration [2,4] that extracts and outputs these features. Based on
the features, Nacpa selects one of multiple pre-defined analysis portfolios (each
analysis portfolio is a set of configurations together with a wall-time limit). For
each analysis in the selected portfolio, Nacpa launches a separate verifier process.
The first process that finishes with a verdict of TRUE or FALSE wins, and Nacpa
reports this verdict. If all processes finish with UNKNOWN, Nacpa returns UNKNOWN.
While Nacpa currently only calls CPAcHECKER and no other verifiers, we use
CPACHECKER as-is and call it as an external process. Because of this, we are
certain that this external parallelization generalizes well to other verifiers.

Faster Startup Time. Many successful verifiers are implemented in Java [2,5-§].
But setting up the JVM, loading all the classes and starting the verifier can
take several seconds [9]. Multiplying this overhead by the number of analyses in
the portfolio can lead to a significant overhead. To improve on this, we compile
CPACHECKER to a native executable with Oracle GraalVM. This not only reduces
the overhead of the parallel portfolio but also significantly improves the run time
for fast-to-solve tasks, compared to the traditional CPACHECKER.

2 Software Architecture

Nacpa 1.0 leverages CPACHECKER (revision b24a0863) as verification backend. We
use Oracle GraalVM 22.0.1 to compile this revision of CPACHECKER to a native
executable. The native executable is bundled with the necessary third-party
Libraries, e.g., MathSAT 5, and the necessary configurations for Nacpa.

Nacpa itself is written in Go because it has parallelization directives built into
the language and compiles to a statically linked executable with low overhead.

Portfolio Selection. Nacpa uses seven hard-coded portfolios. The configurations
of these portfolios are taken from CPAcHECKER and are semantically equivalent to
the configurations used by CPAcHECKER in SV-COMP 2025, with two exceptions:
(1) we discard almost all time limits (see below) and (2) if the program contains
recursive function calls or concurrency features (pthread_create), we add configu-
rations for recursive and concurrent programs to the selected portfolio. This is
different from CPAcHECKER’s SV-COMP submission, which starts with analyses
that do not support recursion or concurrency, and only switches to supporting



configurations when the original analyses fail because one of these features is
encountered. Compared to CPAcHECKER, Nacpa’s approach to recursion and
concurrency is simpler, but solves the same number of tasks.

Managing the Portfolio. Nacpa starts a separate process for each analysis.
Nacpa then simultaneously waits on all processes to finish. Whenever a process
finishes, Nacpa parses the produced console output for the reported verdict.
If the run did not crash and the verdict is TRUE or FALSE, Nacpa terminates
all remaining processes and reports this verdict to the user. Otherwise, Nacpa
continues to wait on the remaining processes.

Resource Limits. To enforce time limits on the individual analysis runs, we rely
on Go’s internal process management. Nacpa runs most analyses without any
time limit. There are two exceptions: data-flow analysis and symbolic execution
are limited to only a few seconds of runtime each (5s and 10s, respectively),
because these analyses only help on fast-to-solve tasks. Nacpa does not enforce
any memory limits on the individual analysis runs. As soon as one analysis runs
into the SV-COMP memory limit, Nacpa dies.

Native Compilation. Compiling a large project like CPACHECKER to a native
binary poses several challenges [9]. The biggest challenge for Nacpa is the extensive
use of Java reflection in CPAcuEckER: When GraalVM builds the native binary,
it only includes classes that are reachable from the program entry. It is not able to
derive classes that are reached through code reflection, and these will miss during
run time. To avoid this we need to tell GraalVM about them when starting the
compilation process. We contribute a build script that collects this reflection
information from exemplary CPACHECKER runs.

3 Strengths and Weaknesses

Regarding its analysis, Nacpa fully depends on CPAcuecCKER [2] and shares all
strengths and weaknesses. The parallel portfolio and native compilation introduce

some additional strengths and weaknesses.
900 4

Strengths. The parallel portfolio of Nacpa
is conceptually simple, with the implementa-
tion consisting of less than 800 lines of source
code. Nacpa is also conceptually independent
of CPAcHECKER. It implements a parallel port-
folio that is independent of CPACHECKER’S in-
ternal parallel portfolio. Other verifiers can be o ; ‘ ‘
used in the backend by adding the command- ' 4210 100 900
line to call to Nacpa and adjusting the verdict CPACHECKER CPU Time (s)
parsing for the new output. Fig. 2:

Specific to CPAcHECKER, Nacpa signifi-
cantly speeds up the analysis for fast-to-solve
verification tasks (similar to the speed up CPA-
Daemon provides with its native backend [9]).

—
=)
S

—
5]
!

Nacpa CPU Time (s)

Comparison of the
CPU-time seconds spent by
CPAcuecker and Nacpa for
each solved task



Figure 2 shows the CPU time seconds that CPAcHEckER (x-axis) and Nacpa (y-
axis) require for each verification task in SV-COMP 2025 [3]|. The plot only shows
data for tasks that both CPAcuEckER and Nacpa solved correctly. Each data point
below the diagonal represents a task for that Nacpa is faster than CPACHECKER,
and each data point above the diagonal represents a task for that CPACHECKER
is faster than Nacpa. The plot shows that Nacpa is significantly faster than
CPACcHECKER for a large number of tasks. Nacpa’s fastest correct verification
run (0.11s CPU time) is a magnitude faster than CPAcueckeRr’s (4.2s CPU time).

On a small number of tasks, Nacpa’s different configuration of parallel-portfolio
strategies leads to some better verification results than CPAcuECKER: Nacpa
solves 120 tasks in SV-COMP 2025 that CPAcHECKER can not solve. This accounts
for 0.5 % of all tasks that Nacpa solved correctly.

Weaknesses. Because Nacpa splits its strategies into separate processes, the
exchange of information is more difficult than in a multi-threaded approach like
CPACHECKER’s internal parallel portfolio. For example, each analysis run that
Nacpa starts parses the program on its own, while CPACHECKER’s internal parallel
portfolio only parses the program once for all analyses. But we observe that this
redundant program parsing has no significant negative effect in SV-COMP.

In contrast, the native compilation of CPACHECKER sometimes has strong
disadvantages: While it starts significantly faster than traditional CPACHECKER,
it does not provide a just-in-time compiler. For some tasks, this leads to worse
performance than the JVM provides (cf. our experiments with CPA-Daemon [9]).
We can see outliers above the diagonal in Fig. 2. For these tasks, Nacpa is signifi-
cantly slower than CPAcHECKER. This, together with the different configuration
of parallel-portfolio strategies, leads to some worse verification results [3] than
CPACHECKER: CPACHECKER solves 446 tasks in SV-COMP 2025 that Nacpa can
not solve. This accounts for 2% of all tasks that CPAcHECKER solved correctly.

4 Setup and Configuration

Nacpa 1.0, the version used for SV-COMP 2025, is shipped as a statically linked bi-
nary and with a CPAcHECKER version natively compiled for Ubuntu 24.04 on x86.

Installation. The Nacpa 1.0 distribution is available on Zenodo [10]. The easiest
way to install Nacpa is through fm-weck [11]. The following command installs
Nacpa into a new directory called nacpa/:

pipx run fm-weck install -d nacpa/ nacpa:1.0
Use. To run Nacpa on program prog.c with program property spec.prp and
data-model ILP32, execute from the directory where Nacpa is installed:
./bin/nacpa --spec spec.prp --data-model ILP32 prog.c
Nacpa requires the program-under-verification to be preprocessed. Nacpa supports
the data-models ILP32 and LP64 and all SV-COMP properties.

Project Information. Nacpa participates in all categories of SV-COMP. It is
maintained by Henrik Wachowitz and Thomas Lemberger at LMU Munich.



Data-Availability Statement. The source code of Nacpa is available at https:
//gitlab.com/sosy-1lab/software/nacpa and the version used in SV-COMP 2025 is
archived at Zenodo [10]. Nacpa is licensed under Apache-2.0.

Funding Statement. This project was funded in part by the Deutsche Forschungs
gemeinschaft (DFG) — 378803395 (ConVeY).

References

10.

11.

. Beyer, D., Keremoglu, M.E.:. CPACHECKER: A tool for configurable software

verification. In: Proc. CAV. pp. 184-190. LNCS 6806, Springer (2011). https:
//doi.org/10.1007/978-3-642-22110-1_16

Baier, D., Beyer, D., Chien, P.C., Jankola, M., Kettl, M., Lee, N.Z., Lemberger, T.,
Lingsch-Rosenfeld, M., Spiessl, M., Wachowitz, H., Wendler, P.. CPACHECKER 2.3
with strategy selection (competition contribution). In: Proc. TACAS (3). pp. 359-
364. LNCS 14572, Springer (2024). https://doi.org/10.1007/978-3-031-57256-2_
21

Beyer, D., Strejcek, J.: Improvements in software verification and witness validation:
SV-COMP 2025. In: Proc. TACAS. LNCS, Springer (2025)

Beyer, D., Dangl, M.: Strategy selection for software verification based on
boolean features: A simple but effective approach. In: Proc. ISoLA. pp. 144-159.
LNCS 11245, Springer (2018). https://doi.org/10.1007/978-3-030-03421-4_11,
https://www.sosy-1lab.org/research/pub/2018-ISolLA.Strategy_Selection_for_
Software_Verification_Based_on_Boolean_Features.pdf

Heizmann, M., Bentele, M., Dietsch, D., Jiang, X., Klumpp, D., Schiissele, F., Podel-
ski, A.: Ultimate automizer and the abstraction of bitwise operations (competition
contribution). In: Proc. TACAS (3). pp. 418-423. LNCS 14572, Springer (2024).
https://doi.org/10.1007/978-3-031-57256-2_31

Dietsch, D., Heizmann, M., Klumpp, D., Schiissele, F., Podelski, A.: ULTIMATE
TAIPAN 2023 (competition contribution). In: Proc. TACAS (2). pp. 582-587.
LNCS 13994, Springer (2023). https://doi.org/10.1007/978-3-031-30820-8_40
Klumpp, D., Dietsch, D., Heizmann, M., Schiissele, F., Ebbinghaus, M., Farzan, A.,
Podelski, A.: ULTIMATE GEMCUTTER and the axes of generalization (competition
contribution). In: Proc. TACAS (2). pp. 479-483. LNCS 13244, Springer (2022).
https://doi.org/10.1007/978-3-030-99527-0_35

Leeson, W., Dwyer, M.: GRAVES-CPA: A graph-attention verifier selector (com-
petition contribution). In: Proc. TACAS (2). pp. 440-445. LNCS 13244, Springer
(2022). https://doi.org/10.1007/978-3-030-99527-0_28

Beyer, D., Lemberger, T., Wachowitz, H.: CPA-Daemon: Mitigating tool restarts
for Java-based verifiers. In: Proc. ATVA. Springer (2024)

Lemberger, T., Wachowitz, H.: Nacpa release 1.0. Zenodo (2024). https://doi.org/
10.5281/zenodo. 14203473

Beyer, D., Wachowitz, H.: FM-WECK: Containerized execution of formal-methods
tools. In: Proc. FM. LNCS 14934, Springer (2024). https://doi.org/10.1007/
978-3-031-71177-0_3


https://gitlab.com/sosy-lab/software/nacpa
https://gitlab.com/sosy-lab/software/nacpa
http://gepris.dfg.de/gepris/projekt/378803395
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-031-57256-2_21
https://doi.org/10.1007/978-3-031-57256-2_21
https://doi.org/10.1007/978-3-031-57256-2_21
https://doi.org/10.1007/978-3-031-57256-2_21
https://doi.org/10.1007/978-3-030-03421-4_11
https://doi.org/10.1007/978-3-030-03421-4_11
https://www.sosy-lab.org/research/pub/2018-ISoLA.Strategy_Selection_for_Software_Verification_Based_on_Boolean_Features.pdf
https://www.sosy-lab.org/research/pub/2018-ISoLA.Strategy_Selection_for_Software_Verification_Based_on_Boolean_Features.pdf
https://doi.org/10.1007/978-3-031-57256-2_31
https://doi.org/10.1007/978-3-031-57256-2_31
https://doi.org/10.1007/978-3-031-30820-8_40
https://doi.org/10.1007/978-3-031-30820-8_40
https://doi.org/10.1007/978-3-030-99527-0_35
https://doi.org/10.1007/978-3-030-99527-0_35
https://doi.org/10.1007/978-3-030-99527-0_28
https://doi.org/10.1007/978-3-030-99527-0_28
https://doi.org/10.5281/zenodo.14203473
https://doi.org/10.5281/zenodo.14203473
https://doi.org/10.5281/zenodo.14203473
https://doi.org/10.5281/zenodo.14203473
https://doi.org/10.1007/978-3-031-71177-0_3
https://doi.org/10.1007/978-3-031-71177-0_3
https://doi.org/10.1007/978-3-031-71177-0_3
https://doi.org/10.1007/978-3-031-71177-0_3

	 Nacpa: Native Checking with Parallel-Portfolio Analyses 

