Publications of year 2020
Books and proceedings
-
Proceedings of the 21st International Conference on
Verification, Model Checking, and Abstract Interpretation
(VMCAI).
LNCS 11990,
2020.
Springer.
doi:10.1007/978-3-030-39322-9
Publisher's Version
PDF
Supplement
BibTeX Entry
@proceedings{VMCAI20, title = {Proceedings of the 21st International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI)}, editor = {Dirk Beyer and Damien Zufferey}, year = {2020}, series = {LNCS~11990}, publisher = {Springer}, isbn = {978-3-030-39321-2}, doi = {10.1007/978-3-030-39322-9}, sha256 = {}, url = {https://popl20.sigplan.org/home/VMCAI-2020}, pdf = {https://doi.org/10.1007/978-3-030-39322-9}, }
Articles in journal or book chapters
-
Tools for the Construction and Analysis of Systems (Intro).
International Journal on Software Tools for Technology Transfer (STTT), 22(6):685-687,
2020.
doi:10.1007/s10009-020-00581-0
Publisher's Version
PDF
BibTeX Entry
@article{Intro-TACAS18-STTT, author = {Dirk Beyer and Marieke Huisman}, title = {Tools for the Construction and Analysis of Systems (Intro)}, journal = {International Journal on Software Tools for Technology Transfer (STTT)}, volume = {22}, number = {6}, pages = {685-687}, year = {2020}, doi = {10.1007/s10009-020-00581-0}, sha256 = {467e6c9c70fd0c0728a8abed5d9162a1467a906e79d367a8a44dd102e8dc0de6}, url = {}, pdf = {}, presentation = {}, abstract = {}, keyword = {}, issn = {1433-2787}, } -
Selected and Extended Papers from TACAS 2018: Preface.
Journal of Automated Reasoning, 64(7):1331-1332,
2020.
doi:10.1007/s10817-020-09575-8
Publisher's Version
PDF
BibTeX Entry
@article{Intro-TACAS18-JAR, author = {Dirk Beyer and Marieke Huisman}, title = {Selected and Extended Papers from {TACAS} 2018: Preface}, journal = {Journal of Automated Reasoning}, volume = {64}, number = {7}, pages = {1331-1332}, year = {2020}, doi = {10.1007/s10817-020-09575-8}, sha256 = {252d10dfb4cd4c93db83e431938420d0927be076e598c176db1ea85514a5ba0a}, url = {}, pdf = {}, presentation = {}, abstract = {}, keyword = {}, } -
A Complete Approach to Loop Verification with Invariants and Summaries.
arXiv preprint arXiv:2010.05812,
2020.
BibTeX Entry
@article{ernst:loops2020, author = {Gidon Ernst}, title = {A Complete Approach to Loop Verification with Invariants and Summaries}, journal = {arXiv preprint arXiv:2010.05812}, year = {2020}, } -
Plain random test generation with PRTest.
International Journal on Software Tools for Technology Transfer (STTT),
2020.
Springer.
doi:10.1007/s10009-020-00568-x
Keyword(s):
Software Testing
Publisher's Version
PDF
Presentation
Abstract
Automatic test-suite generation tools are often complex and their behavior is not predictable. To provide a minimum baseline that test-suite generators should be able to surpass, we present PRTest, a random black-box test-suite generator for C programs: To create a test, PRTest natively executes the program under test and creates a new, random test value whenever an input value is required. After execution, PRTest checks whether any new program branches were covered and, if this is the case, the created test is added to the test suite. This way, tests are rapidly created either until a crash is found, or until the user aborts the creation. While this naive mechanism is not competitive with more sophisticated, state-of-the-art test-suite generation tools, it is able to provide a good baseline for Test-Comp and a fast alternative for automatic test-suite generation for programs with simple control flow. PRTest is publicly available and open source.BibTeX Entry
@article{PRTEST19, author = {Thomas Lemberger}, title = {Plain random test generation with {PRTest}}, journal = {International Journal on Software Tools for Technology Transfer (STTT)}, volume = {}, number = {}, pages = {}, year = {2020}, publisher = {Springer}, doi = {10.1007/s10009-020-00568-x}, sha256 = {2e5ae7091b6adb758c123dfe62d3fab57203f930883539beb20f6e91391ebc77}, pdf = {https://www.sosy-lab.org/research/pub/2020-STTT.Plain_random_test_generation_with_PRTest.pdf}, presentation = {https://www.sosy-lab.org/research/prs/2019-04-06_TestComp19_PRTest_Thomas.pdf}, abstract = {Automatic test-suite generation tools are often complex and their behavior is not predictable. To provide a minimum baseline that test-suite generators should be able to surpass, we present PRTest, a random black-box test-suite generator for C programs: To create a test, PRTest natively executes the program under test and creates a new, random test value whenever an input value is required. After execution, PRTest checks whether any new program branches were covered and, if this is the case, the created test is added to the test suite. This way, tests are rapidly created either until a crash is found, or until the user aborts the creation. While this naive mechanism is not competitive with more sophisticated, state-of-the-art test-suite generation tools, it is able to provide a good baseline for Test-Comp and a fast alternative for automatic test-suite generation for programs with simple control flow. PRTest is publicly available and open source.}, keyword = {Software Testing}, annote = {Publication appeared first online in July 2020.<BR/> PRTest is available at <a href="https://gitlab.com/sosy-lab/software/prtest"> https://gitlab.com/sosy-lab/software/prtest</a>}, }Additional Infos
Publication appeared first online in July 2020.
PRTest is available at https://gitlab.com/sosy-lab/software/prtest -
Rigorous engineering of collective adaptive systems: special section.
Int. J. Softw. Tools Technol. Transf., 22(4):389-397,
2020.
doi:10.1007/s10009-020-00565-0
Publisher's Version
PDF
BibTeX Entry
@article{DBLP:journals/sttt/NicolaJW20, author = {Rocco De Nicola and Stefan J{\"{a}}hnichen and Martin Wirsing}, title = {Rigorous engineering of collective adaptive systems: special section}, journal = {Int. J. Softw. Tools Technol. Transf.}, volume = {22}, number = {4}, pages = {389--397}, year = {2020}, doi = {10.1007/s10009-020-00565-0}, }
Articles in conference or workshop proceedings
-
Domain-Independent Interprocedural Program Analysis using Block-Abstraction Memoization.
In P. Devanbu,
M. Cohen, and
T. Zimmermann, editors,
Proceedings of the 28th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE 2020, Virtual Event, USA, November 8-13),
pages 50-62,
2020.
ACM.
doi:10.1145/3368089.3409718
Keyword(s):
CPAchecker,
Software Model Checking
Funding:
DFG-CONVEY
Publisher's Version
PDF
Supplement
Artifact(s)
BibTeX Entry
@inproceedings{FSE20, author = {Dirk Beyer and Karlheinz Friedberger}, title = {Domain-Independent Interprocedural Program Analysis using Block-Abstraction Memoization}, booktitle = {Proceedings of the 28th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE~2020, Virtual Event, USA, November 8-13)}, editor = {P.~Devanbu and M.~Cohen and T.~Zimmermann}, pages = {50-62}, year = {2020}, publisher = {ACM}, doi = {10.1145/3368089.3409718}, url = {https://cpachecker.sosy-lab.org}, keyword = {CPAchecker,Software Model Checking}, _sha256 = {36dc2a423425ee8bec03f0f4073e04f9121d299cc475e27190828e8276e00cb8}, artifact = {10.5281/zenodo.4024268}, funding = {DFG-CONVEY}, fundingid = {378803395}, } -
Violation Witnesses and Result Validation for Multi-Threaded Programs.
In T. Margaria and
B. Steffen, editors,
Proceedings of the 9th International Symposium on
Leveraging Applications of Formal Methods, Verification, and Validation
(ISoLA 2020, Rhodos, Greece, October 26-30), part 1,
LNCS 12476,
pages 449-470,
2020.
Springer.
doi:10.1007/978-3-030-61362-4_26
Keyword(s):
CPAchecker,
Software Model Checking,
Witness-Based Validation,
Witness-Based Validation (main)
Funding:
DFG-CONVEY
Publisher's Version
PDF
Presentation
Supplement
BibTeX Entry
@inproceedings{ISoLA20c, author = {Dirk Beyer and Karlheinz Friedberger}, title = {Violation Witnesses and Result Validation for Multi-Threaded Programs}, booktitle = {Proceedings of the 9th International Symposium on Leveraging Applications of Formal Methods, Verification, and Validation (ISoLA~2020, Rhodos, Greece, October 26-30), part~1}, editor = {T.~Margaria and B.~Steffen}, pages = {449-470}, year = {2020}, series = {LNCS~12476}, publisher = {Springer}, doi = {10.1007/978-3-030-61362-4_26}, sha256 = {65fc5325c4e77a80d8e47f9c0e7f0ac02379bfa15dcd9fb54d6587185b8efd77}, url = {https://www.sosy-lab.org/research/witnesses-concurrency/}, presentation = {https://www.sosy-lab.org/research/prs/2021-10-25_ISOLA21_ValidationMultiThreaded_Dirk.pdf}, abstract = {}, keyword = {CPAchecker,Software Model Checking,Witness-Based Validation,Witness-Based Validation (main)}, funding = {DFG-CONVEY}, } -
An Interface Theory for Program Verification.
In T. Margaria and
B. Steffen, editors,
Proceedings of the 9th International Symposium on
Leveraging Applications of Formal Methods, Verification, and Validation
(ISoLA 2020, Rhodos, Greece, October 26-30), part 1,
LNCS 12476,
pages 168-186,
2020.
Springer.
doi:10.1007/978-3-030-61362-4_9
Keyword(s):
CPAchecker,
Software Model Checking,
Interfaces for Component-Based Design
Funding:
DFG-CONVEY
Publisher's Version
PDF
Presentation
BibTeX Entry
@inproceedings{ISoLA20b, author = {Dirk Beyer and Sudeep Kanav}, title = {An Interface Theory for Program Verification}, booktitle = {Proceedings of the 9th International Symposium on Leveraging Applications of Formal Methods, Verification, and Validation (ISoLA~2020, Rhodos, Greece, October 26-30), part~1}, editor = {T.~Margaria and B.~Steffen}, pages = {168-186}, year = {2020}, series = {LNCS~12476}, publisher = {Springer}, doi = {10.1007/978-3-030-61362-4_9}, sha256 = {f15159da0e648a25e57c769639c989e68cd3407bfad10db5ee1dc25e1d2fd672}, url = {}, presentation = {https://www.sosy-lab.org/research/prs/2021-10-29_ISOLA21_VerificationInterfaces_Dirk.pdf}, abstract = {}, keyword = {CPAchecker,Software Model Checking,Interfaces for Component-Based Design}, funding = {DFG-CONVEY}, } -
Verification Artifacts in Cooperative Verification: Survey and Unifying Component Framework.
In T. Margaria and
B. Steffen, editors,
Proceedings of the 9th International Symposium on
Leveraging Applications of Formal Methods, Verification, and Validation
(ISoLA 2020, Rhodos, Greece, October 26-30), part 1,
LNCS 12476,
pages 143-167,
2020.
Springer.
doi:10.1007/978-3-030-61362-4_8
Keyword(s):
Software Model Checking,
Cooperative Verification
Funding:
DFG-COOP
Publisher's Version
PDF
Presentation
BibTeX Entry
@inproceedings{ISoLA20a, author = {Dirk Beyer and Heike Wehrheim}, title = {Verification Artifacts in Cooperative Verification: Survey and Unifying Component Framework}, booktitle = {Proceedings of the 9th International Symposium on Leveraging Applications of Formal Methods, Verification, and Validation (ISoLA~2020, Rhodos, Greece, October 26-30), part~1}, editor = {T.~Margaria and B.~Steffen}, pages = {143-167}, year = {2020}, series = {LNCS~12476}, publisher = {Springer}, doi = {10.1007/978-3-030-61362-4_8}, sha256 = {86dbfb5ee4875582566bdb5d44750cc935614c11c09627295cc3ff123115a75b}, url = {}, presentation = {https://www.sosy-lab.org/research/prs/2021-10-29_ISOLA21_VerificationArtifacts_Dirk.pdf}, abstract = {}, keyword = {Software Model Checking,Cooperative Verification}, funding = {DFG-COOP}, fundingid = {418257054}, } -
Difference Verification with Conditions.
In F. d. Boer and
A. Cerone, editors,
Proceedings of the 18th International Conference on
Software Engineering and Formal Methods (SEFM 2020, Virtual, Netherlands, September 14-18),
LNCS 12310,
pages 133-154,
2020.
Springer.
doi:10.1007/978-3-030-58768-0_8
Keyword(s):
CPAchecker,
Software Model Checking
Funding:
DFG-COOP,
DFG-CONVEY
Publisher's Version
PDF
Presentation
Video
Supplement
Abstract
Modern software-verification tools need to support development processes that involve frequent changes. Existing approaches for incremental verification hard-code specific verification techniques. Some of the approaches must be tightly intertwined with the development process. To solve this open problem, we present the concept of difference verification with conditions. Difference verification with conditions is independent from any specific verification technique and can be integrated in software projects at any time. It first applies a change analysis that detects which parts of a software were changed between revisions and encodes that information in a condition. Based on this condition, an off-the-shelf verifier is used to verify only those parts of the software that are influenced by the changes. As a proof of concept, we propose a simple, syntax-based change analysis and use difference verification with conditions with three off-the-shelf verifiers. An extensive evaluation shows the competitiveness of difference verification with conditions.BibTeX Entry
@inproceedings{SEFM20b, author = {Dirk Beyer and Marie-Christine Jakobs and Thomas Lemberger}, title = {Difference Verification with Conditions}, booktitle = {Proceedings of the 18th International Conference on Software Engineering and Formal Methods (SEFM~2020, Virtual, Netherlands, September 14-18)}, editor = {F.~d.~Boer and A.~Cerone}, pages = {133--154}, year = {2020}, series = {LNCS~12310}, publisher = {Springer}, doi = {10.1007/978-3-030-58768-0_8}, sha256 = {8e5219da9a998b26f59013c809fbb1db6f92e3f08125fa1bfaacafcfafafef7f}, url = {https://www.sosy-lab.org/research/difference/}, presentation = {https://www.sosy-lab.org/research/prs/2020-09-17_SEFM20_DifferenceVerificationWithConditions_Thomas.pdf}, abstract = {Modern software-verification tools need to support development processes that involve frequent changes. Existing approaches for incremental verification hard-code specific verification techniques. Some of the approaches must be tightly intertwined with the development process. To solve this open problem, we present the concept of difference verification with conditions. Difference verification with conditions is independent from any specific verification technique and can be integrated in software projects at any time. It first applies a change analysis that detects which parts of a software were changed between revisions and encodes that information in a condition. Based on this condition, an off-the-shelf verifier is used to verify only those parts of the software that are influenced by the changes. As a proof of concept, we propose a simple, syntax-based change analysis and use difference verification with conditions with three off-the-shelf verifiers. An extensive evaluation shows the competitiveness of difference verification with conditions.}, keyword = {CPAchecker,Software Model Checking}, funding = {DFG-COOP,DFG-CONVEY}, isbnnote = {}, video = {https://youtu.be/dG02602c9oo}, } -
FRed: Conditional Model Checking via Reducers and Folders.
In F. d. Boer and
A. Cerone, editors,
Proceedings of the 18th International Conference on
Software Engineering and Formal Methods (SEFM 2020, Virtual, Netherlands, September 14-18),
LNCS 12310,
pages 113-132,
2020.
Springer.
doi:10.1007/978-3-030-58768-0_7
Keyword(s):
CPAchecker,
Software Model Checking
Funding:
DFG-COOP
Publisher's Version
PDF
Supplement
BibTeX Entry
@inproceedings{SEFM20a, author = {Dirk Beyer and Marie-Christine Jakobs}, title = {{{\sc FRed}}: {C}onditional Model Checking via Reducers and Folders}, booktitle = {Proceedings of the 18th International Conference on Software Engineering and Formal Methods (SEFM~2020, Virtual, Netherlands, September 14-18)}, editor = {F.~d.~Boer and A.~Cerone}, pages = {113--132}, year = {2020}, series = {LNCS~12310}, publisher = {Springer}, doi = {10.1007/978-3-030-58768-0_7}, sha256 = {0ce35cbde24d7a9de0513b89f23a81147bf4f8d5880effd57742c7f195e0eeec}, url = {https://www.sosy-lab.org/research/fred/}, abstract = {}, keyword = {CPAchecker,Software Model Checking}, funding = {DFG-COOP}, isbnnote = {}, } -
MetaVal: Witness Validation via Verification.
In S. K. Lahiri and
C. Wang, editors,
Proceedings of the 32nd International Conference on
Computer Aided Verification (CAV 2020, Virtual, USA, July 21-24), part 2,
LNCS 12225,
pages 165-177,
2020.
Springer.
doi:10.1007/978-3-030-53291-8_10
Keyword(s):
CPAchecker,
Software Model Checking,
Witness-Based Validation,
Witness-Based Validation (main)
Funding:
DFG-CONVEY
Publisher's Version
PDF
Supplement
BibTeX Entry
@inproceedings{CAV20, author = {Dirk Beyer and Martin Spiessl}, title = {MetaVal: {W}itness Validation via Verification}, booktitle = {Proceedings of the 32nd International Conference on Computer Aided Verification (CAV~2020, Virtual, USA, July 21-24), part 2}, editor = {S.~K.~Lahiri and C.~Wang}, pages = {165-177}, year = {2020}, series = {LNCS~12225}, publisher = {Springer}, doi = {10.1007/978-3-030-53291-8_10}, sha256 = {7431085a248c7e2cab70318096622ff19ce1124067158d08866d3f9b250df44e}, url = {https://gitlab.com/sosy-lab/software/metaval}, abstract = {}, keyword = {CPAchecker,Software Model Checking,Witness-Based Validation,Witness-Based Validation (main)}, funding = {DFG-CONVEY}, isbnnote = {978-3-030-53290-1}, } -
Advances in Automatic Software Verification: SV-COMP 2020.
In Proceedings of the 26th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2020, Dublin, Ireland, April 25-30), part 2,
LNCS 12079,
pages 347-367,
2020.
Springer.
doi:10.1007/978-3-030-45237-7_21
Keyword(s):
Competition on Software Verification (SV-COMP),
Competition on Software Verification (SV-COMP Report),
Software Model Checking
Publisher's Version
PDF
Supplement
Artifact(s)
BibTeX Entry
@inproceedings{TACAS20c, author = {Dirk Beyer}, title = {Advances in Automatic Software Verification: {SV-COMP 2020}}, booktitle = {Proceedings of the 26th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS~2020, Dublin, Ireland, April 25-30), part 2}, pages = {347-367}, year = {2020}, series = {LNCS~12079}, publisher = {Springer}, doi = {10.1007/978-3-030-45237-7_21}, sha256 = {2a0cc56934c8fb6d100039b527e8c09f421ca351e4c90ec531aa2accb04504c6}, url = {https://sv-comp.sosy-lab.org/2020/}, abstract = {}, keyword = {Competition on Software Verification (SV-COMP),Competition on Software Verification (SV-COMP Report),Software Model Checking}, artifact1 = {10.5281/zenodo.3633334}, artifact2 = {10.5281/zenodo.3630205}, artifact3 = {10.5281/zenodo.3630188}, artifact4 = {10.5281/zenodo.3574420}, } -
CPU Energy Meter: A Tool for Energy-Aware Algorithms Engineering.
In Proceedings of the 26th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2020, Dublin, Ireland, April 25-30), part 2,
LNCS 12079,
pages 126-133,
2020.
Springer.
doi:10.1007/978-3-030-45237-7_8
Keyword(s):
Benchmarking
Publisher's Version
PDF
Presentation
Video
Supplement
Abstract
Verification algorithms are among the most resource-intensive computation tasks. Saving energy is important for our living environment and to save cost in data centers. Yet, researchers compare the efficiency of algorithms still in terms of consumption of CPU time (or even wall time). Perhaps one reason for this is that measuring energy consumption of computational processes is not as convenient as measuring the consumed time and there is no sufficient tool support. To close this gap, we contribute CPU Energy Meter, a small tool that takes care of reading the energy values that Intel CPUs track inside the chip. In order to make energy measurements as easy as possible, we integrated CPU Energy Meter into BenchExec, a benchmarking tool that is already used by many researchers and competitions in the domain of formal methods. As evidence for usefulness, we explored the energy consumption of some state-of-the-art verifiers and report some interesting insights, for example, that energy consumption is not necessarily correlated with CPU time.BibTeX Entry
@inproceedings{TACAS20b, author = {Dirk Beyer and Philipp Wendler}, title = {CPU Energy Meter: A Tool for Energy-Aware Algorithms Engineering}, booktitle = {Proceedings of the 26th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS~2020, Dublin, Ireland, April 25-30), part 2}, pages = {126-133}, year = {2020}, series = {LNCS~12079}, publisher = {Springer}, doi = {10.1007/978-3-030-45237-7_8}, sha256 = {c5c8ad06f4b192e61799469a8fc6ca4661714aa2945e0ce07363a376ff06dcd7}, url = {https://www.sosy-lab.org/research/energy-measurement/}, presentation = {https://www.sosy-lab.org/research/prs/2021-03-31_TACAS20_CPU-Energy-Meter_Dirk.pdf}, abstract = {Verification algorithms are among the most resource-intensive computation tasks. Saving energy is important for our living environment and to save cost in data centers. Yet, researchers compare the efficiency of algorithms still in terms of consumption of CPU time (or even wall time). Perhaps one reason for this is that measuring energy consumption of computational processes is not as convenient as measuring the consumed time and there is no sufficient tool support. To close this gap, we contribute CPU Energy Meter, a small tool that takes care of reading the energy values that Intel CPUs track inside the chip. In order to make energy measurements as easy as possible, we integrated CPU Energy Meter into BenchExec, a benchmarking tool that is already used by many researchers and competitions in the domain of formal methods. As evidence for usefulness, we explored the energy consumption of some state-of-the-art verifiers and report some interesting insights, for example, that energy consumption is not necessarily correlated with CPU time.}, keyword = {Benchmarking}, video = {https://youtu.be/qzKAoBVTw2c}, } -
Software Verification with PDR: An Implementation of the State of the Art.
In Proceedings of the 26th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2020, Dublin, Ireland, April 25-30), part 1,
LNCS 12078,
pages 3-21,
2020.
Springer.
doi:10.1007/978-3-030-45190-5_1
Keyword(s):
Software Model Checking,
CPAchecker
Publisher's Version
PDF
Presentation
Video
Supplement
BibTeX Entry
@inproceedings{TACAS20a, author = {Dirk Beyer and Matthias Dangl}, title = {Software Verification with {PDR}: An Implementation of the State of the Art}, booktitle = {Proceedings of the 26th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS~2020, Dublin, Ireland, April 25-30), part 1}, pages = {3-21}, year = {2020}, series = {LNCS~12078}, publisher = {Springer}, doi = {10.1007/978-3-030-45190-5_1}, sha256 = {fbd54433b42cb4411ddf6d73eb198507a6d35d8b6581b000be30aed84633e204}, url = {https://www.sosy-lab.org/research/pdr-compare/}, presentation = {https://www.sosy-lab.org/research/prs/2021-03-31_TACAS20_PDR-for-Software_Dirk.pdf}, abstract = {}, keyword = {Software Model Checking,CPAchecker}, video = {https://youtu.be/Wxqd92sdHBE}, } -
Second Competition on Software Testing: Test-Comp 2020.
In Proceedings of the 23rd International Conference on
Fundamental Approaches to Software Engineering (FASE 2020, Dublin, Ireland, April 25-30),
LNCS 12076,
pages 505-519,
2020.
Springer.
doi:10.1007/978-3-030-45234-6_25
Keyword(s):
Competition on Software Testing (Test-Comp),
Competition on Software Testing (Test-Comp Report),
Software Testing
Publisher's Version
PDF
Supplement
Artifact(s)
BibTeX Entry
@inproceedings{FASE20, author = {Dirk Beyer}, title = {Second Competition on Software Testing: {Test-Comp 2020}}, booktitle = {Proceedings of the 23rd International Conference on Fundamental Approaches to Software Engineering (FASE~2020, Dublin, Ireland, April 25-30)}, pages = {505-519}, year = {2020}, series = {LNCS~12076}, publisher = {Springer}, doi = {10.1007/978-3-030-45234-6_25}, sha256 = {296b4caf885ae029e388c2ef8fd032f1ab55c07d5e8ea1064f2e50c08f5d6919}, url = {https://test-comp.sosy-lab.org/2020/}, abstract = {}, keyword = {Competition on Software Testing (Test-Comp),Competition on Software Testing (Test-Comp Report),Software Testing}, artifact1 = {10.5281/zenodo.3678250}, artifact2 = {10.5281/zenodo.3678264}, artifact3 = {10.5281/zenodo.3678275}, artifact4 = {10.5281/zenodo.3574420}, } -
Cooperative Test-Case Generation with Verifiers.
In M. Felderer,
W. Hasselbring,
R. Rabiser, and
R. Jung, editors,
Proceedings of the Conference on
Software Engineering (SE 2020, Innsbruck, Austria, February 24-28),
LNI P-300,
pages 107-108,
2020.
GI.
doi:10.18420/SE2020_31
Keyword(s):
CPAchecker,
Software Model Checking,
Software Testing
Publisher's Version
BibTeX Entry
@inproceedings{SE20, author = {Dirk Beyer and Marie-Christine Jakobs}, title = {Cooperative Test-Case Generation with Verifiers}, booktitle = {Proceedings of the Conference on Software Engineering (SE~2020, Innsbruck, Austria, February 24-28)}, editor = {M.~Felderer and W.~Hasselbring and R.~Rabiser and R.~Jung}, pages = {107--108}, year = {2020}, series = {{LNI}~P-300}, publisher = {{GI}}, doi = {10.18420/SE2020_31}, sha256 = {}, pdf = {}, presentation = {}, abstract = {}, keyword = {CPAchecker,Software Model Checking,Software Testing}, annote = {This is a summary of a <a href="https://www.sosy-lab.org/research/bib/Year/2019.html#FASE19">full article on this topic</a> that appeared in Proc. FASE 2019.}, isbnnote = {978-3-88579-694-7}, }Additional Infos
This is a summary of a full article on this topic that appeared in Proc. FASE 2019. -
Legion: Best-First Concolic Testing.
In Proc. of Automated Software Engineering (ASE),
pages 54-65,
2020.
IEEE.
PDF
BibTeX Entry
@inproceedings{ernst:ase2020, author = {Dongge Liu and Gidon Ernst and Toby Murray and Ben Rubinstein}, title = {Legion: Best-First Concolic Testing}, booktitle = {Proc. of Automated Software Engineering (ASE)}, pages = {54--65}, year = {2020}, publisher = {IEEE}, pdf = {https://arxiv.org/abs/2002.06311}, } -
Legion: Best-First Concolic Testing (Competition Contribution)..
In Proc. of Fundamental Approaches to Software Engineering (FASE),
pages 545-549,
2020.
BibTeX Entry
@inproceedings{ernst:testcomp2020, author = {Dongge Liu and Gidon Ernst and Toby Murray and Benjamin Rubinstein}, title = {Legion: Best-First Concolic Testing (Competition Contribution).}, booktitle = {Proc. of Fundamental Approaches to Software Engineering (FASE)}, pages = {545--549}, year = {2020}, } -
Information Flow Testing of a PGP Keyserver.
In Proc. of the VerifyThis Long-term Challenge 2020,
pages 11-13,
2020.
KIT Library.
Technical Report.
BibTeX Entry
@inproceedings{ernst:vtltc2020-iftesting, author = {Gidon Ernst and Lukas Rieger}, title = {{Information Flow Testing of a PGP Keyserver}}, booktitle = {{Proc. of the VerifyThis Long-term Challenge 2020}}, pages = {11--13}, year = {2020}, publisher = {KIT Library}, note = {Technical Report.}, } -
Verifying the Security of a PGP Keyserver.
In Proc. of the VerifyThis Long-term Challenge 2020,
pages 14-16,
2020.
KIT Library.
Technical Report.
BibTeX Entry
@inproceedings{ernst:vtltc2020-ifverify, author = {Gidon Ernst and Toby Murray and Mukesh Tiwari}, title = {{Verifying the Security of a PGP Keyserver}}, booktitle = {{Proc. of the VerifyThis Long-term Challenge 2020}}, pages = {14--16}, year = {2020}, publisher = {KIT Library}, note = {Technical Report.}, } -
ARCH-COMP 2020 category report: Falsification.
In Proc. of Applied Verification of Continuous and Hybrid Systems (ARCH),
EPiC,
pages 140-152,
2020.
EasyChair.
BibTeX Entry
@inproceedings{ernst:arch2020, author = {Gidon Ernst and others}, title = {{ARCH-COMP} 2020 category report: Falsification}, booktitle = {Proc. of Applied Verification of Continuous and Hybrid Systems (ARCH)}, volume = {74}, pages = {140--152}, year = {2020}, series = {EPiC}, publisher = {EasyChair}, } -
Rigorous Engineering of Collective Adaptive Systems Introduction to the 3rd Track Edition.
In Tiziana Margaria and
Bernhard Steffen, editors,
Leveraging Applications of Formal Methods, Verification and Validation: Engineering Principles - 9th International Symposium on Leveraging
Applications of Formal Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020, Proceedings, Part II,
LNCS 12477,
pages 161-170,
2020.
Springer.
doi:10.1007/978-3-030-61470-6_10
Publisher's Version
PDF
BibTeX Entry
@inproceedings{DBLP:conf/isola/WirsingNJ20, author = {Martin Wirsing and Rocco De Nicola and Stefan J{\"{a}}hnichen}, title = {Rigorous Engineering of Collective Adaptive Systems Introduction to the 3rd Track Edition}, booktitle = {Leveraging Applications of Formal Methods, Verification and Validation: Engineering Principles - 9th International Symposium on Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020, Proceedings, Part {II}}, editor = {Tiziana Margaria and Bernhard Steffen}, pages = {161--170}, year = {2020}, series = {LNCS~12477}, publisher = {Springer}, doi = {10.1007/978-3-030-61470-6\_10}, } -
A Dynamic Logic for Systems with Predicate-Based Communication.
In Tiziana Margaria and
Bernhard Steffen, editors,
Leveraging Applications of Formal Methods, Verification and Validation: Engineering Principles - 9th International Symposium on Leveraging
Applications of Formal Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020, Proceedings, Part II,
LNCS 12477,
pages 224-242,
2020.
Springer.
doi:10.1007/978-3-030-61470-6_14
Publisher's Version
PDF
BibTeX Entry
@inproceedings{DBLP:conf/isola/HennickerW20, author = {Rolf Hennicker and Martin Wirsing}, title = {A Dynamic Logic for Systems with Predicate-Based Communication}, booktitle = {Leveraging Applications of Formal Methods, Verification and Validation: Engineering Principles - 9th International Symposium on Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020, Proceedings, Part {II}}, editor = {Tiziana Margaria and Bernhard Steffen}, pages = {224--242}, year = {2020}, series = {LNCS~12477}, publisher = {Springer}, doi = {10.1007/978-3-030-61470-6\_14}, }
Theses and projects (PhD, MSc, BSc, Project)
-
Solver-based Analysis of Memory Safety using Separation Logic.
Master's Thesis, LMU Munich, Software Systems Lab,
2020.
Keyword(s):
CPAchecker,
JavaSMT,
Separation Logic,
Software Model Checking
PDF
Presentation
BibTeX Entry
@misc{BeckSeparationLogic, author = {Moritz Beck}, title = {Solver-based Analysis of Memory Safety using Separation Logic}, year = {2020}, pdf = {https://www.sosy-lab.org/research/msc/2020.Beck.Solver-based_Analysis_of_Memory_Safety_using_Separation_Logic.pdf}, presentation = {https://www.sosy-lab.org/research/prs/2020-09-16_MA_SolverBasedAnalysisOfMemorySafetyUsingSeparationLogic_Beck.pdf}, keyword = {CPAchecker,JavaSMT,Separation Logic,Software Model Checking}, howpublished = {Master's Thesis, LMU Munich, Software Systems Lab}, } -
Software Verification with Numerical Domains in CPAchecker.
Bachelor's Thesis, LMU Munich, Software Systems Lab,
2020.
Keyword(s):
CPAchecker,
Software Model Checking
BibTeX Entry
@misc{ZehendnerNumericalDomains, author = {Martin Zehendner}, title = {Software Verification with Numerical Domains in \textsc{CPAchecker}}, year = {2020}, keyword = {CPAchecker, Software Model Checking}, field = {Computer Science}, howpublished = {Bachelor's Thesis, LMU Munich, Software Systems Lab}, } -
Converting Between ACSL Annotations and Witness Invariants.
Bachelor's Thesis, LMU Munich, Software Systems Lab,
2020.
Keyword(s):
CPAchecker,
Software Model Checking,
ACSL
PDF
Presentation
BibTeX Entry
@misc{UmbrichtACSL, author = {Sven Umbricht}, title = {Converting Between ACSL Annotations and Witness Invariants}, year = {2020}, pdf = {https://www.sosy-lab.org/research/bsc/2020.Umbricht.Converting.Between.ACSL.Annotations.and.Witness.Invariants.pdf}, presentation = {https://www.sosy-lab.org/research/prs/2021-02-10_BA_Converting.Between.ACSL.Annotations.and.Witness.Invariants_Umbricht.pdf}, keyword = {CPAchecker, Software Model Checking, ACSL}, field = {Computer Science}, howpublished = {Bachelor's Thesis, LMU Munich, Software Systems Lab}, } -
Implementierung und Evaluation von einfacher Schleifenabstraktion für das CPAchecker-Framework.
Bachelor's Thesis, LMU Munich, Software Systems Lab,
2020.
Keyword(s):
CPAchecker,
Software Model Checking,
Loop Acceleration
BibTeX Entry
@misc{DamboeckLoopAccel, author = {Benedikt Damböck}, title = {Implementierung und Evaluation von einfacher Schleifenabstraktion für das \textsc{CPAchecker}-Framework}, year = {2020}, keyword = {CPAchecker, Software Model Checking, Loop Acceleration}, field = {Computer Science}, howpublished = {Bachelor's Thesis, LMU Munich, Software Systems Lab}, } -
Improve Analysis of Java Programs in CPAchecker.
Bachelor's Thesis, LMU Munich, Software Systems Lab,
2020.
Keyword(s):
CPAchecker,
Software Model Checking
BibTeX Entry
@misc{MassardJavaPrograms, author = {Sven Massard}, title = {Improve Analysis of Java Programs in \textsc{CPAchecker}}, year = {2020}, keyword = {CPAchecker, Software Model Checking}, field = {Computer Science}, howpublished = {Bachelor's Thesis, LMU Munich, Software Systems Lab}, } -
Converting Test Goals to Condition Automata.
Bachelor's Thesis, LMU Munich, Software Systems Lab,
2020.
Keyword(s):
CPAchecker,
Software Model Checking
PDF
Presentation
BibTeX Entry
@misc{SchoenbergerTestGoalsToConditions, author = {Frederic Sch{\"o}nberger}, title = {Converting Test Goals to Condition Automata}, year = {2020}, pdf = {https://www.sosy-lab.org/research/bsc/2020.Schoenberger.Converting_Test_Goals_to_Condition_Automata.pdf}, presentation = {https://www.sosy-lab.org/research/prs/2021-01-13_BA_Converting_Test_Goals_to_Condition_Automata_Schoenberger.pdf}, keyword = {CPAchecker, Software Model Checking}, field = {Computer Science}, howpublished = {Bachelor's Thesis, LMU Munich, Software Systems Lab}, } -
Automatic Generation of Test Harnesses for Pointer-Based C Programs: Implementation of a Pointer-Tracking Analysis and Harness-Generation Engine in the Formal Verification Framework CPAchecker.
Bachelor's Thesis, LMU Munich, Software Systems Lab,
2020.
Keyword(s):
CPAchecker,
Software Model Checking
BibTeX Entry
@misc{SelbergHarnessesForPointers, author = {Jakob Selberg}, title = {Automatic Generation of Test Harnesses for Pointer-Based C Programs: Implementation of a Pointer-Tracking Analysis and Harness-Generation Engine in the Formal Verification Framework \textsc{CPAchecker}}, year = {2020}, keyword = {CPAchecker, Software Model Checking}, field = {Computer Science}, howpublished = {Bachelor's Thesis, LMU Munich, Software Systems Lab}, } -
Domain Types for Predicate Analysis in CPAchecker.
Bachelor's Thesis, LMU Munich, Software Systems Lab,
2020.
Keyword(s):
CPAchecker,
Software Model Checking
BibTeX Entry
@misc{AdamsDomainTypesPredicate, author = {Yannick Adams}, title = {Domain Types for Predicate Analysis in \textsc{CPAchecker}}, year = {2020}, keyword = {CPAchecker, Software Model Checking}, field = {Computer Science}, howpublished = {Bachelor's Thesis, LMU Munich, Software Systems Lab}, } -
SMT-Based Model Checking of Concurrent Programs.
Bachelor's Thesis, LMU Munich, Software Systems Lab,
2020.
Keyword(s):
CPAchecker,
Software Model Checking
PDF
BibTeX Entry
@misc{KolesnykovConcurrencySMT, author = {Vladyslav Kolesnykov}, title = {{SMT}-Based Model Checking of Concurrent Programs}, year = {2020}, pdf = {https://www.sosy-lab.org/research/bsc/2020.Kolesnykov.SMT-Based_Model_Checking_of_Concurrent_Programs.pdf}, keyword = {CPAchecker, Software Model Checking}, field = {Computer Science}, howpublished = {Bachelor's Thesis, LMU Munich, Software Systems Lab}, } -
Interval-Based Optimization for SMT Solvers.
Bachelor's Thesis, LMU Munich, Software Systems Lab,
2020.
Keyword(s):
JavaSMT
BibTeX Entry
@misc{RusanuIntervalSMTSolver, author = {Radu-Cristian Rusanu}, title = {Interval-Based Optimization for SMT Solvers}, year = {2020}, keyword = {JavaSMT}, field = {Computer Science}, howpublished = {Bachelor's Thesis, LMU Munich, Software Systems Lab}, } -
Reale Anforderungen für die Software-Analyse.
Bachelor's Thesis, LMU Munich, Software Systems Lab,
2020.
BibTeX Entry
@misc{AbdullaSARD, author = {Amena Abdulla}, title = {Reale Anforderungen f{\"u}r die Software-Analyse}, year = {2020}, keyword = {}, field = {Computer Science}, howpublished = {Bachelor's Thesis, LMU Munich, Software Systems Lab}, } -
Code Complexity Measures in Software Engineering: A Systematic Comparison and Evaluation on Software-Component Level.
Bachelor's Thesis, LMU Munich, Software Systems Lab,
2020.
PDF
BibTeX Entry
@misc{LundComplexityMeasures, author = {Simon Lund}, title = {Code Complexity Measures in Software Engineering: A Systematic Comparison and Evaluation on Software-Component Level}, year = {2020}, pdf = {https://www.sosy-lab.org/research/bsc/2020.Lund.Complexity_Measures_in_Software_Engineering.pdf}, keyword = {}, field = {Computer Science}, howpublished = {Bachelor's Thesis, LMU Munich, Software Systems Lab}, } -
Fault Localization in Model Checking. Implementation and Evaluation of Fault-Localization Techniques with Distance Metrics.
Bachelor's Thesis, LMU Munich, Software Systems Lab,
2020.
Keyword(s):
CPAchecker,
Software Model Checking
PDF
Presentation
BibTeX Entry
@misc{KafounisFaultLocalizationWithDistanceMetrics, author = {Angelos Kafounis}, title = {Fault Localization in Model Checking. Implementation and Evaluation of Fault-Localization Techniques with Distance Metrics}, year = {2020}, pdf = {https://www.sosy-lab.org/research/bsc/2020.Kafounis.Fault_Localization_in_Model_Checking_Implementation_and_Evaluation_of_Fault-Localization_Techniques_with_Distance_Metrics.pdf}, presentation = {https://www.sosy-lab.org/research/prs/2020-09-29_BA_FaultLocalizationWithDistanceMetrics_Kafounis.pdf}, keyword = {CPAchecker, Software Model Checking}, field = {Computer Science}, howpublished = {Bachelor's Thesis, LMU Munich, Software Systems Lab}, } -
Test-Based Fault Localization in the Context of Formal Verification: Implementation and Evaluation of the Tarantula Algorithm in CPAchecker.
Bachelor's Thesis, LMU Munich, Software Systems Lab,
2020.
Keyword(s):
CPAchecker,
Software Model Checking
PDF
Presentation
BibTeX Entry
@misc{AliFaultLocalizationWithTarantula, author = {Schindar Ali}, title = {Test-Based Fault Localization in the Context of Formal Verification: Implementation and Evaluation of the Tarantula Algorithm in CPAchecker}, year = {2020}, pdf = {https://www.sosy-lab.org/research/bsc/2020.Ali.Test-Based_Fault_Localization_in_the_Context_of_Formal_Verification.pdf}, presentation = {https://www.sosy-lab.org/research/prs/2020-09-02_BA_FaultLocalizationWithTestBasedDistanceMetrics_Ali.pdf}, keyword = {CPAchecker, Software Model Checking}, field = {Computer Science}, howpublished = {Bachelor's Thesis, LMU Munich, Software Systems Lab}, } -
Energy Consumption Prediction of Verification Work.
Bachelor's Thesis, LMU Munich, Software Systems Lab,
2020.
Keyword(s):
CPAchecker,
Benchmarking,
Energy Measurement
BibTeX Entry
@misc{IsaakidisEnergy, author = {Petros Isaakidis}, title = {Energy Consumption Prediction of Verification Work}, year = {2020}, keyword = {CPAchecker, Benchmarking, Energy Measurement}, field = {Computer Science}, howpublished = {Bachelor's Thesis, LMU Munich, Software Systems Lab}, } -
Fault Localization for Formal Verification: An Implementation and Evaluation of Algorithms based on Error Invariants and UNSAT-cores.
Bachelor's Thesis, LMU Munich, Software Systems Lab,
2020.
Keyword(s):
CPAchecker,
Software Model Checking
PDF
Presentation
BibTeX Entry
@misc{KettlFaultLocalization, author = {Matthias Kettl}, title = {Fault Localization for Formal Verification: An Implementation and Evaluation of Algorithms based on Error Invariants and UNSAT-cores}, year = {2020}, pdf = {https://www.sosy-lab.org/research/bsc/2020.Kettl.Fault_Localization_for_Formal_Verification_An_Implementation_and_Evaluation_of_Algorithms_based_on_Error_Invariants_and_UNSAT-cores.pdf}, presentation = {https://www.sosy-lab.org/research/prs/2020-07-22_BA_FaultLocalizationWithUnsatCores_Kettl.pdf}, keyword = {CPAchecker, Software Model Checking}, annote = {Won the LMU research award for excellent students (LMU Forschungspreis f{\"u}r exzellente Studierende) of LMU Munich}, field = {Computer Science}, howpublished = {Bachelor's Thesis, LMU Munich, Software Systems Lab}, }Additional Infos
Won the LMU research award for excellent students (LMU Forschungspreis für exzellente Studierende) of LMU Munich -
A Web Frontend For Visualization of Computation Steps and their Results in CPAchecker.
Bachelor's Thesis, LMU Munich, Software Systems Lab,
2020.
Keyword(s):
CPAchecker
PDF
Presentation
BibTeX Entry
@misc{MuenchowVisualizeComputationSteps, author = {Sonja M\"unchow}, title = {A Web Frontend For Visualization of Computation Steps and their Results in CPAchecker}, year = {2020}, pdf = {https://www.sosy-lab.org/research/bsc/2020.Muenchow.A_Web_Frontend_for_Visualization_of_Computation_Steps_and_their_Results_in_CPAchecker.pdf}, presentation = {https://www.sosy-lab.org/research/prs/2020-07-15_BA_WebFrontendForVisualizationOfComputationStepsInCpachecker_Muenchow.pdf}, keyword = {CPAchecker}, field = {Computer Science}, howpublished = {Bachelor's Thesis, LMU Munich, Software Systems Lab}, } -
A Language Server and IDE Plugin for CPAchecker.
Bachelor's Thesis, LMU Munich, Software Systems Lab,
2020.
Keyword(s):
CPAchecker
PDF
Presentation
BibTeX Entry
@misc{LeimeisterIdeLsp, author = {Adrian Leimeister}, title = {A Language Server and IDE Plugin for \textsc{CPAchecker}}, year = {2020}, pdf = {https://www.sosy-lab.org/research/bsc/2020.Leimeister.A_Language_Server_and_IDE_Plugin_for_CPAchecker.pdf}, presentation = {https://www.sosy-lab.org/research/prs/2020-07-15_BA_IdePluginForCpachecker_Leimeister.pdf}, keyword = {CPAchecker}, field = {Computer Science}, howpublished = {Bachelor's Thesis, LMU Munich, Software Systems Lab}, } -
Extending the Framework JavaSMT with the SMT Solver Yices2.
Bachelor's Thesis, LMU Munich, Software Systems Lab,
2020.
Keyword(s):
JavaSMT
PDF
Presentation
BibTeX Entry
@misc{ObermeierYices2, author = {Michael Obermeier}, title = {Extending the Framework {{\sc JavaSMT}} with the {SMT} Solver {{\sc Yices2}}}, year = {2020}, pdf = {https://www.sosy-lab.org/research/bsc/2020.Obermeier.Extending_the_Framework_JavaSMT_with_the_SMT_Solver_Yices2.pdf}, presentation = {https://www.sosy-lab.org/research/prs/2020-05-13_BA_IntegrationYices2InJavaSMT_Obermeier.pdf}, keyword = {JavaSMT}, field = {Computer Science}, howpublished = {Bachelor's Thesis, LMU Munich, Software Systems Lab}, } -
Design and Implementation of a Cluster-Based Approach for Software Verification.
Bachelor's Thesis, LMU Munich, Software Systems Lab,
2020.
Keyword(s):
CPAchecker,
BAM
BibTeX Entry
@misc{RiedClusterBAM, author = {Alexander Ried}, title = {Design and Implementation of a Cluster-Based Approach for Software Verification}, year = {2020}, keyword = {CPAchecker, BAM}, field = {Computer Science}, howpublished = {Bachelor's Thesis, LMU Munich, Software Systems Lab}, } -
SMT-based Checking and Synthesis of Formal Refinements.
Master's Thesis, LMU Munich, Software Systems Lab,
2020.
BibTeX Entry
@misc{GaidaRefinement, author = {Tillmann Gaida}, title = {SMT-based Checking and Synthesis of Formal Refinements}, year = {2020}, field = {Computer Science}, howpublished = {Master's Thesis, LMU Munich, Software Systems Lab}, } -
Information Flow Testing of a PGP Server.
Bachelor's Thesis, LMU Munich, Software Systems Lab,
2020.
BibTeX Entry
@misc{RiegerPGP, author = {Lukas Rieger}, title = {Information Flow Testing of a PGP Server}, year = {2020}, field = {Computer Science}, howpublished = {Bachelor's Thesis, LMU Munich, Software Systems Lab}, } -
Coverage-guided Fuzzing with Stochastic Optimization.
Bachelor's Thesis, LMU Munich, Software Systems Lab,
2020.
BibTeX Entry
@misc{KimFuzzing, author = {Hyunsung Kim}, title = {Coverage-guided Fuzzing with Stochastic Optimization}, year = {2020}, field = {Computer Science}, howpublished = {Bachelor's Thesis, LMU Munich, Software Systems Lab}, }
Disclaimer:
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All person copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.